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Abstract—Although the U-Net architecture has been exten-
sively used for segmentation of medical images, we address two
of its shortcomings in this work. Firstly, the accuracy of vanilla
U-Net degrades when the target regions for segmentation exhibit
significant variations in shape and size. Even though the U-Net
already possesses some capability to analyze features at various
scales, we propose to explicitly add multi-scale feature maps
in each convolutional module of the U-Net encoder to improve
segmentation of histology images. Secondly, the accuracy of a
U-Net model also suffers when the annotations for supervised
learning are noisy or incomplete. This can happen due to the
inherent difficulty for a human expert to identify and delineate all
instances of specific pathology very precisely and accurately. We
address this challenge by introducing auxiliary confidence maps
that emphasize less on the boundaries of the given target regions.
Further, we utilize the bootstrapping properties of the deep
network to address the missing annotation problem intelligently.
In our experiments on a private dataset of breast cancer lymph
nodes, where the primary task was to segment germinal centres
and sinus histiocytosis, we observed substantial improvement
over baselines based on the two proposed schemes.

Index Terms—Segmentation, Multi-Scale, Unet, Noisy-labelled,
Histopathology

I. INTRODUCTION

In pathology, hematoxylin and eosin (H&E) stained
histopathological whole-slide images (WSIs) are sources of
rich diagnostic information [[1]], [2]. Various segmented regions
of a WSI can give biomarker information, such as areas in
various histologically distinct regions and their ratios. Deep
learning has become a framework of choice for automating
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segmentation with high accuracy, provided a large dataset of
annotated images is available for training [3]. Within deep
learning, architectures inspired from the U-Net have been
widely adopted due to their unique ability to both gather
evidence for semantic segmentation from somewhat large
receptive fields, and yet be able to produce fine-grained and
precise boundaries [4]. However, U-Net has been shown to
perform poorly when the target regions exhibits large varia-
tions in their shape and scale that is common in histology [J5],
[6]]. This challenge is common in our target problem, where we
want to segment germinal centers (GC) or sinus-histiocytosis
in breast cancer lymph node slides. In this work we present
Multi-Scale U-Net (MS U-Net), a lightweight architecture
that performs effective segmentation of histology images by
introducing explicit multi-scale feature extraction in the U-Net
encoder. We compare the performance of our architecture to
other U-Net based baselines. To account for edge artifacts and
padding issues arising when the constituent patches of WSI
are segmented independently, we also propose a better loss
calculation strategy for each image patch. Here we calculate
the loss only on the centre cropped regions from each patch,
and subsequently the segmentation mask from these regions
are only utilised to stitch back and create a smooth whole slide
level segmentation mask.

Furthermore, the advantage of high accuracy offered by
most of the deep learning networks is realized only when a
large and accurately labeled dataset is available for supervised
learning [7]]. For tissue region segmentation on WSIs, the large
dimensions of these images and inherent continuums in lesion



grades make it prohibitively difficult for a human annotator
to mark exact boundaries of various tissue regions in addition
to avoiding errors of totally missing some small regions from
annotations. Thus, the quality of annotations provided by a
human expert in these settings are often inaccurate and noisy.
Such noisy supervision degrades the performance of the deep
learning model, especially in case of segmentation task where
the ground truth involves pixel level annotations [7]. In an
endeavor to address these challenges, we explore and adapt
certain robust deep learning training strategies to further im-
prove our segmentation results on top of our proposed MS U-
Net architecture. Specifically, we relax the strict imposition of
cross-entropy (CE) loss at the boundary of annotations where
the annotator are most uncertain, through blurred confidence
maps that modulate the original CE loss. Also, we attempt
to address the challenging problem of missing annotations
through a bootstrapping framework, where we gather the most
confident model predictions from an early training iteration as
an auxiliary masks that can enhance model predictions in case
of missing annotations.

II. RELATED WORK
A. Multi-Resolution Segmentation

The most widely used architecture for medical segmentation
is the U-Net model, which consists of an encoder and a
decoder module each [4]. Although the pooling and up-
convolution operations in a U-Net give it some ability to
process information at multiple scales, in several followup
works the U-Net model has been improved by explicitly
incorporating multi-resolution processing capabilities. These
proposed multi-resolution image analysis architectures can
effectively fuse the contextual information of a tissue with its
nuclear level morphologies. Another popular modification of
vanilla U-Net called attention U-net [[8] has been extensively
reported to improve results on multi resolution problems
compared to the baseline models. In attention U-nets, attention
gates are used in the network and it will handle areas of high
relevance that are multiplied with a larger weight and areas of
low relevance are tagged with smaller weights.

In [9]], a multi-scale information extractor was utilised to
process patches at multiple resolution at each layer of the
encoder stage after passing through a convolutional layer.
An alternate method was suggested in [[10], where they used
multiple separate encoder and decoders for patches taken from
different resolution. They further concatenated these separate
decoders at multiple decoder layers. In [11], the authors
designed a multi-scale unet model tailored for radiology and
clinical image segmentation. Here the authors propose a se-
quence of convolution layers to effectively extend the receptive
field of the segmentation model. The concept of multi-path
training was explored in [12], where they used three separate
paths for encoding features at three separate resolutions, where
each path consists of dense blocks. Also each path in the model
is trained individually and separately, along with an overall end
to end training.

Though these methods effectively fuse multi-resolution in-
formation for segmentation, these architectures are computa-
tionally expensive and difficult to train.

B. Learning from Noisy Annotations

Noisy annotations are almost unavoidable in certain types
of medical images, especially when these have continuum
of disease grades, numerous objects of varied sizes to be
segmented, or low contrast or intricate boundaries between
anatomical structures. This problem is more challenging when
multiple annotators work on the same image. Deep learning-
based medical image segmentation in the face of noisy or in-
complete ground truth masks is a challenging problem gaining
some attention [[13]], [14]. In mandible CT images Yu et.al [[15]
studied the effect of noisy annotations in a deep learning-
based segmentation. The study empirically highlighted the
degradation of deep learning model performance when trained
with noisy ground truth mask. Similarly, in [14]], the authors
explicitly show the negative impact of missing annotations
in deep segmentation models for medical imaging. However,
more work is needed to effectively address this problem.

III. METHODOLOGY
A. Multi-Scale U-Net Architecture

The proposed architecture modifies the original encoder
block of the U-Net architecture, where we introduce a down-
sampling block with multiple kernels for producing feature
maps at different scales. The architecture of the downsampling
blocks in the proposed Multi-scale U-Net (MS U-Net) model
is shown in Figure |1} Though the high-level architecture is
similar to that of a U-Net, but each downsampling block on
the encoder side contains the modification capable of multi-
scale processing. In a typical U-Net block, there are two
convolutional layers and the output feature map is passed
through a max-pooling layer. In the proposed multi-scale
architecture, each block contains three sets of kernels in the
first convolutional layer, where each set works at a different
scales. That is, one set of kernels works at the resolution of
input to the block, another set has a dilation and stride of two
to reduce the resolution to a half, and a third set has a dilation
and stride of four to reduce the resolution to a fourth of the
input.

The outputs of the two sets of kernels that downscale the
feature maps scaled back up to the original resolution using
bilinear interpolation and concatenated with the feature maps
of the first set of kernels to make a single set of feature maps.
This set of feature maps is then passed to a max-pool layer
before being sent to the next block where the same sequence
of operations is repeated. In the decoder, blocks that have
an up-convolution are then passed these extracted encoder
features from corresponding level concatenated along with
previous layer decoder feature maps. After the interpolation
and concatenation of the two feature maps, they are passed
through single convolutional layer before passing outputs to
next decoder block.
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Fig. 1: Proposed Multi-Scale U-Net (MS U-Net) model archi-

tecture with the encoder block expanded to show the multi-
scale processing of segmentation features.
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B. Augmentations

Augmenting the training data by randomly rotating the
images and their segmentation maps have been found to be
useful for improving the segmentation results. For whole
slide images, as the training is done at the patch level and
final prediction is required to be done at the whole slide
image level, it is important to feed the patches without
any artificial background to the network. This was done by
creating v/2 x /2 times larger patches (1444x1444) than the
actual size (1024x1024) used for training. With respect to the
center of the larger patch, after randomly deciding a rotation
angle, four coordinates of the rotated patch are calculated
and the rotated patch is then extracted as square patch using
affine transformation. This way the actual patch is created
by extracting a randomly rotated patch from the center of
larger patches. Along with this, horizontal and vertical flipping
augmentations were carried out, as well as colour jitter with
brightness, saturation, hue and contrast as 0.15.

C. Robust Training Strategies for Noisy Annotations

The annotation procedure is quite laborious and the pro-
vided annotations are almost always inevitably noisy, espe-
cially with a large amount of incorrectly marked pixels for
regions such as sinus and follicle, where even pathologists
may disagree on the correct label for a region of pixels. Thus,
we inevitable give the neural network some wrong labels for
some of the regions to learn from, and that makes it to produce
poor results at the test time. Using sinus as an example, the
two major problems of inaccurate boundaries and missing
annotations (where some sinus region might be completely
ignored by annotator), are shown in figure 2[b).

Fuzzy Boundaries helps deal with inaccurate boundaries
of annotations. In this technique, while computing the loss
for the prediction of a patch, an additional mask is computed
by blurring the edges in the original segmentation mask. This
blurred mask is then subtracted from the original mask and
the absolute value at each location is taken. This mask is

then normalized and subtracted from a mask of all 1’s. This
way we finally obtain a mask indicating the confidences with
value I’s at the regions away from any kind of boundaries
and smaller values closer to 0, near to and on the boundaries,
depending on the gradient of each location.This mask is then
multiplied with the cross entropy loss values calculated for
respective locations. Finally the overall loss is averaged. This
way, the values closer to boundaries contribute less to the loss
calculation and the values away from boundaries contribute
more. That is, we let the model decide for the locations closer
to boundaries and don’t force it to learn the labels marked
in annotations. Weights for fuzzy boundary, wy;, are given in
equation [T] as,

wep =1 —abs(t — g(t, k)) (1)

where, g() is the Gaussian blurring function, abs() is the
absolute function, t is normalized target mask, k is kernel size
for blurring. For the blurring, if the patch is from a normal
dataset, a Gaussian blurring is applied using kernel size of
(21,21), and if the patch is from noisy dataset, then a Gaussian
blurring of kernel size (61,61) is applied. That is, on a noisy
dataset we have less trust in the boundary locations given by
the annotator, hence we want it to be more fuzzy, or having
lower importance in loss computation.

Bootstrapping deals with missing annotations by patholo-
gists. In bootstrapping, we train the network for a few epochs,
where it learns to segment regions which can clearly be
said to belong to a class or not with confidence. Then, in
addition to the ground truth mask used for segmentation, the
prediction of network itself, which acts as an auxiliary mask,
is used to compute the loss by deciding a weight map for it.
The network’s prediction masks are used only after training
it for bootstarp period of n number of epochs, which is a
hyperparameter.

For implementing the bootstrapping method, we compute
bootstrap weight matrix wps. In our experiments , on the
9th iterations, the loss function ,l;s, formed out of predicted
outputs as mask, is spatially weighted by wps, given in
equation [2] as,

wps = 2 % abs(0.5 — p) 2)

where, p is the model prediction output after passing through
a softmax layer. So, wy, basically pushes those model predic-
tions with higher confidence (predictions close to 0 or 1) to
higher magnitude and other predictions with lower confidence
(predictions close to 0.5) to lesser magnitude, and computes
Wps-

D. Loss Functions

We used weighted cross entropy loss to counter the imbal-
ance between the numbers of pixels belonging to foreground
or background (approximately 1:10), by using an inverse of
their ratio. For a noisy dataset, this loss is then multiplied
by a confidence mask created using the fuzzy boundary and
bootstrapping loss techniques. We also countered the impact of
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Fig. 2: (a)The original WSI input to the U-Net architecture, (b) The WSI mask with missing annotations of certain sinus
regions as shown in the green box (c) The mask predicted by our model in its bootstrapping period indicating the presence of

missing region

missing context near the edges of the patches by using center-
cropped loss calculation. That is, the loss for a pre-defined
margin of a patch is discarded for training.

The weighted cross entropy loss I, is given by the
equation [3] as,

lice = Z(wbg * Pug * tbg T+ Wrg * Prg * tf.‘])7 3)

where wy, is the background pixels weight, and wy, is the
foreground pixels weight
The final loss [ is given by the equation |4] as follows:

ltotal = lwce *Wrp + ]]-epoch>n * (lbs * wbs) (4)

where 1 is the indicator function. The indicator function
evaluates to one only after its condition hold true, or otherwise
will be zero. Hence, here only after epoch > n becomes true
the loss encountered due to bootstrap loss gets activated.

E. Evaluation Metrics

For segmentation, a large WSI is often divided into con-
stituent patches that are individually segmented by a deep
learning model. The segmentation mask from these patches are
then stitched back to finally create a WSI level segmentation
mask. For our analysis, we used intersection over union (IoU)
score as the evaluation metric at the WSI level. The value
of IoU score ranges in between 0 — 1, and a larger value is
desirable.

Along with the IoU score, for qualitative evaluation we
also overlayed images prediction with input WSI image and
its ground truth. For overlaying ground truth with prediction,
we represent the true positive region, false positive region
and false negative region with green, red and blue regions,
respectively. This is overlaid over the input WSI image, as
shown in the results of figures [3(C)-(E) and [ (C)-(H).

FE. Data Preparation

The dataset comprises of whole slide images (WSIs) of
lymph node regions, obtained from a private repository of
breast cancer WSIs of lymph node data collected from Guy’s

hospital, London. Annotations were performed independently
by two pathologists. The pixel-wise annotations were carefully
created to identify and mark all regions of sinus for 50 WSIs.
There are two experiments mentioned below, one focusing
on comparison of training results of the proposed MS U-Net
model with UNet and Attention Unet baselines, and another
focusing on comparison of training results obtained from dif-
ferent robust methods like fuzzy boundary and bootstrapping.

For the first experiment, 20 WSIs were used for training, 8
WSIs were used for validation, and the 5 WSIs were used for
testing. All annotations for the first experiment were prepared
by extensive and carefully annotations by the two expert
pathologist. A total of 11,000 image patches were extracted in
the preprocessing stages of training the segmentation model.
All experiments are conducted at 10x resolution. A patch-wise
training approach was followed, for which there was a 50%
overlapping region between adjacent extracted patches from
the WSIs. Patches of 1024x1024 size were extracted. In the
second experiment to improve the sinus region segmentation,
in addition to the clean 20 WSIs used before for training, we
introduced 22 more WSIs that had more noisy or inaccurate
annotations.

IV. RESULTS
A. U-Net, Attention U-Net and MS U-Net Compared

The results for U-Net , Attention U-Net and MS U-Net
model are shown below in table[[] for different test images. The
training was performed using Adam optimizer, using constant
learning rate of 1073,

As seen from the IoU scores, the MS U-Net model out-
performs the plain U-Net model based on the same training
method. This shows the ability of MS U-Net model to better
capture the multi-resolution information needed for the seg-
mentation of sinus regions. Since the germinal centers (GC)
are easy to spot compared to the variations observed in a sinus
region, the scores for GC region are higher compared to that
of sinus regions.
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Fig. 3: (A) Input WSI of Lymph Node, (B) Target mask to segment Germinal Centre (GC) regions, (C) U-Net model prediction
overlay with mask and image,(D) Attention U-Net model prediction overlay with mask and image, (E) MS U-Net model

prediction overlay with mask and image.

A) ORIGINAL WHOLE SLIDE IMAGE B) SINUS SEGMENTATION GROUND TRUTH
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Fig. 4: (A) Input WSI of Lymph Node, (B) Target mask to segment Sinus regions, (C) U-Net model prediction overlays,(D)
Attention U-Net model prediction overlays, (E) MS U-Net model prediction overlays,(F) MS U-Net with fuzzy boundary (FB),
(G) MS U-Net with bootstrapping (BS), (H) MS U-Net with FB and BS.

To also do a quality analysis of model predictions, in figure
[B] we have shown one of the testing WSIs (Test WSI 1 in
table [[), its target mask region indicating the sinus regions,
and three images in (C),(D) and (E), shows the overlap of
the different model prediction with the ground truth mask,
overlayed on the input image. As seen U-Net and attention
U-Net model results contain much more false positives than
MS U-Net model, which is even shown by the difference in

their mIoU scores.
B. MS U-Net with Noise Robust Training

The MS U-Net sinus prediction results obtained are com-
pared using three different schemes, as shown in table [[I| —
one by introducing the fuzzy boundary loss to the MS U-Net
model, another by introducing the bootstrapping method, and
lastly by combining the fuzzy boundary loss and bootstrapping
method. As it can be seen that the performance obtained using



TABLE I: Experiment 1 results: comparison of IoU score of Sinus and Germinal centre IoU scores between different

architectures.
WSI Identifier UNet Attention UNet  MS UNet \ UNet Attention UNet ~ MS UNet
Germinal Center | Sinus
Test WSI 1 0.6123 0.7192 0.8027 0.2222 0.4823 0.7218
Test WSI 2 0.7618 0.7912 0.8210 0.2836 0.4418 0.6710
Test WSI 3 0.4212 0.6614 0.7916 0.1983 0.3908 0.4856
Test WSI 4 0.8299 0.5982 0.9011 0.3422 0.3742 0.5122
Test WSI 5 0.4333 0.4602 0.6046 0.4500 0.5518 0.6330
Average 0.6117 0.64604 0.7842 ‘ 0.2993 0.4482 0.6047

TABLE 1II: Experiment 2 results: comparing the quantitative improvements of IoU score with Fuzzy Boundaries and

Bootstrapping
WSI Identifier MS UNet MS UNet Fuzzy Boundary =~ MS UNet Bootstrapping =~ MS UNet Fuzzy Boundary + Bootstrapping
Test WSI 1 0.7218 0.7456 0.7362 0.7480
Test WSI 2 0.6710 0.7243 0.6988 0.7312
Test WSI 3 0.4856 0.5828 0.5512 0.6104
Test WSI 4 0.5122 0.5800 0.5666 0.6241
Test WSI 5 0.6330 0.6012 0.6402 0.6433
Average 0.5436 0.5880 0.5860 0.6259

both the fuzzy boundaries and bootstrapping method gives the
best results. We also show the qualitative results in terms of
the segmentation masks given by the different models in figure
[ for Test WSI 1 in table [

V. CONCLUSION

Our experiments establish the advantage of modifying the
U-Net models to include stronger capabilities to handle mul-
tiple resolutions. We proposed a simple and effective method
modification that employs kernels with different strides and
fuses their feature maps to segment histopathology slides with
features at various scales. We further analyzed and offered a
practical solution that is robust to noisy annotations — those
with inexact boundaries and missing annotations. We relaxed
the emphasis of cross-entropy loss at the boundaries through
Gaussian blurred confidence maps and an auxiliary mask
created using bootstrapping a model prediction’s predictions
after training it for a few epochs. We compared and contrasted
the improvements of each of these methods when the ground
truth data is inherently noisy to show that their combination
gives the best results, indicating each of these have a role to
play in medical image segmentation.
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