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Abstract— A significant cause of morbidity in COVID-19 
infected patients admitted to the hospital is a severe dysregulated 
inflammatory response characterized as a cytokine storm, a key 
component of acute respiratory distress syndrome (ARDS). Here 
we have assembled a basic immune regulatory model from a list of 
19 immune mediators with reported involvement in cytokine 
storm. Automated text-mining of over 2,500 full text journal 
publications using the MedScan natural language processing 
(NLP) engine identified 112 documented regulatory interactions 
coordinating the dynamic response of this network.  This same text 
mining highlighted reported bi-directional associations between 
Coronavirus infection and a broad set of immune mediators 
producing a complex feedback pattern of host-pathogen 
interaction. Decisional logic parameters supporting the network’s 
dynamic response were identified such that observed responses to 
SARS-CoV infection in an in vitro system of Calu3 human lung 
adenocarcinoma cells could be accurately predicted.  Of the 19 
competing models, 2 supported a dominant inactive immune 
resting state, with a predicted onset of cytokine storm in 63% and 
26% of simulated infections respectively. Discrete event 
simulation based on the latter suggest that some repurposing 
strategies might outperform popular use of hydroxychloroquine 
as a companion to anti-viral therapy.  

Keywords—Coronavirus, rapid prototyping, discrete logic, 
simulation, natural language processing 

I. INTRODUCTION 

Coronaviruses infecting humans (hCoV) are an emerging 
family of viruses increasingly responsible for serious disease. 
Prior to the COVID-19 pandemic, major coronavirus outbreaks 
occurred in 2002 (SARS) and 2012 (MERS) [1], with case 
fatality rates of approximately 10% for SARS [2] and 35% for 
MERS [3]. As the cause of the more recent outbreak, MERS-
CoV has been the focus of more active vaccine development 
efforts, though as of 2019 none of these had advanced beyond 

early clinical trials in humans [4]. There is currently no vaccine 
available for COVID-19, though an experimental recombinant 
vaccine administered via microneedles has been shown to elicit 
neutralizing antibodies in mice [5] and an adenovirus-vectored 
vaccine has completed phase I trials in human subjects in China 
[6]. Both SARS and MERS infect airway epithelial cells of the 
lower respiratory tract, potentially causing acute lung injury 
(ALI) and progressing to acute respiratory distress syndrome 
(ARDS) in the most serious cases [7],[8]. Immunopathology is 
a major contributor to the high morbidity and mortality rates 
from coronavirus infection [1], with the most severe disease 
generally occurring in immunocompromised or elderly patients, 
or those with comorbidities [2]. Indeed, immunopathology 
appears to be the determining factor of the course of disease, as 
fatal hCoV infection is usually marked by progression to ALI 
and ARDS after peak viral replication [2].  

These viruses are known to possess sophisticated 
mechanisms for immune evasion, especially by suppressing IFN 
response [2]. Infection is marked by delayed but elevated 
expression of pro-inflammatory cytokines, especially Type I 
IFN and interferon-stimulated genes. Levels of these cytokines 
have been found to be correlated with disease severity [2]. Early 
in infection, coronaviruses delay IFN response, which enables 
rapid replication in airway epithelial cells [2]. Dysregulation of 
Type I IFN production was found to be a major determinant of 
the course of SARS-CoV infection in mice. Early IFN 
production results in rapid viral clearance, preventing later 
immunopathology, while delayed IFN production promoted 
viral replication and led to ARDS. Strikingly, IFN-KO mice 
experienced heightened viral replication but did not progress to 
ARDS [9], demonstrating that immunopathology and not viral 
replication is necessary for fatal disease. While efforts continue 
towards developing hCoV-specific antiviral drugs by blocking 
viral proteins or suppressing host elements essential for 
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replication, but none of these have yet proven unequivocally 
successful [10]. Of equal importance and of specific relevance 
to this work, the deadly acute immune response to hCoV 
infection has been treated with limited success by 
corticosteroids or interferon, but precise timing is critical [2], 
likely making these options infeasible for general use. Indeed, 
the central role of immunopathology in severe hCoV disease 
suggests that attacking the virus directly may not be the optimal 
method of treatment at all. Modulation of host immunity, 
especially the IFN response, has been proposed as a more 
feasible avenue for reducing the severity and morbidity of hCoV 
disease [2],[10]. 

The COVID-19 outbreak has caused a surge of interest in 
possible use of the antimalarial drug quinine and its derivatives 
for hCoV treatment. Chloroquine is known to suppress viral 
replication in vitro [11], [12], but failed to protect human 
patients from infection by influenza or dengue viruses in clinical 
trials [11]. Again, the role of immunopathology must not be 
overlooked. Quinine derivatives have shown 
immunomodulatory effects, especially with respect to IFN, 
particularly in the context of response to intracellular RNA via 
TLR7 [13]. This last point is of special interest for possible 
applications in hCoV treatment. If quinine derivatives are 
effective in hCoV treatment, their immunomodulatory effects 
are likely to be at least as important as their suppression of viral 
replication. Immunomodulation may constitute the best means 
of averting or alleviating immunopathology in hCoV infection. 
Predicting appropriate targets for this purpose is made 
challenging not only by the sheer complexity of immune 
regulatory programming but also by virtue of the relative 
scarcity of molecular and cellular data describing onset and 
progression of COVID-induced ARDS and related cytokine 
storm.  Moreover, available evidence suggests that COVID-19 
related ARDS may represent a specific variant thereof [14].  

Emerging work on early predictive markers of ARDS onset, 
specifically in the context of COVID-19 infection, have so far 
pointed to changes in relative abundance of specific lymphocyte 
subsets as a possible indicator of severity and prognosis of 
pneumonia in these patients [15]. However, under the current 
front-line circumstances, studies such as these are still relatively 
few in number, typically survey only a small subset of select 
markers and consist of subjects recruited according to a fairly 
broad and varying range of entry criteria. As such the data 
collected is often poorly suited for conventional statistical 
modeling and these analyses can be especially prone to 
producing spurious results [16].  Moreover, although many 
studies are longitudinal in design, markers continue to be 
examined independently and without formal consideration of 
the underlying regulatory dynamics.  Most importantly, these 
studies remain purely empirical and hence do not implicitly 
consider known and validated immune response mechanisms 
leaving the COVID-specific etiology of ARDS and the design 
interventional approaches to disrupt the related cytokine storm 
difficult to infer with great confidence. 

In this work we apply a literature-informed approach that is 
inherently robust to sparse and incomplete data to investigate the 
onset and progression of cytokine storm response to hCoV 
infection and to simulate the anticipated effects of applying 
known drugs to disrupting and remediating this often-fatal 

complication. We assemble a mechanistic regulatory network of 
immune signaling using the broad-scale automated text-mining 
over 2,500 journal publications and require the latter recover the 
inflammatory response kinetics of Calu3 human lung 
adenocarcinoma cells challenged transiently in vitro with 
SARS-CoV [17]. Recovery of this in vitro time course was 
supported by 19 competing models however only 2 also 
supported a dominant stable attractor corresponding to an 
inactive immune resting state. Using these models, we found 
that the predicted regulatory effects of hydroxychloroquine did 
in fact partially destabilize the basin of attraction corresponding 
to persistent cytokine storm. However, simulations also found 
that Ruxolitinib, another drug under clinical investigation, 
delivered an even more substantial down-regulation of cytokine 
storm. Importantly, when used in conjunction with an idealized 
anti-viral, the latter delivered lasting stable resolution and 
recovery of a relatively inactive immune resting state. In 
comparison, quinine derivatives though helpful in provided 
transient benefits were not predicted to deliver a lasting 
resolution even when combined with an anti-viral. 

II. METHODS 

A. Assembling a prototype literature-informed network 
A basic immune regulatory network was assembled from 

molecular markers with documented involvement in infectious 
pneumonia as extracted from the Elsevier Knowledge Graph 
(Elsevier, Amsterdam) using the Pathway Studio* suite of 
software tools [18]. The network consists of 19 immune 
mediators linked by 112 regulatory actions (edges), extracted 
from a total of 2,653 published references (with a median of 7 
references per edge). In this network, any given immune 
mediator is itself regulated by up to 10 upstream mediators 
(maximum in-degree).  This regulatory input space corresponds 
to an exhaustive truth table (K matrix) with a total of 3,390 
transition state entries. The network contains only 1 sink or 
output node (CD80) and no purely exogenous source node. 
Coronavirus is represented in Elsevier Knowledge Graph 
database as a “disease”, with regulatory actions on immune 
mediators CCL5, CD200R1, CD40, CD80, CD86, CSF3, 
CTSB, CTSL, CXCL10, CXCL2, FGL2, IFNL1, STAT2, TNF, 
STAT1, NFKB2, NFKB1, and IFNG.  Similarly, Coronavirus is 
acted upon directly or indirectly by the host immune network 
through feedback from CD200R1, STAT1, NFKB2, NFKB1, 
IFNG. In addition, the self-perpetuating nature of an active 
infection is represented here as a positive feedback of 
coronavirus onto itself. Though other immune modulators and 
cell populations are crucial for the resolution of infection, this 
minimal set was judged to be representative of the core host 
response signaling mechanisms and  a sufficient initial 
foundation for validation against observed experimental data 
and generally expected stable homeostatic behaviors (Fig. 1).   

B. Inferring novel regulatory actions 
This first immune signaling circuit was constructed using 

known immune regulatory interactions documented in the 
literature and extracted from the Elsevier Knowledge Graph. 
However, there are still many gaps in our understanding of 
immune signaling and this is especially true of host-pathogen 
interactions involving novel pathogens such as members of the 
Coronavirus family. Many approaches for network discovery 
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have been proposed many of which rely on reverse engineering 
from relatively large amounts of data, in particular informative 
data such as structured perturbation experiments [16].  However, 
in situations such as this where experimental data is sparse and 
collected under a narrow range of conditions, these data-driven 
methods typically perform poorly, leading to excessively high 
false positive rates.  Under such conditions, methods rooted in a 
graph theoretical analysis of network structure can serve to 
identify connectivity patterns which deviate from those known 
to be characteristic of biological networks, for example highly 
connected modules and hub-like architecture. Here we apply one 
such structure-based approach proposed by Guimerà and Sales-
Pardo (2009) [19] based on stochastic block models whereby 
connections between nodes are typically more abundant within 
modules than between modules. This property is used here to 
estimate the probability that a novel and currently absent 
interaction might exist given the structure of the newly 
augmented network.    

 
Fig. 1. A model immune regulatory circuit.  In causal immune regulatory 

circuit assembled from the automated text mining of 2,653 journal publications, 
18 immune mediators and the coronavirus pathogen were linked by 112 
documented activating (green edges) and inactivating (red edges) regulatory 
actions.   A secondary analysis of network structure suggested the addition of 
hypothetical regulatory connections between coronavirus and 4 other network 
entities (black edges), for which both direction and effect were unknown.   

While signaling among elements of the host immune system 
have been well studied, this is much less true of pathogen-host 
interactions involving COVID-19, making these of special 
interest. In the case of this initial network consisting of 112 
documented regulatory interactions, we found we found 
possible novel interactions linking 4 host immune mediators 
with coronavirus with a probability of occurrence, exceeding 
0.50 (Table I). As the algorithm predicting interaction reliability 
will infer the presence or absence of undirected edges, these 
candidate regulatory actions were incorporated into the original 
network in a bi-directional fashion to account for both possible 
cases. Hypothetical edges were retained in the final network 

only if they improved adherence to the data to a greater degree 
than they increased the complexity of the model as detailed 
below. This augmented regulatory circuit is shown in Fig. 1. 

TABLE I. HYPOTHETICAL MISSING INTERACTIONS INFERRED FROM THE 
ANALYSIS OF NETWORK STRUCTURE.  

Edge Probability 

coronavirus infection – STAT1 0.72 

coronavirus infection – NFKB1 0.65 

coronavirus infection – NFKB2 0.65 

coronavirus infection - IFNG 0.61 

 

C. Identifying plausible sets of decisional logic parameters  
The expression of networked host-pathogen immune 

elements is described qualitatively (e.g. low, nominal and high) 
and evolves in time as dictated by the control actions of 
neighboring entities (e.g. decrease, increase, or remain 
unchanged).  These control actions are activated in a threshold- 
and context-specific manner. For example, in Fig. 2 entity A 
will inhibit entity B only when it is expressed at greater than 
nominal levels (activation threshold) and will result in a 
decrease of entity B expression only when it is acting in the 
absence of the competing strong promoter C (context-specific 
transition logic). Values are selected for these logic parameters 
at every node such that the predicted dynamic behaviors 
supported by the network must allow for the accurate recovery 
of all available experimentally observed responses and 
expected resting states. The sheer number of permutations in 
these parameter values gives rise to a combinatorial explosion 
of potential competing models. To address this, our group has 
formulated this as an efficient multi-objective Constraint 
Satisfaction Problem (CSP) [20] which is resolved here using 
the Chuffed solver [21]. Parameters describing each regulatory 
interaction are constrained to comply with the direction and 
mode of action (activation or inactivation) reported in the 
literature. Postulated stationary states must also be reproduced 
exactly (hard constraints) as the solver minimizes error in the 
prediction of experimentally observed transient states, while 

also minimizing the model’s structural (presence or absence of 
a regulatory interaction) and regulatory (required transition logic 
resolution) complexity. Prediction error is calculated here as the 
absolute difference between the simulated output and the 
experimental time course data. The structural efficiency is 
defined as the number of regulatory interactions and regulatory 
efficiency as the minimal number of distinct activation threshold 
values and instances of distinct regulatory outcomes for a node 
among all possible combinations of active input. Since the 
available data are never sufficient to fully constrain logical 
parameters in all contexts, multiple parameterizations can 
support equally low values for the objective function. These 
parameterizations support the available data equally well, but 
predict regulatory dynamics which may differ quite 
considerably from one another in contexts unconstrained by 
input data. 
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Fig. 2. Discrete logic decisional parameters. In a basic circuit a node B can 

be downregulated by node A and upregulated by node C. In the left panel, when 
A is expressed at a state +1 in excess of its activation threshold whereas C is 
expressed at state +1 below its activation threshold, then node B is 
downregulated by node A acting alone (KB,A = -1). In the right panel, when A is 
expressed at a state +1 in excess of its activation threshold but C is further 
expressed at state +2 above its activation threshold, then node B is regulated by 
both nodes. The net decisional weight of nodes A and C acting on B (KB,AC =+1) 
is such that the net regulatory action is to upregulate B. 

 

Fig. 3. Discrete state in vitro response to infection. Experimental data (grey 
dots) describing in vitro response over 72 hours of human Calu-3 cells to SARS-
CoV-infection discretized by variational Bayes Gaussian (VBG) clustering. 
Points show the cluster medians for each marker at the indicated timepoint where 
measurements could be assigned to a discrete value with at least 90% confidence 
(57.4% of the data). Model-predicted levels are superimposed (black dots). 

D. Steady States and Basins of Attraction 
Given an initial state of the network, the next state towards 

which the network should evolve (or image) can be predicted by 
applying one of possibly several competing sets of decisional 
logic parameters.  This next target state or network image can be 
applied to a single randomly selected node (asynchronous 
updating) or uniformly and simultaneously across all nodes in 
the network (synchronous updating). The latter case of 
synchronous updating produces a much more compact state 
transition graph (STG) and delivers identical stationary points or 
stable resting states, albeit at the exclusion of more complex 
stable oscillatory behaviors. Here we focus specifically on 
stationary non-oscillatory resting states and apply a synchronous 
update scheme to monotonically update (increase or decrease by 
1) all network nodes where the next state predicted by the 
decisional logic or their image differs from their current state.  
Let a steady state or equilibrium be defined as an instance where 
the network image is equal to the current state of the network 

indicating that no nodes are eligible to be updated [22]. 
Furthermore, let a basin of attraction be a set of states associated 
with a steady state, such that when a simulation is started from 
an element of the basin of attraction it leads to the steady state 
within a given number of transitions. 

In this work, all of the steady states for each model are 
identified using a constraint-based optimization formulated in 
MiniZinc [23]. The basins of attraction were identified using a 
stochastic sampling method that simulated from 100,000 
random start states and identified how frequently a steady state 
was reached within 50 transitions. The relative frequency that a 
steady state is reached from a random state is an approximation 
for the size of the basin of attraction, where the larger the basin 
of attraction the more frequently the associated steady state will 
be reached.  

E. Discrete state transformation of experimental data 
Existing a previous in vitro study of human Calu-3 lung 

adenocarcinoma cells infected by SARS-CoV over 72 hours was 
retrieved from the Gene Expression Omnibus (GEO accession 
number GSE33267). Gene expression of network entities in 
SARS-CoV-infected samples was expressed as a fold change 
relative to mock-infected cells. These continuous measurements 
were then converted to discrete values by unsupervised 
clustering using variational Bayesian Gaussian methods 
[24],[25]. Each entity was discretized independently of the 
others using the full range of values from both mock-infected 
and SARS-CoV-infected samples over the whole time course 
(grey dots, Fig. 3). The number of distinct activation levels 
available was determined by the algorithm, with an upper limit 
of 4. Where measurements could not be assigned to a discrete 
value with at least 90% confidence, they were labelled as 
missing data. This step resulted in the retention of 57.4% of 
available data points. The median discretized values for each 
infection condition at each timepoint were then used as a 
summary, yielding the final discretized infection trajectory for 
parameterization (Figure 3). Based on measurements of viral 
titer over the course of the infection performed by Sims et al. 
(2013)[17], coronavirus was stipulated to begin at an active level 
before increasing to its maximum at approximately 24 HPI, 
where it persisted for the remainder of the time course, but 
inflammatory responses continued to intensify throughout the 
time course even after viral titers had peaked. The model was 
additionally constrained to capture the instance of complete viral 
clearance by prohibiting predictions of coronavirus 
spontaneously re-emerging after reaching zero titer.  

III. RESULTS 

A. Recovering in vitro experimental observations  
 Decisional logic parameters dictating the dynamic behavior 
of the model were discovered using a constraint satisfaction 
framework developed by our group [20]. The Chuffed solver 
[21]was applied to the regulatory circuit in Fig. 1 and directed 
to minimize both departure from the experimentally observed in 
vitro response trajectories and network complexity. With these 
settings, 19 unique models were identified with <5% departure 
from the experimental data. Of these, 11 models matched the 
available data exactly. The median predicted response 
trajectories from all 19 models are depicted in Fig. 3, showing 

A

B

C

KB.AC = +1KB.A = -1

A

B

C

B decreases as C under-expressed B increases despite A as C stronger

+1 +1

Threshold 2 (pos)Threshold 1 (neg)

+1 +2

Threshold 2 (pos)Threshold 1 (neg)

+1 0 +1 +2
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adherence to the available experimental data as well as predicted 
activation values for entities where measurements were 
unavailable.  Of the hypothetical interactions included in the 
model, a downregulation of coronavirus by IFNG was retained 
in 17 of the 19 models, indicating with a high degree of 
consensus that this host-pathogen interaction was necessary to 
accurately recover experimentally observed behavior. Of the 
3390 K parameters describing the incremental state transition 
rules, 540 were invariant across all 19 models, but there was 
substantial variation among remainder (median Manhattan 
distance 1274 out of a maximum 5402, or 23.6%). The median 
predicted activation states for each immune mediator across all 
19 of the top-performing models nonetheless shows close 
adherence between models to the available measured response 
trajectories. A detailed examination of the sources of the 
remaining error for each model can be found in Figure 4. 

 
 Figure 4. Recovery of measured immune marker expression. Departure of 
predicted discrete activation state for each immune marker from measured values 
for each of the top 19 models. Dashed lines represent exact match of predicted 
to observed values.  

B. Comparing to expected stability and incidence  
 These 19 models constitute a family of competing 
hypotheses for the progression of coronavirus infection in this 
context as informed by the available input data. To assess their 
ability to support expected regulatory regimes, each model was 
simulated 100,000 times from random starting positions to map 
the available basins of attraction (Figure 5). These random 
simulations were necessary as the total state transition graph 
comprised over 107 states, which was too large to examine 
exhaustively. Simulations were conducted from randomly 
chosen start states, then again with coronavirus titer set to its 
maximum (2) or not detectable (0). Each simulation was 
performed over a horizon of 50 transitions or until reaching an 
attractor, defined as any state for s(t) which its successor s(t+1) 
was equal to s(t). Multidimensional scaling was used to compare 
identified attractors 1) to each other, 2) to a hypothetical inactive 
immune resting state, and 3) to the 72 HPI timepoint predicted 
by each model and stipulated here to represent cytokine storm.  

 In simulations conducted from initial states where 
coronavirus infection was absent (scv(all t)=0), the putative 
cytokine storm states were never reached by any model. Most 
models supported multiple basins of attraction not far removed 
from the hypothetical inactive immune resting state however 

these basins were typically quite small, capturing only a small 
minority of total simulations (mean of 12% <<50%) (Fig. 5). 
Only 2 of the 19 models (models 13 and 18) supported stable 
states in close proximity (Manhattan distance of 6) to immune 
inactivation and towards which a majority of simulations came 
to rest in the absence of infection (73.0 and 77.7% of 
occurrences respectively).  This is consistent with the intuitive 
expectation that a state of relative immune inactivation should 
predominate in the absence of active infection. Model 18 
additionally supported a steady state with a Manhattan distance 
from the inactive immune state of only 1, which was reached in 
17.6% of simulations conducted in the absence of coronavirus 
infection.   

 
 Figure 5. Recovery of an inactive immune resting state. Departure from an 
idealized inactive immune resting state of stable attractors identified for each of 
the 19 candidate models in the absence of infection. Simulations conducted with 
models 13 and 18 come to rest at states closest (Manhattan distance of 6) to broad 
immune activation in a majority of simulations (72 and 78% respectively). 

 When initiated from states with an active coronavirus 
infection (scv(all t)=2), virtually all models most frequently 
migrated to their predicted cytokine storm terminal states.  One 
model predicted spontaneous resolution of infection, but at a 
cost of substantial persistent immune activation. Both models 13 
and 18 escaped to a persistent immune activation proximal to 
cytokine storm in the presence of active coronavirus infection in 
63.2% and 26.4% of occurrences respectively. 

TABLE II. DOCUMENTED TARGETS AND MODE OF ACTION FOR BROADLY 
STUDIED  HYDORXYCHLOROQUINE AND THE MUCH LESS STUDIED RUXOLITINIB.  

Drug Documented Actions 
Hydroxychloroquine CD80 positive, CD86 

positive, CTSB negative, 
CTSL negative, 
CXCL10 positive, IFNG 
negative, TNF negative 

Ruxolitinib CXCL10 negative, 
IFNG negative, STAT1 
negative, TNF negative 
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Fig. 6. Simulated use of hydroxychloroquine. The application of 

hydroxychloroquine agonist (green bars) and antagonist (red bars) effects to an 
established cytokine storm is simulated with a maximal viral load (A) and with 
the complete clearance of virus through concurrent use of an idealized antiviral 
(B).   

C. Simulating strategies for disrupting cytokine storm 
 At the time of this writing, a total of 706 interventional 
clinical trials were registered, active and/ or recruiting globally 
to study COVID-19 induced severe acute respiratory syndrome 
(SARS-CoV). Of these 149 involved potential therapeutic 
applications of quinine and its derivatives, with 110 of these 
assessing the use of hydroxychloroquine and to a lesser extent 
chloroquine (39 studies). In contrast drugs such as 
dexamethasone (8 studies) and ruxolitinib (6 studies) are 
attracting more recent interest and have not yet been extensively 
studied for use in treating COVID-19 pneumonia. The 
documented actions of hydroxychloroquine, chloroquine and 
quinine on immune mediators in our model regulatory circuit 
were extracted from the Elsevier Knowledge Graph (Elsevier, 
Amsterdam) and are listed in Table II. Note that while quinine 
derivatives have been reported to suppress viral replication 
[11],[12], they have not been demonstrated to specifically 
inhibit coronavirus, and they are therefore not represented as 
directly impacting coronavirus levels.  For the purposes of this 
analysis we also chose to simulate the effects of ruxolitinib, a 
Janus-associated kinase (JAK1/2) inhibitor currently used to 
treat lupus, as a more novel and less studied comparator 
intervention [26].  Once again, the molecular targets and mode 
of action for ruxolitinib were extracted from the Elsevier 
Knowledge Graph database and are shown in Table II as  

 
Fig. 7. Simulated use of ruxolitinib. The application of ruxolitinib’s 

antagonist (red bars) effects to an established cytokine storm is simulated with 
a maximal viral load (A) and with the complete clearance of virus through 
concurrent use of an idealized anti-viral (B).   
 

downregulating the expression of CXCL10, IFNG, STAT1 and 
TNF.   

 Recall that model 18 supported an onset of stable immune 
hyperactivation in 26% of the simulated infections, a number 
which closely resembles the complication rate for COVID-19 
infections in the general population [27].  As such, we used the 
latter to predict the potential efficacy of both 
hydroxychloroquine and ruxolitinib. Initializing the simulation 
from an established immune hyperactivation resembling 
cytokine storm, we applied each drug with and without an 
idealized anti-viral agent, mimicking their frequent use as 
companion drugs in current clinical protocols. Synchronous 
update was used to simulate the evolution of the immune 
response over a horizon of 20 time steps with these drugs applied 
at the outset and maintained for the first 10 time steps. 

 Simulations involving hydroxychloroquine in the context of 
a full viral load (Fig. 6A) suggested only a limited ability to 
modulate inflammation.  Initially, a Manhattan distance of 11 
separates the immune expression profile during a putative 
cytokine storm from that of an idealized inactive immune resting 
state (all zero). The simulated use of hydroxychloroquine 
transiently reduced this at best to a Manhattan distance of 7 from 
quiescent immune state. However, if the viral load was reduced 
by concurrent use of an idealized antiviral, immune activation 
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was reduced to a Manhattan distance of 6 to the target quiescent 
state and persisted after cessation of treatment.  

 In the case of ruxolitinib, applied in the absence of an 
antiviral at full viral load, model 18 predicted that the immune 
activation profile would be brought to within a Manhattan 
distance of 3 from the target idealized immune inactivation state.  
If the virus was simultaneously cleared through concurrent use 
of an antiviral then ruxolitinib was predicted to resolve immune 
hyperactivation to within a Manhattan distance of 1 from broad 
immune quiescence, or the same resting state attractor identified 
using stochastic searches.  This state involved persistent 
intermediate activation of CD200R1 with all other markers at 
their minimum levels, and remained stable even after cessation 
of treatment.  

IV. DISCUSSION 
The high morbidity and mortality associated with human 

coronavirus infections is due largely to the detrimental patterns 
of dysregulated immune activation triggered by these viruses. 
By constraining a family of discrete logical models to support 
an existing dynamic trajectory of immune response to SARS-
CoV in vitro over time, we identified regulatory regimes which 
could be easily driven into a cytokine storm by coronavirus 
infection. The system could be dislodged from these states by 
simulated hydroxychloroquine treatment, though a return to 
stable rest remained unlikely. Simulations of a more novel and 
much less studied intervention involving the drug ruxolitinib 
compared very favorably, reducing the activation of immune 
markers to a greater degree.  With successful antiviral treatment 
concurrently reducing viral load to non-detectable levels, the 
latter was predicted to support virtually full and lasting 
resolution of cytokine storm.    

The central caveat to this work is that these regulatory logic 
models were parameterized using data from an in vitro study of 
immortalized lung epithelial cells. While SARS-CoV is known 
to infect such cells in human patients [28] and the Calu3 model 
studied here has been frequently employed [29], such systems 
necessarily contain only one cell type. The many specialized 
immune cells mobilized against an infection are therefore not 
present, and cannot be modeled with these data. This is a major 
reason for the inability of the models to resolve coronavirus 
infection, and for the emergence of cytokine storm as a stable 
steady state. The immune response studied here is governed 
entirely by autocrine and paracrine signaling among Calu3 
cells. 

With this caveat in mind, our simulations were successful 
in recapitulating the available data, suggesting a reasonably 
accurate capture of the regulatory dynamics at work. Since the 
reference data were not sufficient to exhaustively constrain the 
entirety of the dynamic parameters under all possible contexts, 
we were left with a family of competing models, all equally 
consistent with the available data. By simulating the predicted 
behavior of these models under different conditions, we found 
that they shared a tendency to be driven into a state of stable 
immune hyperactivation by coronavirus infection. Since only 
two of the competing models supported a state of relative 
immune quiescence as a stable attractor, and one of these 
aligned particularly well with observed complication rates, we 
focused further simulations on this model, finding that the 

predicted effects of hydroxychloroquine and ruxolitinib were 
both sufficient to destabilize cytokine storm, preventing the 
system from arriving there during coronavirus infection. 

Together, our results suggest a potential explanation for the 
thus-far anecdotal observations of hydroxychloroquine benefits 
in coronavirus treatment and encourage the continued study of 
ruxolitinib. Once dislodged from cytokine storm, the complete 
in vivo immune system may be better enabled to return to its 
healthy rest state—in effect “buying time” for the viral load to 
peak and subside without dangerous overactivation and 
progression to ARDS. To reliably avert the onset of cytokine 
storm and permit clearance of the precipitating infection, the 
targets and timing of pharmaceutical interventions must be 
precisely chosen based on the regulatory logic of the system as 
a whole. 
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