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Abstract—Many studies used the Shannon entropy of 
transcriptome data to determine cell dedifferentiation and 
differentiation. The collection of evidence has strengthened the 
certainty that the transcriptome’s Shannon entropy may be 
used to quantify cellular dedifferentiation and differentiation. 
Quantifying this cellular status is being justified, we propose the 
term “liberality” for the quantitative value of cellular 
dedifferentiation and differentiation. In previous studies, we 
must convert the raw transcriptome data into quantitative 
transcriptome data through mapping, tag counting, assembling, 
and more bioinformatic processing to calculate the liberality. If 
we could remove this conversion step from estimating liberality, 
we could save computing resources and time and remove 
technical difficulties in using the computer. In this study, we 
propose a method of calculating cellular liberality without those 
transcriptome data conversion processes. We could calculate 
liberality by measuring the compression rate of raw 
transcriptome data. This technique, independent of reference 
genome data, increased the generality of cellular liberality. 

Keywords—Lempel-Ziv complexity, Shannon entropy, 
liberality, dedifferentiation, differentiation, transcriptome, RNA-
seq, genomics,  compression, classification, clustering 

I. INTRODUCTION 
Cellular dedifferentiation and differentiation have been 

understood as the direction of cellular morphology and 
phenotype change [1, 2]. In this decade, several studies [3-7] 
following our research [8] repeatedly measured the degree of 
cellular dedifferentiation and differentiation as a 
transcriptome Shannon entropy. The Shannon entropy is a 
kind of alpha diversity in ecology [9], and the transcriptome 
Shannon entropy is simply transcriptome diversity [10, 11]. It 
is not incorrect to call it the alpha diversity of the 
transcriptome, but that would leave its biological significance 
undefined, as would each principal component that came up 
in the principal component analysis. Since we can 
quantitatively assess, judge, and define that dedifferentiation 
is an increase in the Shannon entropy of the transcriptome and 
differentiation is a decrease in the Shannon entropy of the 
transcriptome, it is more accurate to position the “value of 
information entropy of the transcriptome” not as a mere 
bioinformatics measure; however, as a number with obvious 
biological and bioengineering significance, such as viable cell 
rate, cell density, specific growth rate, or pcd (pg/cell/day). 
Here we call the quantitative value of cellular 
dedifferentiation and differentiation “liberality,” since a 
previous study explained the changes were happening to 
cultured cells as “libère” [12]. 

The term transcriptome data is a little confusing, which is 
understood as the entire RNA in a biological sample; cells, 
tissues, organisms or environments. The transcriptome is 
primarily derived as text data of nucleotide sequences, which 
is sequenced using the next generation sequencer. Those 
sequence data are usually converted into quantitative data 
through a bioinformatic process called mapping or alignment. 
The textual data of nucleotide sequences and the quantified 
amount of each RNA is referred to as transcriptome data. 

We want to calculate the liberality without the 
transcriptome quantifying process. Incorporating the 
transcriptome quantification procedure into the liberality 
calculation process not only consumes computer resources 
and is cumbersome to deal with but also reduces the generality 
of the cellular liberality. The transcriptome quantification 
process essentially depends on referential genome sequence 
data. The referential genome sequence data is still imperfect 
[13, 14]. Genomic data are being improved as genomic 
technology develops; for example, even the human genome, 
where the most effort is being made, is amid revision [15]. In 
a practical sense, the referential genome sequence data cannot 
be uniquely defined. By removing the referential genome 
sequence data from the liberality measuring process, we 
attempted to increase the generality of the liberality. 

The Shannon entropy is similar to the Lempel-Ziv 
complexity [16]. In a previous study, we demonstrated the 
Lempel-Ziv complexity of transcriptome data calculated by 
measuring the compression rate of the files is helpful like the 
Shannon entropy [17]. In that study, we used quantified 
transcriptome data. We cannot measure the Shannon entropy 
of the raw transcriptome data but there is a possibility that we 
can measure the Lempel-Ziv complexity of the raw 
transcriptome data. We can estimate Lempel-Ziv complexity 
by compressing given individual files. Therefore, we can 
possibly measure the cellular liberality by simply measuring 
the compression rate of the text file. Previous studies 
calculated Lempel-Ziv complexity of biological data for 
classifying [18-20]. Those studies did not position Lempel-
Ziv complexity of of biological data as a number with any 
obvious biological significance. It was only a mere 
bioinformatics measure for classifying. 

In this study, we demonstrate a liberality method by 
measuring the compression rate of raw textual transcriptome 
data using wheat leaf transcriptome data. In the first 
experiment, we compared liberalities measured in two 
different processes; one process included the transcriptome 
quantification processes. The Shannon entropy of the 
quantified transcriptome data was determined. The 



 

 

compression rate of raw textual transcriptome data was 
investigated in the other phase. The liberties measured by the 
various methods were consistent. To test the method’s 
robustness, we picked 10k, 1k, and 100 sequence read from 
raw sequence data and estimated the compression rate. 
Additionally, we assessed the equivalency between the 
Shannon entropy of quantified transcriptome data and the 
Lempel-Ziv complexity of raw textual transcriptome data 
using Chinese hamster ovary (CHO) cells and silkworm 
transcriptome data. Our advanced method worked more when 
applied to those data. 

II. MATERIAL AND METHODS 

A. Dataset Description 
We used publicly available transcriptome sequencing 

datasets from the DDBJ’s public sequence data repository 
(Sequence Read Archive, 
https://www.ddbj.nig.ac.jp/dra/index.html). We used three 
datasets, wheat leaf transcriptomes (DRA008774) [21], 
Chinese hamster ovary (CHO) cells transcriptomes 
(DRA006016) [22] and silkworm fat body transcriptomes 
(DRA002853) [11]. 

B. Dataset Description (Wheat Leaf) 
The wheat leaf transcriptomes were sequenced and 

achieved by other scientists. To track changes in gene 
expression during leaf development, they cut wheat leaves 
into 18 samples from leaf base to leaf tip, 14 of which were 
subjected to sequencing. The distance of cells from the leaf 
base is related to developmental time in wheat leaf 
development. Cells are anticipated to change their liberality 
during development; we thought that changes in liberality 
could be easily monitored by employing a dataset that follows 
this developmental process. DRR187484, DRR187485, 
DRR187486, DRR187487, DRR187488, DRR187489, DRR187490, 
DRR187491, DRR187492, DRR187493, DRR187494, DRR187496, 
DRR187497, DRR187498, DRR187499, DRR187500, DRR187501, 
DRR187502, DRR187503, DRR187504, DRR187505, DRR187506, 
DRR187507, DRR187508, DRR187509, DRR187511, DRR187512, 
DRR187513, DRR187514, DRR187515, DRR187516, DRR187517, 
DRR187518, DRR187519, DRR187520, DRR187521, DRR187522, 
DRR187523, DRR187524, DRR187526, DRR187527, and 
DRR187528 were used. Sequencing conditions were unknown. 

C. Dataset Description (CHO cells) 
The CHO cell transcriptomes were sequenced in our 

laboratory. We cultured CHO cells in flasks and obtained cells 
at 3, 5, 6, and 7 days in culture. In this experiment, we have 
already noticed that the liberality of the cells decreases 
throughout the culture. Because it is commercially 
advantageous to understand the liberality for manufacturing 
control in cell culture for industry, it is critical to demonstrate 
that the method of measuring liberality proposed in this study 
applies to the culture of CHO cells, the most common cells in 
biopharmaceutical manufacturing [23]. DRR099453, 
DRR099454, DRR099455, DRR099465, DRR099466, DRR099467, 
DRR099477, DRR099478, DRR099479, DRR099489, DRR099490, 
and DRR099491 were used. We sequenced them in a single run. 

D. Dataset Description (Silkworm Fat Bodies) 
 Our lab also sequenced the transcriptomes of silkworm fat 

bodies. We collected silkworm fat bodies to confirm if cell 
liberality demonstrates hysteresis in the response of cells to 
environmental changes. We assessed differences between 
cells before being given the drug and cells that were given the 
medication and then had the drug taken away. In the simple-

dose samples, silkworm fat bodies were cultured for 80 h in 
phenobarbital–non-supplemented MGM-450 insect medium 
followed by 10 h in MGM-450 insect medium supplemented 
with 0, 0.25, 1.0, 2.5, and 12.5 mM phenobarbital after 
cultivation. In the hysteresis samples, silkworm fat bodies 
were cultured for 10 h in MGM-450 insect medium 
supplemented with 0 and 0.25 mM phenobarbital after 90 h 
previous cultivation (80 h in phenobarbital–non-
supplemented MGM-450 insect medium followed by 10 h in 
1.0 mM phenobarbital-supplemented MGM-450 insect 
medium). Understanding the liberality of cells is also valuable 
for managing studies in which cells are drugged and their 
responses are examined [24]. We would like to indicate that 
the proposed method can also be used for this purpose. 
DRR027746, DRR027747, DRR027748, DRR027749, DRR027750, 
DRR027751, DRR027752, DRR027753, DRR027754, DRR027755, 
DRR027756, DRR027757, DRR027758, DRR027759, DRR027760, 
DRR027761, DRR027762, DRR027763, DRR027764, DRR027765, 
DRR027766, DRR027767, DRR027768, and DRR027769 were 
used. We processed their nucleotides in different DNA 
workflows and sequenced in several runs. 

E. Liberality Calculation as the Shannon Entropy of 
Quantified Transcriptome Data 
As previously explained, we quantified each transcriptome 

data by mapping, assembling and tag counting [8, 11, 22, 23, 
24]. The Shannon entropy of each quantified transcriptome 
data was calculated as previously described [8, 11]. 

 All short reads of the wheat leaf transcriptomes were 
mapped to the wheat genome (iwgsc_refseqv2.1_assembly.fa 
and iwgsc_refseqv2.1_annotation_200916_HC.gtf) using 
STAR. Read counts were processed using featureCounts. 

The quality of the raw reads of the CHO transcriptomes 
was analyzed with FastQC (version 0.11.3). All short reads 
were mapped to the CHO-K1 RefSeq assembly (22,516 
sequences; RefSeq Assembly ID: GCF_000223135.1) and 
CHO-K1 mitochondrial DNA (1 sequence; RefSeq Assembly  
ID: GCF_000055695.1) using Bowtie2 (version 2.3.4.1) and 
quantified using RSEM (version 1.2.31). 

 The silkworm fat body’s sequence read qualities were 
controlled using the FastQC program. Short-read sequences 
were mapped to an annotated silkworm transcript sequence 
obtained from KAIKObase (http://sgp.dna.affrc.go.jp) using 
the Bowtie program. A maximum of two mapping errors were 
allowed for each alignment. 

TABLE I.  ANALYSES PERFORMED IN THIS STUDY 

Dataset 

Calculated Liberality 

Shannon 
Entropy 

Lempel-Ziv 
Complexity 
(ID and QV 

removed 
fastq files) 

Lempel-Ziv 
Complexity 
(native fastq 

files)  

Lempel-Ziv 
Complexity 
(ID and QV 

removed 
small fastq 

files) 

Wheat 
leaf 

Fig. 1a, 
Fig. 1d 

Fig. 1b, Fig. 
1d Fig. 1c Fig. 2 

CHO cells Fig. 3a Fig. 3b Fig. 3c - 

Silkworm 
fat bodies Fig. 4a Fig. 4b Fig. 4c - 



 

 

F. Liberality Calculation as the Lempel-Ziv Complexity of 
Raw Transcriptome Data 
We measured the compression rate of each sequence data 

by compassion between file sizes of each uncompressed and 
compressed sequence textual data. The compression was 
performed using gzip (Wheat leaf), zip (CHO, ID, and QV 
removed fastq), bzip2 (CHO, native fastq) and compress 
(silkworm) command in the UNIX. The file sizes 
measurement was performed using a command with “-al” 
options in the UNIX. We removed ID lines and quality value 
(QV) lines from fastq data using the awk command with 
“(NR%4==2){print}”. We processed ID and QV and removed 
fastq files and native fastq files. 

G. Robustness Testing for Sequence Reads the Amount 
The fastq data derived recently generally contains more 

than 10,000,000 nucleotide sequence reads. We confirmed 
that the method proposed in this study works well even when 
a small number of sequences are extracted from these data sets 
and confirmed the method’s robustness. We randomly 
sampled 100, 1000, and 10000 reads from the wheat leaf 
transcriptomes and measured liberality as the Lempel-Ziv 
complexity of raw transcriptome data. We processed ID and 
QV removed small fastq files. 

III. RESULTS AND DISCUSSION 

A. The Wheat Leaf Transcriptome 
The liberalities calculated as the Shannon entropy of 

quantified transcriptome data (old method) and those 
calculated as the Lempel-Ziv complexity of raw transcriptome 
data (ID and QV removed fastq files) using the method 
proposed in this study were consistent, both in correspondence 
with other biological parameters (developmental time, Figs. 
1a, 1b, 1c) and in direct comparison with each other (Fig. 1d). 
The Lempel-Ziv complexity of raw transcriptome data (native 
fastq files) showed several faulty values (Fig. 1c). The QV in 
the fastq files depend on cluster density in the flow cells in the 
sequencing run. The ID in the fastq files is also determined by 
the sequencing run. This is speculation; samples processed in 
the same lot of DNA workflow would be analyzed using 
liberalities directly estimated from native fastq files. 

The liberalities calculated as the Lempel-Ziv complexity 
of small raw transcriptome data (ID and QV removed small 
fastq files) and that of full raw transcriptome data (ID and QV 
removed fastq files) were partially consistent in direct 
comparison with each other. The method proposed in this 
study was robust; we could calculate liberalities from only 

 
 
Fig. 1. Comparison between liberalities of wheat leaf calculated in different methods. 
The liberalities of the wheat leaf transcriptome are calculated as the Shannon entropy of quantified transcriptome data and 
that as the Lempel-Ziv complexity of raw transcriptome data. (a) Scatter plot of developmental time vs. Shannon entropy 
of quantified transcriptome data. (b) Scatter plot of developmental time vs. Lempel-Ziv complexity of raw transcriptome 
data (ID and QV removed fastq files). (c)  Scatter plot of developmental time vs. Lempel-Ziv complexity of raw 
transcriptome data (native fastq files). (d) Scatter plot of Shannon entropy of quantified transcriptome data vs. Lempel-
Ziv complexity of raw transcriptome data (ID and QV removed fastq files).  
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1000 sequence reads (This is under 0.01 % of generally 
obtained transcriptome sequence data.). One hundred 
sequence reads were not enough to estimate liberalities. 

B. The CHO Cells Transcriptome 
The liberalities calculated in various approaches were 

consistent, both in correspondence with other biological 
parameters (culture time, Figs. 3a, 3b, 3c) and in direct 
comparison with each other (r2 = 0.92, SE and KC (ID and QV 
removed fastq), r2 = 0.93, SE, and KC (native fastq)). The 
Lempel-Ziv complexity of raw transcriptome data (native 
fastq files) did not indicate faulty values appearing in the 
wheat leaf transcriptome (Figs. 1c and 2c). These samples are 
processed in the same RNA/DNA workflow and in the same 

sequencing run and could be analyzed using liberalities 
directly calculated from native fastq files. 

C. The Silkworm Fat Bodies Transcriptome 
The liberalities calculated in several methods partially 

agreed with the correspondence with other biological 
parameters (drug concentration, Figs. 4a and 4b). The 
liberality was determined by the drug concentration at that 
time and previous drug concentrations. This is a hysteretic 
phenomenon, and a hysteretic phenomenon provides evidence 
of a bi-stable system. These results indicate the multi-stability 
of the genome expression system. Notably, the liberalities 
calculated as the Lempel-Ziv complexity of raw transcriptome 
data (ID and QV removed fastq) were categorized into two 
parts clear (Fig. 4b). The Lempel-Ziv complexity of raw 

 

 
Fig. 3. Comparison between liberalities of CHO cells calculated in various methods. 

The liberalities of the Chinese hamster ovary cells are calculated as the Shannon entropy of quantified transcriptome data 
and that as the Lempel-Ziv complexity of raw transcriptome data.  (a) Scatter plot of culture time (days) vs. Shannon entropy 
of quantified transcriptome data. (b) Scatter plot of culture time vs. Lempel-Ziv complexity of raw transcriptome data (ID 
AND QV removed fastq files). (c)  Scatter plot of culture time vs. Lempel-Ziv complexity of raw transcriptome data (native 
fastq files).  
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Fig. 2. Comparison between liberalities calculated in different data amounts. 

The liberalities calculated as the Shannon entropy of quantified transcriptome data (old method) and that calculated as the 
Lempel-Ziv complexity of small raw transcriptome data (10000, 1000, and 100 sequence reads, ID and QV removed fastq 
files) using the method proposed in this study were compared directly. (a) Scatter plot of Shannon entropy vs. Lempel-Ziv 
complexity of small raw transcriptome data (10000 reads). (b) Scatter plot of Shannon entropy vs. Lempel-Ziv complexity 
of small raw transcriptome data (1000 reads). (c) Scatter plot of Shannon entropy vs. Lempel-Ziv complexity of very small 
raw transcriptome data (100 reads). 
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transcriptome data (native fastq files) were different from the 
Shannon entropy and the Lempel-Ziv complexity of raw 
transcriptome data (ID and QV removed fastq files) (Fig. 4). 
These samples are processed in the various DNA workflow 
and sequencing run, and could not be evaluated using 
liberalities directly estimated from native fastq files. 

IV. CONCLUSION 
We had the perception that transcriptome sequence data 

file compression ratios were significant a dozen years ago, but 
we did not receive a clear indication. This study shows that the 
Lempel-Ziv complexity obtained from the file compression 
ratio is helpful in estimating cellular liberality using three data 
sets. We could calculate liberalities without the genome data. 
This increased the generality of the cellular liberality. In this 
experiment, the Shannon entropy and the Lempel-Ziv 
complexity were consistent in the wheat leaf transcriptome 
and CHO cells transcriptome but were not in the silkworm 
transcriptome. Since only the silkworm data are old, it is 
believed that recent developments in transcriptome 
measurement technology have reduced the noise in the 
transcriptome data. Advancements in DNA/RNA sample prep 
protocols have improved reproducibility, and advancements 
in sequencing equipment have reduced sequencing errors and 
QV variation. These technological developments have 
probably expanded the effective range of classification by 
compression [25]. As genomics measuring technology 
advances, the ability to extract signals and messages from 
informatics analysis grows, and informatics analysis will 
become increasingly significant in the future. 
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