
 

  

 

Aalborg Universitet

Investigating the feasibility of combining EEG and EMG for controlling a hybrid human
computer interface in patients with spinal cord injury

Leerskov, Kasper; Rehman, Muhammad Zia ur; Niazi, Imran Khan; Cremoux, Sylvain;
Jochumsen, Mads Rovsing
Published in:
20th IEEE Conference on Bioinformatics and Bioengineering (BIBE-2020)

DOI (link to publication from Publisher):
10.1109/BIBE50027.2020.00072

Creative Commons License
CC BY 4.0

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Leerskov, K., Rehman, M. Z. U., Niazi, I. K., Cremoux, S., & Jochumsen, M. R. (2020). Investigating the
feasibility of combining EEG and EMG for controlling a hybrid human computer interface in patients with spinal
cord injury. In 20th IEEE Conference on Bioinformatics and Bioengineering (BIBE-2020) Article 9288158 IEEE
Press. Advance online publication. https://doi.org/10.1109/BIBE50027.2020.00072

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/BIBE50027.2020.00072
https://vbn.aau.dk/en/publications/34aaf62c-09b9-434b-9ca2-7994595613a6
https://doi.org/10.1109/BIBE50027.2020.00072


XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Investigating the feasibility of combining EEG and 

EMG for controlling a hybrid human computer 

interface in patients with spinal cord injury  

Kasper Leerskov  

Department of Health Science and 

Technology 

Aalborg University 

Aalborg, Denmark 

kkl@hst.aau.dk 

Sylvain Cremoux 

Centre de Recherche Cerveau et 

Cognition 

Université de Toulouse 

Toulouse, France 

s.cremoux@gmail.com 

Muhammad Rehman 

Department of Biomedical Engineering 

Riphah International University 

Islamabad, Pakistan 

ziaur.rehman@riphah.edu.pk 

 

Mads Jochumsen 

Department of Health Science and 

Technology 

Aalborg University 

Aalborg, Denmark 

mj@hst.aau.dk

Imran Niazi 

New Zealand College of Chiropractic 

Auckland, New Zealand 

imran.niazi@nzchiro.co.nz

Abstract—Objective. Human-computer interfaces (HCI) are 

potential tools for assisting (movement replacement) and 

rehabilitating (movement restoration) individuals with spinal 

cord injury (SCI). HCIs based on electroencephalography 

(EEG) have limited accuracy and hence control options; this 

could be improved by exploiting potential residual muscle 

activity (electromyography, EMG). The study objectives were to 

determine if combined EEG and EMG improves offline single-

trial movement classification. Furthermore, the effect of 

number of classes and detection latency on the accuracies was 

investigated. Methods. Ten able-bodied and eight SCI subjects 

performed elbow flexion/extension at three force levels while 

EEG and EMG were recorded. Temporal and spectral features 

were extracted from the EEG and Hudgins time domain 

features were extracted from the EMG in 1-second time 

windows. The time window was shifted (200-ms shift) over 5-

second epochs around the movement onset. Each segment was 

classified in three scenarios (2, 3 or 7 classes) using linear 

discriminant analysis. Results. The accuracies obtained with 

EEG (51.2%) was outperformed by EMG (95.5%) and 

combined EMG and EEG (96.2%). Immediately after the EMG 

onset, the accuracies increased and rapidly reached a plateau. 

High accuracies were obtained for the different number of 

classes. Conclusion and Significance. EMG was crucial for 

obtaining high accuracies, and potential residual EMG should 

be exploited in HCIs to improve the performance. Force proved 

to be a viable option for SCI subjects with residual EMG to 

increase the number of classes for HCI control. These findings 

could assist design considerations of HCIs for SCI individuals. 

Keywords— Hybrid HCI, spinal cord injury, EEG, EMG 

I. INTRODUCTION 

It has been estimated that up to 755 per million individuals 
are suffering from spinal cord injury (SCI) worldwide [1] and, 
with more than 43% suffering the injury before 30 years of 
age [2], a high percentage of people with SCI can expect a 
long life with disability. Additionally, 59% of people with SCI 
are living with complete or incomplete tetraplegia [3] making 
these individuals particularly dependent on assistance in 
various everyday tasks such as eating, bathing and toileting 
[4]. To enable these patients to become more self-reliant and 
enhance their interaction with the surrounding world, they 
may utilize a Brain-Computer Interface (BCI) [4], [5]. 
Traditionally BCIs have been used as a means for 
communication, controlling external devices and 

neurorehabilitation [6], [7]. The control of external devices 
with a BCI such as a robotic arm or a wheelchair [8], [9] can 
potentially provide a means to regain mobility and perform 
some activities of daily living for SCI individuals. A BCI 
works by using sensors to record the brain activity of the user, 
and using signal processing techniques to convert it into a 
meaningful command to some external device [10]. Even 
though SCI individuals have altered function of the brain 
regions associated with sensory-motor control of their 
impaired limbs [11], [12], it is possible to discern signal 
patterns usable in BCI applications, e.g. during attempted or 
imagined movement, with the latter even to an extent 
comparable to able-bodied subjects [8], [13]. Huggins et al. 
[14] found that 96% of a group of SCI individuals with low 
independency showed interest in using a BCI, but even at 80% 
classification accuracy only three out of four would accept its 
performance [14]. Thus, the potential users of BCI systems 
demand a quite high performance of the BCI to accept it. 
Higher BCI performance could be obtained by selecting a 
synchronous BCI paradigm where the user relies on different 
visual cues to elicit e.g. a steady-state visual evoked potential 
or P300, which have been associated with high information 
transfer rates (ITRs) [15] i.e. a measure of how fast and 
accurate external devices can be controlled using the brain 
[16]. If synchronous control is not feasible, a BCI can be 
controlled asynchronously as well where the BCI is always 
active and waiting for the user input. Such BCIs often rely on 
movement-related brain patterns which are evoked from 
imagined, executed or attempted movements [17], [18], and 
they are not dependent on external cues. Two distinct 
movement-related patterns are observed in association with a 
movement (executed, imagined, or attempted): 1) Movement-
related cortical potentials (MRCPs), and 2) event-related 
desynchronization/synchronization (ERD/ERS). The MRCP 
is observed in the EEG as an increase in negativity (amplitude) 
up to two seconds prior the movement onset [19]. The ERD is 
a decrease in spectral power prior the movement onset with a 
similar time course as the MRCP while the ERS is an increase 
in spectral power, it is postulated that the MRCP and 
ERD/ERS are generated through different neuronal 
mechanisms [19]. The ERD and ERS are primarily extracted 
from the mu and beta rhythms in the EEG [20].  

Another way to improve the classification accuracy of 
BCIs is by developing hybrid BCIs that exploit two different 



control signals [21], [22]. Since two control signals are used, 
it may be necessary to use two different control strategies such 
as motor imagination and steady-state visual evoked 
potentials [23]. However, if a person with SCI has residual 
movement, it is possible to record the movement activity in 
two different ways using EEG and EMG, which potentially 
holds supplementary discriminative information [5]. Since 
EEG holds the potential to predict movements before they 
occur, through e.g. MRCP or ERD detection [24], and EMG 
is more reliably detected compared to EEG [25], it could be 
possible that by combining the two, the classification accuracy 
of the resulting Human-Computer Interface (HCI) will 
increase. The combination of EEG and EMG in hybrid HCIs 
is not novel, as it has been tested in able-bodied subjects and 
stroke patients; however, it needs to be tested in SCI 
individuals. Various ways of combining the two have been 
suggested, such as using the modalities as different “modes” 
or conditions [26], fusing the probabilities from two modality 
exclusive classifiers [27], making joint EEG-EMG features 
[28] or combining the feature vectors of the two modalities 
[29].  

An important aspect of HCI for control of external devices 
is the number of available commands that are implemented in 
the HCI, as more commands will make the HCI more 
versatile. Previous studies have shown the possibility of 
classifying force based on both EEG [30] and EMG [31] 
suggesting that force may be a viable parameter to include for 
constructing separate commands. Additionally, when using an 
HCI for control of an external device for either control or 
rehabilitation purposes, the delay between the intention to 
send a command and the relay of the command to the external 
device matters. For control, a larger delay may be acceptable 
although it should be as low as possible without affecting the 
classification accuracy [14], while for rehabilitation the 
intention to move probably should be detected within 200-300 
ms after the movement onset to allow time to trigger an 
external device that can provide relevant somatosensory 
feedback to induce Hebbian-associated plasticity [7].  

Thus, the aim of this study was to investigate if 
classification of movements from EEG benefits from adding 
information from EMG in an offline HCI in subjects with SCI 
and in able-bodied subjects. Additionally, the association 
between classification accuracy based on EEG, EMG and the 
combination of EEG and EMG is investigated with respect to 
the detection latency and the classification task difficulty 
(number of available commands). 

II. METHODS 

 

This study used a dataset collected as part of previous 

studies that aimed at evaluating the alteration of spectral 

cortical activity and corticomuscular coherence after cervical 

SCI [32]–[34]. 

A. Subjects 

Ten able-bodied subjects (mean age: 27 ± 4 years) and 
eight tetraplegic SCI subjects (mean age: 32 ± 6 years) were 
recruited. SCI subjects’ level of injury ranged from C5-T1, 
seven had a complete injury and one had an incomplete injury. 
Full details on SCI subjects can be found in [32]. The study 
protocol followed the local ethic guidelines from the Faculty 
of Sport Sciences and Human Movement, Paul Sabatier 
University (Toulouse 3) in Toulouse, France. 

B. Recordings 

EEG signals were acquired using an active 64-channel 
system (Active II, Biosemi Inc., Amsterdam, The 
Netherlands) with a sampling frequency of 1024 Hz. 
Electrodes were positioned based on the International 10–20 
System. Impedances were kept below 30 kΩ, and a common 
average reference was used. [32]  

EMG signals were acquired from the Biceps Brachii, 
Brachioradialis and the long head and lateral head of the 
Triceps Brachii of the right arm with a sampling frequency of 
1 kHz using a MP 150 amplifier (Biopac Systems Inc., Goleta, 
USA). The reference was placed on the left ulna styloid 
process. The skin was prepared following the SENIAM 
recommendation [35]. The reference electrode was placed on 
the left ulna styloid process. [32] 

The synchrony across the two recordings systems was 
ensured using TTL pulses and was assessed pre-experiment. 
An adaptation of Dal Maso’s protocol [36] was used in this 
experiment (see Fig. 1). 

C. Experimental Protocol 

After careful preparation, participants sat on a chair with a 
dynamometer (System 4 Pro, Biodex Medical Systems, 
Shirley, NY, USA). The right arm was fixed to the armrest 
with the elbow joint 90° flexed and the forearm supinated, 
which is a favorable position for maximal force production in 
flexion and in extension  [37], [38]. Participants then 
performed 3 relative Maximum Voluntary Contractions 
(rMVC), i.e., the highest net moment around the right elbow 
joint in flexion and in extension while keeping all the muscles 
not involved in the task at rest [32]-[34]. rMVC were 
considered adequate when no artifacts were visually detected 
on the EEG recordings. This procedure was implemented to 
reduce neck and shoulder movements as much as possible 
during the submaximal contractions since these may 
contaminate the EEG recordings. 

The experimental protocol included seven tasks: 25%, 
50% and 75% rMVC in flexion, 25%, 50% and 75% rMVC in 
extension and a rest task (i.e., 0% rMVC). Participants 
performed 147 repetitions of these tasks distributed into seven 
sets. Each set consisted of three repetitions of each condition 
(21 repetitions per task in total) presented in a randomized 
order. Each active task consisted of a 6-seconds contraction 
followed by 6-seconds rest. Each set of tasks was followed by 
at least a 3-minutes rest period. The required force level was 
presented to the participant with visual feedback (Presentation 
program, NeuroBehavioral Systems Inc. Albany, USA). The 
Presentation software also generated the TTL pulses sent to 
the data acquisition computers to allow offline 
synchronization of all the data collected. Fig. 1 depicts the 
visual feedback used during the experiment. A full description 
of the experimental protocol is given in [34]. 

D. Data Analysis 

1) Pre-processing 
Following the experiment, the data were filtered using a 

Chebyshev type 2 IIR filter with a passband of 1-45 Hz and 
20-500 Hz for EEG and EMG, respectively, both attenuating 
40 dB. EMG was additionally filtered to remove 50 Hz 
powerline noise (notch filter: 49-51 Hz; 40dB attenuation).  

At the beginning of each contraction or rest, a trigger was 
generated to be used for offline analysis of the data. This 
trigger was adjusted to correspond to the onset of EMG, using 



the toolbox for detecting EMG onsets introduced in [39]. The 
toolbox utilizes an extended double threshold algorithm and 
generates an initial guess on the onset of EMG based only on 
the expected number of EMG bursts in the data [39]. 
Following the initial guess of EMG onsets produced by the 
toolbox, the onsets were visually inspected and manually 
adjusted by a trained individual to ensure precision of onset 
detection. This was only done for the extension and flexion 
samples; triggers for the rest condition were not adjusted.  

All data analysis was done in MATLAB 2019a. 

2) Feature Extraction 
Every contraction or rest was divided into multiple 1-

second epochs lasting from two seconds before the trigger to 
three seconds after the trigger. In these epochs, features were 
extracted in 1-second windows, in shifts of 0.2 seconds, 
resulting in 21 windows (see Fig. 2). However, features for the 
resting epochs were only derived in a single window (the first 
of each epoch, time: -2 to -1 second with respect to the 
trigger), as the resting condition was expected to be similar in 
any 1-second window within the same epoch.  

Features were derived from four EEG channels (FCz, C3, 
Cz and C4) and the four EMG channels. The EEG channels 
were chosen to increase the early accuracy gain in classifying 
EEG, as the early components of the MRCP is of highest 
amplitude at Cz, and symmetrically distributed in the 
hemispheres for hand movements [19]. Only a few electrodes 
were used to improve the feasibility of the investigated system 
for out-of-lab applications [40]. As it was expected that both 
MRCPs (negative amplitude [19]) and ERD/ERS (changes in 
spectral power [20]) would be present during the active tasks 
in the study, the EEG features included a simple mean feature 
(mean amplitude for the epoch), and power within the mu (8-
13 Hz), low beta (13-21 Hz) and high beta (21-30 Hz) bands 
[20]. The mean feature was calculated as the average 

amplitude of the window; the power of the three frequency 
windows were calculated using the ‘bandpower’ function in 
MATLAB (based on a periodogram estimated using a 
Hamming window). These features were chosen as they are 
commonly used for classification of movement intentions in 
BCI studies [24], [29]. The EMG features used in this study 
were four of Hudgins’ time domain features: mean absolute 
value, waveform length, zero crossings and slope sign changes 
[41]. The mean absolute value is a simple mean of a rectified 
data segment. The waveform length is the cumulative length 
of the waveform in the analysis window. The zero crossings 
feature is the number of times within a segment that the EMG 
signal crosses zero. The slope sign changes feature is the 
number of times the slope of the EMG signal within a data 
segment changes. [41] These features were chosen as they are 
have been commonly used in classification of EMG [31], and 
has shown to be different between various active upper-
extremity tasks and rest [42]. It was expected to see an 
increase in the features during the movement compared to the 
rest condition. 

Following the extraction of EEG and EMG features, the 
two feature vectors were concatenated, resulting in three 
vectors, containing 16 (EEG), 16 (EMG) and 32 features 
(COMB) per window, respectively. 

3) Classification 
The primary aim of this study was to investigate if 

classification accuracies could benefit from using COMB 
compared to EEG and EMG exclusively. Additionally, it was 
of interest whether any such benefit was dependent on the 
difficulty of the classification task, i.e. the number of classes. 
Therefore, three classification difficulties were considered. 
The first case combined all the movement tasks into one class 
(different force levels and movement types were pooled), 

 
Fig. 1. Schematic representation of the experimentation and visual feedback. (a) EEG was recorded and stored on a separate computer using ActivView 
acquisition software. EMG and net elbow joint torque were recorded and stored on a computer using AcqKnowledge acquisition software. A third 

computer was used to display in real-time the net elbow joint torque and send TTL pulses to the two other computers. (b) Example of the visual feedback 

displayed to the participant. A fixed target (white point) was located at the center of the screen. The torque feedback (grey point) appeared at various 
distance from the target, according to the force level to be completed. It appeared above the target for elbow extension and below the target for elbow 

flexion. (c) Time course of the visual feedback. The target was always displayed on the screen. When the torque feedback appeared, participants were 

asked to move it over the target as quickly and accurately as possible, and to maintain it for six seconds. Once the six seconds were achieved, the feedback 

disappeared, and the participant could stop the contraction. Each contraction was separated by a 6-seconds rest period. 
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effectively making a 2-class problem: move or rest. The 
second case combined all extension and flexion tasks 
respectively, making a 3-class problem: extension, flexion or 
rest. The final case considered all original conditions, making 
a 7-class problem.  

Since the 2-class and 3-class problem included more 
samples per class compared to what was available for the rest 
class, additional rest class samples were extrapolated to match 
the number of epochs per active class. This was done by 
extracting features of the same rest epoch multiple times, 
using only 0.2-second overlaps of data. The number of 
extrapolated samples were three per original in the 3-class 
problem, and seven per original in the 2-class problem.  

The abovementioned classification scheme was performed 
using a linear discriminant analysis (LDA). The LDA was 
chosen as it is one of the most popular classification 
algorithms and feasible for online application [43]. The LDA 
was implemented with the assumption that all classes had the 
same diagonal linear covariance matrix. This was done since 
some of the included features, in rare cases had close to zero 
variance, where the wider assumption of equal covariance 
matrix was violated. All classification accuracies reported are 
an average of a 10-fold cross-validation. 

4) Information Transfor Rate 
Calculation of Information Transfer Rate (ITR, bits/min) 

in this study was based on the highest achieved accuracy per 
subject and calculated using the formulas in [16]: 

𝐵 = 𝑙𝑜𝑔2 𝑁 + 𝑃 𝑙𝑜𝑔2 𝑃 + (1 − 𝑃) 𝑙𝑜𝑔2  [
(1 − 𝑃)

(𝑁 − 1)
] (1) 

𝐼𝑇𝑅 = 𝐵 ∗ (
60

𝑇
) (2) 

where B is the bit rate (bits/symbol), N is the number of 
classes available, P is the probability of correct classification 
(accuracy of the classifier), and T is the time needed to convey 
each symbol. Note that in this study, this calculation is based 
on offline analysis and thus the time T will not correspond to 

any real-life scenario or application. Here it will be based on 
the duration needed to sample the data necessary to make a 
prediction (one second). Therefore, the ITR calculated in this 
study will be dubbed “theoretical ITR” (tITR) to signify its 
difference from ‘real’ ITR 

5) Statistics 
For the statistical analysis, only the highest classification 

accuracies per subject were used. A general linear model 
(GLM) was calculated with three factors: Signal modality 
(three levels: EEG, EMG, and COMB), number of classes 
(three levels: 2, 3, and 7 classes) and subject type (two levels: 
able-bodied, and SCI). The model additionally included all 
two-way interactions. This was done in order to investigate the 
effects of the various factors and possible interactions on the 
achieved accuracies. The GLM was corrected for effects of 
individual subject performance. Post hoc investigations were 
made with a Bonferroni corrected paired t-test. Levene’s test 
of equal variance of error was violated in this study. 
Therefore, the p-value for a significant result was set to 0.01. 

III. RESULTS 

A. Accuracy Over Time 

In Fig. 3 and 4, the LDA classification accuracies are 
shown over time for the three different signal modalities and 
the three levels of classification difficulty for able-bodied and 
SCI subjects, respectively.  

The classification accuracies at times -1 s to 0 s are 
generally around chance level, as defined by [44]. At these 
times, the classification accuracy most notably improved by 
using COMB rather than EEG or EMG when using the LDA 
classifier in the 2- and 3-class problem. In all other cases the 
COMB modality performed roughly the same as either EEG 
or EMG or slightly worse than the best of the two.  

Classification accuracies generally increase, leading up to 
and following the EMG onset (time 0 s), reaching a plateau 
roughly at time 0.4-0.6 s at close to 100% classification 
accuracy for the three different numbers of classes, in able-
bodied subjects (see Fig. 3). This level of classification 

 
Fig. 2. The figure depicts (A) the average EEG (from Cz) and (B) EMG (from Biceps Brachii) response during the extension tasks for a single SCI 

subject, and the time-denotation for windows used for calculating features, relative to the cue for action onset. 

 



accuracy, however, is only true for the EMG and COMB 
signal, whereas the EEG signal has a less pronounced increase 
in classification accuracy, which peaks around time 1 s and 
then diminishes. The same tendency was present for SCI 
subjects except for the 7-class problem where COMB and 
EMG reached a plateau at ~80% (see Fig. 4). 

B. Maximal Accuracy 

The maximal accuracies achieved for the LDA classifier 
are presented in table 1. The classification accuracies 
approached a plateau at 100% for the EMG and COMB 
modalities except the 7-class problem for SCI subjects that 
reached 85-86%. The maximal classification accuracies of the 
EEG were higher than chance level as defined by [58]; they 
decreased when the number of classes increased. 

The statistical analysis showed that there was a significant 

effect of signal modality (F(2,142) = 247.0, p ≤ 0.001). Post 

hoc tests revealed that the accuracies obtained for EEG were 

significantly lower compared to both EMG and COMB (p ≤ 

0.001). No difference was found between accuracies obtained 
using EMG compared to COMB (p = 1.000). The maximal 
classification accuracies of COMB, EMG and EEG, when 
adjusted for the effect of number of classes and subject type, 
were 96.2%, 95.5% and 51.2% respectively. 

As seen in table 2, differences exist in classification 
accuracies dependent on the classification difficulty, 

confirmed with statistics (F(2,142) = 32.4, p ≤ 0.001). Post 

hoc tests showed that a significant difference existed between 

all classification difficulties (p ≤  0.001). The maximal 

classification accuracy of the 2-class, 3-class and 7-class 
scenarios adjusted for the effect of control signal and subject 
type problem, was 89.9%, 82.8%, and 70.2%, respectively.  

There was a no significant effect of subject type (F(1,142) 
= 0.202, p = 0.654). 

The results of the GLM revealed that there was a 
significant interaction between classification difficulty and 
subject type, and classification difficulty and signal modality. 
The interaction between classification difficulty and subject 
type revealed that able-bodied subjects performed better in the 
2-class (90.2% vs. 89.6%, adjusted for control signal) and 7-
class problem (74.7% vs. 65.7%, adjusted for control signal). 
In the 3-class problem, both able-bodied and SCI subjects 
achieved an accuracy of 82.8%, adjusted for control signal). 
The interaction between classification difficulty and signal 
modality only strengthened the existing tendencies: COMB > 
EMG > EEG, and 2-class > 3-class > 7-class, except that the 
EMG outperformed the COMB in the 7-class problem (92.9% 
vs. 92.8%, adjusted for subject type). The average 
classification accuracy for the 2-class, 3-class and 7-class 
problem respectively, was for the COMB: 98.0%, 97.8% and 
92.8%, EMG: 97.0%, 96.7% and 92.9% and for EEG: 74.8%, 
54.0% and 24.9%, adjusted for subject type. 

 
Fig. 3. LDA classification accuracy (%) with standard deviations for able-bodied subjects, relative to EMG onset. “Time” denotes the last segment of 

data included in the window used for feature calculation (see figure 2), with time “0” denoting the onset of EMG. 

 

 
Fig. 4. LDA classification accuracy (%) with standard deviations for SCI subjects, relative to EMG onset. “Time” denotes the last segment of data 

included in the window used for feature calculation (see figure 2), with time “0” denoting the onset of EMG. 

 



C. Latency 

The latency denotes the time of the last data segment with 
respect to EMG onset (see Fig. 3 and 4) used to achieve the 
highest classification accuracy. The latencies of the maximal 
accuracies achieved by the LDA are seen in table 2. It is 
observed that the maximal accuracies on average are achieved 
at time 0.7 s with respect to the movement onset, or later. 
Generally, the latencies of the maximal achieved accuracies 
also tend to be later for SCI subjects. However, despite the 
maximal accuracies being achieved relatively late with respect 
to the movement onset the difference between the maximal 
accuracies and those at time 0.4-0.6 s are minimal ( see Fig. 3 
and 4). 

D. Theoretical Information Trasnfer Rate (tITR) 

The tITR based on maximal accuracies achieved by the 
LDA is seen in table 3. The tITR follows the same trend as the 
maximal accuracies reaching 166-167 bits/min in the 7-class 
problem using the EMG and COMB signal modalities 

IV. DISCUSSION 

In this study, it was shown that residual EMG in SCI 
patients could be successfully decoded and that EEG did not 
add much additional discriminative information to the EMG. 
The number of classes did not affect the performance of the 
EMG modality for able-bodied subject and only slightly for 
SCI subjects. The classification accuracy rapidly increased to 
a plateau of 80-100% after the onset of EMG activity 

A. Results 

This study investigated whether movement classification 
accuracies could be boosted by combining EMG and EEG 
(COMB) compared to the two signals separately. It was 
expected that the COMB modality would have higher 
accuracies as compared to EEG and EMG respectively, as 
these two modalities hold discriminative, yet different 
information. However, the classification accuracy using 
COMB did not perform significantly better than the 
classification accuracy using EMG signals alone; it only 
performed 0.7 % better (adjusted for other factors). These 
results agree with those of López-Larraz et al., who employed 
a paradigm comparable to the 2-class control paradigm in the 
present study [29]. In their study, López-Larraz et al. found 
that there was no significant difference between EMG and 
COMB [29], though the difference between the EMG and 
COMB were 3.7%, in favor of COMB. Despite López-Larraz 
et al. recruited stroke patients and generally had a lower 
classification accuracy, the results regarding the indifferent 
performance of COMB as compared to EMG agree. These 

results suggest that when using the framework employed in 
the present study there is no reason to utilize COMB as 
compared to EMG.  

The decoding of movements based on EEG was close to 
chance level [44]; however, it was expected to see higher 
classification accuracies prior and around the movement onset 
for the EEG especially for the 2-class system (movement vs. 
no-movement). Accuracies have been reported to be in the 
range of 75-90% [17], [24], [30], the discrepancies between 
these accuracies and those obtained in the current study could 
be due to methodological differences in the decoding of 
movements. The accuracies could probably be improved by 
performing spatial filtering [45], and using subject-specific 
features from e.g. template matching or identifying subject 
specific spectral patterns (channels and frequencies) to be 
used for classification [24].  

The high classification accuracies in this study when using 
EMG led to high tITR, which is important for the application 
of an HCI that can control external devices that support SCI 
users in their activities in their daily living. Additionally, the 
number of classes employed also affects the achievable tITR. 
In this study, force proved a viable parameter to include to 
boost the number of classes complete SCI subjects can use for 
controlling external devices. The tITR achieved in this study 
would be enough to control a robotic humanoid hand 
(maximum: 72 bits/min) and arm (maximum: 60 bits/min) and 
to provide decent control of a rehabilitation manipulator + 
hand (median: 90.80 bits/min) [46].  

In terms of latency, the results show that the classification 
accuracy increases rapidly after the movement onset, which 
could be an important feature to use for neurorehabilitation. In 
neurorehabilitation, devices such as BCIs have been used to 
induce neuroplasticity, which is the underlying factor of motor 
learning [47], through Hebbian-associated mechanisms [7]. In 
a recent study it was, however, shown that a BCI may not be 
needed if a device (rehabilitation robot or functional electrical 
stimulation) that can deliver relevant somatosensory feedback 
is triggered using EMG [48]. It should, however, be noted that 
only the 2-class and 3-class problem, using either EMG or 
COMB, could be used for rehabilitation purposes, as the 7-
class problem may not achieve a feasible accuracy within the 
necessary 200-300 ms after movement onset [7] for SCI 
individuals. 

B. Limitations 

One of the limitations in the current study is the limited 

sample size and the fact that only a small subsection of SCI 

TABLE II.  LATENCY (S) OF MAXIMAL CLASSIFICATION ACCURACY OBTAINED WITH LDA. VALUES ARE MEANS ACROSS SUBJECTS ± STANDARD 

DEVIATION AND ARE RELATIVE TO EMG ONSET (0 S). 

Group 
EEG EMG COMB 

2-Class 3-Class 7-Class 2-Class 3-Class 7-Class 2-Class 3-Class 7-Class 
Able-bodied 0.9 ± 0.6 1.1 ± 0.7 1.0 ± 0.4 0.9 ± 0.3 0.8 ± 0.2 2.0 ± 0.6 0.9 ± 0.3 0.8 ± 0.2 2.2 ± 0.6 

SCI 1.1 ± 0.2 1.2 ± 0.8 1.4 ± 1.1 1.5 ± 0.9 1.2 ± 0.7 2.3 ± 0.6 1.2 ± 0.4 1.1 ± 0.6 2.4 ± 0.7 

 

TABLE I.  MAXIMAL CLASSIFICATION ACCURACY (%) OBTAINED WITH THE LDA CLASSIFIER. VALUES ARE MEANS ACROSS SUBJECTS ± 

STANDARD DEVIATION. ALL ACCURACIES ARE GREATER THAN CHANCE LEVEL [58]. 

Group 
EEG EMG COMB 

2-Class 3-Class 7-Class 2-Class 3-Class 7-Class 2-Class 3-Class 7-Class 
Able-bodied 11 ± 7 7 ± 3 3 ± 1 52 ± 12 85 ± 16 166 ± 4 54 ± 9 88 ± 10 167 ± 4 
SCI 10 ± 6 9 ± 5 5 ± 2 42 ± 18 82 ± 17 116 ± 49 44 ± 16 84 ± 16 118 ± 45 

 



individuals is represented. When comparing the SCI and 

able-bodied subjects there was no difference. This may be 

explained by the presence of residual EMG in SCI individuals 

enrolled in the study. Despite this positive outcome, it should 

be noted that the results only apply for the subsample of 

tetraplegic SCI individuals having residual EMG. The HCI in 

this study relies heavily on the EMG, and in case there is no 

residual EMG or SCI individuals suffer from spasticity, the 

performance will be affected such that the user must rely on 

brain control if movement-related activity is decoded. 

Although only three separate tasks were used in this 

study, i.e., flexion, extension and rest, different force levels 

were considered, i.e., 25%, 50% and 75% of MVC for flexion 

and extension. The maximal accuracies achieved for all 

classification difficulties using EMG and COMB, 

approached 100% for able-bodied, and >80% SCI subjects. 

These results suggest that force could be a distinguishable 

component to implement in an EMG or COMB based HCI, 

provided the users of the HCI are able to generate recordable 

EMG. Since this was achieved in this study with mostly 

complete SCI subjects, it may be possible to use an EMG-

based HCI for some SCI patients.  

The experimental protocol used in this study, consisted of 

a synchronous HCI paradigm, in which subjects were reliant 

on a cue to perform the tasks of the experiment (contraction 

of rest). In a real HCI application for control purposes, this 

methodology has proven to generate high ITRs when the 

EEG paradigm employed uses visually evoked potentials 

[15]. Using a synchronous HCI for control purposes with the 

tasks employed in this study may be inappropriate, as it 

would likely decrease the ITR and flexibility of the users 

control over external devices, at least when compared to other 

available synchronous systems [15]. However, for 

rehabilitation purposes, and when no residual EMG is 

present, a synchronous HCI based on the tasks employed in 

this study may be the most appropriate solution. This is partly 

due to ITR being less important in rehabilitation applications, 

and that movement-related activity is necessary to drive the 

Hebbian-mechanisms needed for rehabilitation [7], [49].  

This study only considered offline analysis, which limits 

the applicability of these results for real EMG/COMB HCI 

application. Yet, using the tic-toc function in MATLAB 

2019a on a laptop with an Intel® Core™ i7-6700HQ 

processor (2.6 GHz), it was calculated that the extraction and 

classification of features for a single epoch would take 0.075 

s for the COMB, 0.036 s for EMG and 0.043 s for EEG. This 

processing time suggests that implementing the framework of 

this study for online use may be feasible. 

C. Practical Considerations 

The control signals used in this study were EEG and EMG 
and the combination of the two. As mentioned previously, the 
results indicate no reason to use EEG in addition to EMG if 
residual EMG is available. Even if the results had shown a 
significant difference between EMG and COMB, the 

additional gain in accuracy, latency or tITR should be 
considered in addition to the practicality of using EEG 
compared to EMG. EMG is relatively easy and quick to 
prepare for a caregiver/spouse (especially if dry electrodes are 
used). EEG is more time-consuming to prepare, requires more 
careful preparation to ensure high-quality signals, and requires 
the use of an EEG-cap and EEG-gel (if dry electrodes are not 
used) which may need to be applied over time and requires 
hair wash afterwards. According to Huggins et al. [14] only 
65% of SCI individuals would accept a setup time for a BCI 
of 10-20 min, which may be possible using few EEG 
electrodes or dry electrodes. However, EEG remains a control 
signal, which may be utilized, even if the user has no residual 
EMG. Thus, EEG and EMG remain two options that are 
superior to one another for different SCI users. 

V. CONCLUSION 

The results of this study imply that if EMG is an option for 
use in an HCI, this is the simplest and most accurate solution. 
Additionally, there was no evidence of gain in accuracy by 
combining EEG and EMG using the framework of this study. 
Furthermore, force proved to be a viable control option for 
SCI subjects with residual EMG. In future studies, more SCI 
subjects should be included who have varying degrees of 
muscle activity and spasticity to investigate the feasibility and 
usability of using a HCI when less residual EMG is available. 
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