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edelsondamasceno@gmail.com, {edsondamasceno,antoniooseas,alcilene,ricardoalr}@ufpi.edu.br

Abstract—Coronavirus disease (COVID-19) has already in-
fected more than 20 million people worldwide and is responsible
for more than 744,000 deaths. A major problem faced in the
diagnosis of COVID-19 is the inefficiency and scarcity of medical
tests. The use of computed tomography (CT) has shown promise
in the evaluation of patients with suspected COVID-19 infection.
The analysis of the CT examination is complex and requires
the effort of a specialist, which can lead to diagnostic errors.
The use of CAD systems can minimize the problems generated
by the analysis of CTs by specialists. This article presents a
methodology for diagnosing COVID-19 using a trainable resource
extractor using CNN and multiple classifiers. First, the quality
of the images was improved using histogram equalization and
CLAHE. Then, a basic CNN is used to extract resources from
708 CTs, 312 with COVID-19, and 396 Non-COVID-19. After
the extracted data, we used multiple classifiers for classification
in COVID-19 and Non-COVID-19. The results show an accuracy
of 97.88%, recall of 97.77%, the precision of 97.94%, F-score
of 0.978, AUC of 0.977, and kappa index of 0.957. The results
obtained show that the proposed methodology can be used as a
CAD system to aid in the diagnosis of COVID-19.

Index Terms—COVID-19, diagnosis, histogram equalization,
CLAHE, CNN feature extraction, CAD

I. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a respiratory

disease caused by infection with the severe acute respira-

tory syndrome 2 coronaviruses (SARS-CoV-2) [1]. COVID-

19 has infected more than 20 million people worldwide and

is responsible for more than 744,000 deaths [2]. Due to the

unavailability of specific drugs for COVID-19, early diagnosis

is essential for the cure and control of the disease [3].

The inefficiency and scarcity of medical examinations can

lead infected people to be undiagnosed and not receive proper

treatment [3]. Computed tomography (CT) can be used as an

alternative tool to detect COVID-19, having high sensitivity,

it is considered promising for the evaluation of patients with

suspected COVID-19 infection [4], [5]. The main problem

with this method is that it depends on the specialist to analyze

the CT images, as the process is repetitive, time-consuming

and tiring for the specialist, due to a large number of images

to be analyzed, causing fatigue, which can lead to diagnostic

errors [6]–[8].

To minimize the problems generated by image analysis by

specialists, computer-aided diagnosis (CAD) systems appear

as an alternative aid to medical diagnosis. These systems use

computational power to analyze the images, being crucial for

cases where the diagnosis is very difficult for the human

eye [9], [10]. With technological advances, deep learning

methods have been implemented in the development of CAD

systems. Convolutional neural networks (CNN), which are

deep learning techniques, can automatically interpret images

[11]. However, the complexity of the model, difficulty in

training, high computational cost, and the need for a large set

of images, makes it difficult to develop a methodology using

CNN with an effective application.

For the development of an efficient diagnostic model for

COVID-19 using CNN, a large set of CT images is required.

A strategy commonly used in the literature is the use of CNN

as a resource extractor of medical images [12], [13]. The work

shows that the resources extracted with CNN are generic and

can be used for classification tasks outside the exact domain

for which the networks were trained.

In this article, we propose a new scheme for diagnosing

COVID-19. A trainable resource extractor using CNN is used

to obtain more generic resources on CT images. Then, the

extracted resources are used in multiple classifiers for classi-

fication in COVID-19 and Non-COVID-19. The experiments

show that the proposed scheme presents promising results in

the diagnosis of COVID-19. The rest of the paper is organized

as follows. In Section II, we discuss related work. In Section

III, we present the methodology used to extract features and

classify the images. In Section IV, we present and discuss

the results obtained. Finally, in Section V we present the

conclusions and future work.

II. RELATED WORKS

The development of CAD systems to aid in medical di-

agnosis using CNN has shown to be very promising. CNN’s

can be implemented in CAD systems for resource extraction,

classification or extraction, and classification. The efficiency

of a CAD system is related to the techniques that compose

it. In this sense, the literature shows studies using CNN for

diagnosing COVID-19 in CT images. CNN’s are easy to train
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when there are large numbers of labeled samples that represent

the different target classes. Due to the small number of images,

it is not common to train a CNN with randomized weight

initializations, as this would require a large number of images

and a few weeks of training using multiple GPUs. Thus, a

common practice is to use the weights of an already-trained

network for a very large base, and then these weights can

be used to initialize and retrain a network, or even to extract

image characteristics [14], [15].

Since the emergence of COVID-19, there have been increas-

ing efforts to develop deep learning methods for diagnosing

COVID-19. Ozkaya et al. [16] proposed the use of pre-trained

CNNs for diagnosing COVID-19 in a set of 150 CT images,

presenting an accuracy of 98.27%, the sensitivity of 98.93%,

a specificity of 97.60%, the precision of 97.63%, F-score of

0.982 and Matthews correlation coefficient (MCC) metrics of

96.54%. Wang et al. [17] proposed the use of the Inception

network for diagnosing COVID-19 in a set of 1,065 CT

images, reaching a total accuracy of 89.5%, with the specificity

of 88% and sensitivity of 87%.

He et al. [18] proposed the use of learning transfer in a set

of 746 CT images, reaching an F-score of 0.85 and an AUC

of 0.94. Wang et al. [19] proposed the use of weak supervised

CNN using 3D CT volumes for diagnosing COVID-19 in

630 CT volumes, obtaining an area under the ROC curve

of 0.959 and area under the precision-recall curve of 0.976.

Song et al. [20] proposed the use of a neural network of

details ratio extraction (DRE-Net) to extract the resources of

777 CT images with COVID-19 and 1213 Non-COVID-19

images. Forecasts at the imaging level were aggregated to

obtain diagnosis at the patient level. The model consists of

using the pre-trained ResNet-50 network with the resource

pyramid network to diagnose each image. The methodology

presented an AUC of 0.99 and a recall of 93%.

As can be seen, solving the problem of classifying CT

in COVID-19 and Non-COVID-19 is not a simple task. The

use of CNN for resource extraction and classification requires

a large number of images and parameter training to create

efficient COVID-19 diagnostic models. The use of small

sets of images can lead to over-adjustment of the model,

performing well on the training data, but generalizing the test

data poorly. Thus, we propose an approach for diagnosing

COVID-19 in CT images using CNN for resource extraction

and multiple classifiers.

III. METHODOLOGY

The proposed methodology consists of the classification of

CT images in COVID-19 and Non-COVID-19. The proposed

method is shown in Figure 1. The methodology consists of:

i) CT image acquisition; ii) pre-processing using histogram

equalization and CLAHE; iii) feature extraction using CNN;

iv) classification of images using multiple classifiers and v)

validation of results using metrics commonly used in the

literature.

Fig. 1. Proposed methodology.

A. Image Acquisition

COVID-CT is a set of CT images developed by Zhao et al.

[21] for binary classification of COVID-19. The set consists

of 708 CTs, of which 312 COVID-19 and 396 Non-COVID-

19. Figure 2 shows an example of images from COVID-CT,

where, in (a) we have an example of CT COVID-19 and in

(b) we have an example of CT Non-COVID-19.

Fig. 2. Example images from COVID-CT, (a) CT COVID-19 and (b) CT
Non-COVID-19.

COVID-CT images were collected from articles related to

COVID-19 from medRxiv, bioRxiv, NEJM, JAMA, Lancet,

etc. CTs containing abnormalities were selected by reading

the captions of the figures in the documents. Non-COVID-

19 images were collected from MedPix, LUNA, Radiopaedia

website, and PubMed Central.

B. Pre-processing

Image pre-processing aims to improve image quality.

COVID-CT is a set of images collected from articles, which

may have a loss of quality. In this sense, histogram equaliza-

tion and CLAHE were used to improve the quality of COVID-

CT images.

• Histogram equalization (HE) is a method for improving

the overall contrast of an image [22]. Given a grayscale

image x and the number of gray level occurrences ni,
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the probability of occurrence of a pixel i in the image x
is given by Equation 1.

px(i) = p(x = i) =
ni

n
, 0 ≤ i < L (1)

Where, L is the total number of gray levels, n the total

number of pixels and px(i) the histogram of the image

to the pixel value i, normalized to 0 or 1. Figure 3(b)

presents an image of COVID-CT with the equalized

histogram.

• O contrast limited adaptive histogram equalization

(CLAHE) is a method that improves the local contrast

of an image [23], [24]. CLAHE performs the histogram

equalization of non-overlapping sub-areas of the image,

correcting inconsistencies through interpolation. In this

method, an enhancement function is applied over all

neighboring pixels and the transformation function is

derived [25]. Figure 3(c) shows an image of COVID-CT

applied to CLAHE.

C. Feature extraction

In the development of an automatic image classification

system, extracting quality resources is essential to obtain a

more robust system [26]. The quality of the extracted resources

can influence the classification performance, leading to a loss

of performance by the system. In recent years, CNN models

have been proposed for the resource extraction stage. CNN’s

have a hierarchical structure for learning resources with high

quality in their layers.

A CNN consists of alternating layers of convolution and

pooling, then turns into fully connected layers as it approaches

the outgoing layer. Each of the CNN layers has a specific

function in the propagation of the input signal. In this article,

a basic CNN was used for the feature extraction step. CNN

consists of: an input layer (Input), four convolution layers (C1,

C2, C3, and C4), four pooling layers (P1, P2, P3, and P4)

and two fully connected layers (FCL1 and FCL2). CNN’s

structure for resource extraction is shown in Figure 4. The

Table I presents a summary of the CNN layers.

In a CNN, the convolutional layers are responsible for

extracting attributes from the input volumes. The pooling

layers are responsible for reducing the dimensionality of the

resulting volume after the convolutional layers and help to

make the representation invariant to small translations at the

entrance. The fully connected layers are responsible for the

propagation of the signal through point-to-point multiplication

and the use of an activation function.

To use CNN as a feature extractor, we removed the last fully

connected layer from the network (the layer that computes

the probability of the input image belonging to one of the

predetermined classes) and the final output (FCL2) was used

as features that describe the input image. The characteristics

extracted from the images were used in multiple classifiers that

require less data for training. This feature extraction strategy

is widely used for medical imaging applications [12], [27], of

materials [28], [29], Content Based Image Retrieval - CBIR

[30]–[32].

D. Classification

The classification process can be carried out considering

the previously defined classes. The classification consists of

recognizing which of a set of categories a new observation

belongs, based on previous training on a data set that has ob-

servations whose category is known [33]. For the development

of this work, the classification was made using the XGBoost,

random forest, and multilayer perceptron classifiers.

• eXtreme Gradient Boosting (XGBoost) is a scalable

and effective machine learning system for tree growth,

proposed by Chen e Guestrin [34]. Tree augmentation is

a learning algorithm that makes weak classifiers strong

in classifying a data set. XGBoost is a tree method

that applies the principle of driving weak learning using

the descending gradient architecture. However, XGBoost

improves the basic structure of Gradient Boosting Ma-

chines through system optimization and algorithmic im-

provements [34]. XGBoost can classify problems using

a minimal amount of resources. The parameters used in

XGBoost were as follows: max depth = 7, learning rate

= 0.1, ite = 1000, gama = 0, max delta step = 1, and

objective = “multi:softmax”.

• Random forest (RF) is the random combination of mul-

tiple decision trees, combined to obtain a more stable

and more accurate prediction [35]. The RF divides each

node using the best of a subset of indicators chosen at

random in that node. This strategy, although somewhat

contradictory, works adequately in comparison with many

other classifiers, in addition to being robust to overfitting

parameters. Also, it is easy to use, as it has only two

parameters: the number of variables in the random subset

at each node and the number of trees in the forest. The

parameters used were: bag size percent = 100, batch size

= 100, number of execution slots = 1, max depth = 0

(unlimited), number of randomly chosen attributes = 0,

number of iterations to be performed = 100, minimum

number of instances per leaf = 1.0, minimum variance

for split = 0.001, and random number seed to be used =

1.

• Multilayer perceptron (MLP) is a neural network with

several layers of neurons connected through weighted

synapses, which learns from the retro-propagation of the

output error and updating the weights [36]. An MLP

consists of at least three layers of nodes: an input

layer, a hidden layer, and an output layer. Except for

the input nodes, each node is a neuron that uses a

nonlinear activation function. MLP uses backpropagation

as a learning technique during training. Multiple layers

and nonlinear activation distinguish MLP from a linear

perceptron, managing to classify data that is not linearly

separable. The parameters used in MLP were: learning

rate = 0.3, momentum = 0.2, the number of epochs to

train through = 500, validation set size = 0 (the network
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Fig. 3. Example of the pre-processed image, (a) original, (b) equalized histogram, and (c) CLAHE.

Fig. 4. CNN structure for resource extraction.

TABLE I
SUMMARY OF CNN LAYERS

Layer No. of Kernels Kernel size Activation
Input 1 128 × 128 -

Convolution (C1) 32 5 × 5 ReLu
Pooling (P1) - 3 × 3 -

Convolution (C2) 32 5 × 5 ReLu
Pooling (P2) - 3 × 3 -

Convolution (C3) 32 5 × 5 ReLu
Pooling (P3) - 3 × 3 -

Convolution (C4) 32 5 × 5 ReLu
Pooling (P4) - 3 × 3 -

Fully connected (FCL1) 128 1 × 1 ReLu
Fully connected (FCL2) 100 1 × 1 ReLu

will train for the specified number of epochs), seed = 0,

validation threshold = 20, and hidden layers = (number

of attributes + classes)/2.

E. Validation of results

To validate the model, statistical evaluation metrics com-

monly used in the literature were used. These metrics are

calculated based on the confusion matrix, given the number of

true positives (TP), false positives (FP), true negatives (TN)

and false negatives (FN), the measures are mathematically

expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F − Score = 2× Recall × Precision

Recall + Precision
(5)

The Area under ROC curve (AUC) it is a performance

measure for the classification problem in various threshold

configurations. AUC is a measure of separability. The higher

the AUC, the better the model can distinguish between classes.

By analogy, the higher the AUC, the better the model can

distinguish between patients with and without disease.

The Kappa index (K) measures the agreement between the

results presented by the developed methodology and the truth

of the human terrain labeled by pathologists [37]. The Kappa

index interpretation scale is shown in Table II. The closer the

Kappa value is to 1, the greater the agreement.

IV. RESULT AND DISCUSSION

In this section, we present the results obtained in the

proposed methodology to classify CT images in COVID-

19 and Non-COVID-19. To extract resources from the CNN
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TABLE II
LEVELS OF CLASSIFICATION ACCURACY ACCORDING TO THE KAPPA

INDEX.

Índice Kappa (k) Quality
K < 0.2 Poor

0.2 ≤ K < 0.4 Reasonable
0.4 ≤ K < 0.6 Good
0.6 ≤ K < 0.8 Very good

K ≥ 0.8 Excellent

model, we need to train the network. CNN training is carried

out so that it can extract more robust resources from the image.

After training CNN 200 times, a set of 100 resources was

extracted from each image. After extracting the characteristics

of the 708 CT images, the classification was made using

multiple classifiers with cross-validation of k-folds, with k =

5. Table III shows the results obtained.

As can be seen in the table III, using the original images, the

characteristics extracted using CNN together with XGBoost

obtained the best results. Applying the histogram equalization,

the random forest obtained the best results. Applying CLAHE,

XGBoost achieved the best results. It can be seen that the

use of pre-processing helped CNN to obtain characteristics

that better discriminate between CT images in COVID-19

and Non-COVID-19. The methodology using CLAHE, CNN,

and XGBoost obtained the best results, with an accuracy of

97.88%, recall of 97.77%, the precision of 97.94%, F-score

of 0.978, AUC of 0.977 and kappa of 0.957. The kappa index

presented by the proposed methodology according to Table

II shows that the classifiers obtained excellent results in the

categorization of COVID-19. The use of CLAHE improved

the quality of the images, making CNN obtain these more

robust features to diagnose COVID-19 in CT images. The

resources extracted with CNN are quite robust for categorizing

images in COVID-19 and Non-COVID-19. Thus, the proposed

methodology presented promising results, which can be used

as a CAD system, assisting the specialist with a second opinion

in the diagnosis of COVID-19.

In Table IV we compare the results obtained with the

proposed methodology with those presented in the related

works. The comparison of results is very complex, as many

factors can influence a reliable comparison. Thus, a summary

of the results obtained with the proposed methodology and

those presented in the related works are presented.

As can be seen in Table IV, the proposed methodology

presents promising results in the classification of CT images in

COVID-19 and Non-COVID-19, compared to those presented

in related works. The methodology proposed by Ozkaya et

al. [16] obtained slightly better results than those presented in

the proposed methodology, except for precision. The proposed

methodology presented better results than using the Inception

network [17], learning transfer [18], and CNN supervised by

weak [19]. Song et al. [20] obtained an AUC of 0.99 and a

recall of 93%, while the proposed methodology obtained an

AUC of 0.977 and a recall of 97.77%. Taking into account

that the recall is the correctness rate of cases with COVID-19,

the proposed methodology presented better results than those

presented by Song et al. [20]. The use of different approaches

makes the efficient comparison of the results of the proposed

methodology with the related works very complex.

V. CONCLUSION

In this work, we present a methodology for diagnosing

COVID-19 on CT images. Initially, pre-processing was applied

to the images using the histogram equalization and CLAHE,

then extracted a set of 100 resources from each image using

a basic CNN, with the set of resources extracted, performed

the classification using multiple classifiers. The use of pre-

processing helped to improve the quality of the images. The

resources extracted with the CNN architecture used were quite

robust, obtaining an accuracy of 97.88%, recall of 97.77%,

the precision of 97.94%, F-score of 0.978, AUC of 0.977 and

kappa index of 0.957. Thus, the proposed methodology can be

used by a specialist in the diagnosis of COVID-19, providing

a second opinion in the diagnosis of the patient.
The proposed methodology can still be improved, as future

works, we intended to use other sets of images from COVID-

19, for the development of a complete methodology using

CNN. Also, use other CNN architectures to extract resources

from CT images, such as ResNet-50, VGG16, and VGG19.

Thus, it is intended to obtain a more robust methodology in

the diagnosis of COVID-19, which can assist the specialist in

the final diagnosis
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