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Abstract. Segmentation in medical imaging is a critical component for
the diagnosis, monitoring, and treatment of various diseases and medical
conditions. Presently, the medical segmentation landscape is dominated
by numerous specialized deep learning models, each fine-tuned for spe-
cific segmentation tasks and image modalities. The recently-introduced
Segment Anything Model (SAM) employs the ViT neural architecture
and harnesses a massive training dataset to segment nearly any object;
however, its suitability to the medical domain has not yet been inves-
tigated. In this study, we explore the zero-shot performance of SAM in
medical imaging by implementing eight distinct prompt strategies across
six datasets from four imaging modalities, including X-ray, ultrasound,
dermatoscopy, and colonoscopy. Our findings reveal that SAM’s zero-shot
performance is not only comparable to, but in certain cases, surpasses
the current state-of-the-art. Based on these results, we propose practical
guidelines that require minimal interaction while consistently yielding ro-
bust outcomes across all assessed contexts. The source code, along with a
demonstration of the recommended guidelines, can be accessed at https:
//github.com/Malta-Lab/SAM-zero-shot-in-Medical-Imaging.

Keywords: Medical Imaging · Segmentation · Segment Anything Model
· Zero-shot Learning · Deep Neural Networks.

1 Introduction

Medical imaging plays a pivotal role in the diagnosis, monitoring, and treatment
of a wide range of diseases and conditions [1]. Accurate segmentation of these
images is often critical in extracting valuable information that can aid clini-
cal decision-making. However, traditional segmentation methods primarily rely
on labor-intensive, manually-engineered features and error-prone thresholding
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designed for specific scenarios, resulting in limited generalizability to new im-
ages [2]. Large advancements in medical image segmentation have been achieved
with the advent of deep learning (DL) techniques, owing to their ability to learn
intrinsic features and patterns from large datasets [3, 4, 5].

The DL revolution was ignited by the groundbreaking success of Convolu-
tional Neural Networks (CNNs) in computer vision applications [6]. Recently,
a new wave of innovative applications based on the Transformer architecture
has emerged [7]. Transformers enhance the training process by harnessing larger
datasets while providing smaller induction bias, thereby creating models that
can generalize to unseen distributions and even adapt to diverse tasks.

Nonetheless, medical image segmentation poses significant challenges for DL
due to the substantial cost associated with specialized professionals annotating
images, leading to the scarcity of available data. Furthermore, there is limited
evidence regarding the ability of DL models trained on natural images to gen-
eralize to medical application settings.

The Segment Anything Model (SAM) has been recently introduced by Meta [8].
SAM, a state-of-the-art vision transformer (ViT), is capable of generating seg-
mentation masks for virtually any object. It introduces the concept of prompting
in image segmentation, whereby the model’s inference process is guided by pro-
viding points inside the region of interest (ROI) or by drawing a bounding box
around it.

In this paper, we rigorously evaluate the zero-shot capabilities of SAM in
segmenting 2D medical images. We assess its performance across six datasets en-
compassing four distinct imaging modalities: X-ray, ultrasound, dermatoscopy,
and colonoscopy, using various prompting strategies. Our comprehensive evalua-
tion reveals that SAM demonstrates promising results in those medical imaging
modalities, even when we have complex patterns such as hair on skin lesions.
We also propose practical guidelines for physicians to utilize SAM in medical
image segmentation tasks. This guideline suggests starting with a bounding box
prompt, selecting the optimal prediction from the generated outputs, and refin-
ing the segmentation using point prompts when necessary.

2 Related Work

2.1 Medical Image Segmentation

Medical image segmentation plays a pivotal role in medical imaging analysis,
focusing on the identification and delineation of structures or regions such as
organs, tissues, or lesions. Accurate segmentation is crucial for various clinical
applications, encompassing diagnosis, treatment, and monitoring of disease pro-
gression. This enables essential tasks like measuring tissue volume for tracking
growth and outlining radiosensitive organs in radiotherapy treatment.

In the current domain of medical image segmentation, specific methods are
tailored to the application, imaging modality, and body part under examina-
tion [9, 10]. However, automatic segmentation remains a formidable challenge
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due to the intricacy of medical images and data scarcity. The segmentation al-
gorithm’s output is influenced by multiple factors, including the partial volume
effect, intensity inhomogeneity, presence of artifacts, and insufficient contrast
between soft regions [11].

Deep learning techniques have garnered considerable attention in medical
image segmentation, owing to their capacity for capturing intricate patterns
and representations from large-scale datasets. Among the most prevalent DL
approaches for medical image segmentation are CNNs. Widely employed models
for medical image segmentation include U-Net [3] and its derivatives, which
were explicitly developed for biomedical image segmentation. U-Net utilizes a
symmetric encoder-decoder architecture, enabling the model to capture both
high-level contextual information and fine-grained details, resulting in enhanced
segmentation outcomes.

In recent years, novel state-of-the-art segmentation techniques have emerged,
such as training DL models on polar images [12], integrating textual informa-
tion with vision-language models [4], and employing attention mechanisms with
CNNs in ViTs [13].

2.2 Vision Transformer (ViT)

ViTs constitute a class of DL models that leverage the transformer architec-
ture [14]. These models process images by dividing them into fixed-size, non-
overlapping patches and linearly embedding these patches into a flat sequence of
tokens. Each token is subsequently passed through a series of self-attention lay-
ers to learn relevant contextual relationships and spatial information, enabling
the model to discern semantically-rich patterns [7].

ViTs do not share some of the inductive biases inherent in CNNs, such as
locality and translation equivariance. A reduced inductive bias allows ViTs to
be more adaptable even though it necessitates more data for generalization.
The data demand may limit the application of ViTs in medical imaging, where
data is often scarce. Nevertheless, by capitalizing on pre-training and fine-tuning
strategies, ViTs are revolutionizing the computer vision landscape with strong
generalization performance [15, 16].

Recently, ViTs have demonstrated strong results in zero-shot learning [17, 18,
19]. This setting presents a challenge since the model must learn to generalize for
classes and contexts not encountered during training. In medical imaging, ViT-
based models have achieved state-of-the-art results [20, 21, 13], though very few
studies address the zero-shot capabilities of the learning models, and whether
their performance in zero-shot settings is reasonable or even competitive to fine-
tuning [22, 13].

3 Methodology

3.1 Segment Anything Model (SAM)

SAM [8] is a state-of-the-art ViT model trained on the massive SA-1B dataset
(also introduced in [8]). This dataset comprises approximately 11 million images
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and 1 billion segmentation masks, making it the largest publicly available image
segmentation dataset to date. The model’s high accuracy has been demonstrated
through its impressive capability of segmenting a wide variety of objects and
shapes, thereby validating its effectiveness in segmenting virtually any object
within a 2D image.

SAM can function in two distinct ways: by segmenting all objects present in
an input image or by utilizing prompts that explicitly specify the target region for
segmentation. These prompts can take the form of points identifying the region
of interest or regions that should be excluded. Additionally, a bounding box
may be provided to delineate the area containing the object of interest. While
initial results with SAM showcase strong segmentation quality and zero-shot
generalization to novel scenes and unseen objects, it is important to note that the
model’s training dataset lacks medical images. Consequently, its generalizability
to the medical domain remains an open question.

To address potential issues arising from ambiguous prompts, SAM generates
a set of three masks, each with an accompanying score reflecting a different inter-
pretation of the intended region. The first mask in the output sequence represents
the smallest, most conservative interpretation of the intended region according
to the given prompt. As the sequence progresses, the subsequent masks increase
in size, with each mask encompassing the previous one. The score assigned to
each mask is an indicator of SAM’s confidence in that particular prediction. This
design enables SAM to accommodate a wider range of potential segmentation
outcomes, reflecting the model’s efforts to account for the ambiguity in the target
region’s size due to the prompt’s limited information.

In practical applications, especially within the medical imaging domain, it
is crucial to ensure that the model accurately identifies and segments perti-
nent structures or regions of interest. Given this requirement, our study focused
on investigating input prompt strategies for guiding SAM’s segmentation pro-
cess. This decision stems from the inherent uncertainties associated with the
segment-everything approach, as the model’s comprehension of the segmented
objects cannot be guaranteed. By utilizing prompts, we aimed to improve SAM’s
segmentation capabilities in medical imaging tasks and provide a more reliable
and controlled evaluation of its performance. Furthermore, we did not consider
the confidence scores provided by SAM for each mask, as these scores reflect the
quality of the segmentation without accounting for the accuracy of the target
region relative to the intended object.

The ViT architecture employed by SAM consists of three distinct iterations,
each with unique trade-offs between computational requirements and model per-
formance: ViT Base (ViT-B), ViT Large (ViT-L), and ViT Huge (ViT-H). The
primary differences between these iterations lie in the model’s number of layers
and parameters, as illustrated in Table 1. As the number of layers and parame-
ters increases, the model becomes more powerful, enabling the capture of more
intricate aspects of the input images. However, larger models necessitate more
computing power, which may pose a drawback in certain situations. Neverthe-
less, even the largest iteration of SAM remains relatively compact.
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Architecture Transformer Layers Parameters Size (Mb)

ViT-B 12 91M 776
ViT-L 24 308M 1582
ViT-H 32 636M 2950

Table 1. Summary of SAM’s ViT architecture variations.

3.2 Datasets

For evaluating SAM, we used six datasets from four medical imaging modali-
ties: X-ray, Ultrasound, dermatoscopic, and colonoscopy images. Our primary
objective is to assess the model’s performance and versatility when prompted
with various strategies, simulating a physician’s approach to segmenting specific
organs or ROIs in medical images. Fig 1 shows a sample from each dataset.

– ISIC 2018 [23]: this publicly available dataset comprises 2, 594 dermato-
scopic images from 2, 056 unique patients, showcasing skin lesions with vary-
ing types, sizes, and colors. The images have resolutions ranging from 640×
480 to approximately 6, 700 × 4, 400 pixels and are provided in JPEG for-
mat. Expert dermatologists generated accompanying segmentation masks
using a manual annotation tool, and a second expert reviewed each mask for
accuracy.

– HAM10000 [24]: this dataset contains 10, 015 dermatoscopic images of skin
lesions from 7, 388 unique patients, with varying types, sizes, and colors. All
images have a resolution of 640 × 450 and are provided in JPEG format.
Recently, Tschandl, P. et al.[25] supplied expert segmentation masks for all
images, with corresponding resolutions.

– Montgomery-Shenzhen [26, 27]: this dataset is a fusion of two publicly
available chest X-ray datasets collected from respective hospitals. It com-
prises 800 X-ray images, with 704 accompanying lung segmentation masks
manually created by expert radiologists. The dataset is available in PNG
format.

– X-ray Images of Hip Joints [28]: this publicly available dataset contains
140 X-ray images of the lower legs, with an average resolution of 327× 512.
Corresponding segmentation masks for the femur and ilium are provided
separately. The images and masks are available in NII format.

– CVC-ClinicDB [29]: this dataset consists of 612 images from 31 colonoscopy
sequences, with a resolution of 384× 288. The images are provided in PNG
format. Expert gastroenterologists have created segmentation masks for the
polyps, which are provided for all available images.

– Breast Ultrasound Images [30]: this dataset comprises 780 ultrasound
images of the breast from 600 patients, with an average size of 500 × 500
pixels. The images are provided in PNG format and are categorized into
normal, benign, and malignant. Segmentation masks for tumors are supplied
for both benign and malignant cases.
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Fig. 1. Samples from each of the six datasets used in this study. A: ISIC, B: HAM, C:
CXR, D: HJXR, E: CVC, F: BUSI.

3.3 Prompt Strategies

In the context of interactive segmentation, a physician may guide the procedure
using various strategies, such as clicking within the region of interest, clicking
outside the region, or drawing a bounding box around the target. To investigate
the impact of these plausible prompting strategies on our segmentation models,
we conducted a series of experiments with the following approaches:

– Central-point (CP): utilizing only the centroid of the ground-truth mask,
which is anticipated to be the most informative single-point prompt;

– Random-point (RP): eroding the ground-truth mask and subsequently
selecting a random point within it, representing minimal guidance;

– Distributed random-points (RP3 and RP5): eroding the ground-truth
mask, dividing it vertically into sections (three and five, respectively), and
selecting a random point within each section to provide a more distributed
set of prompts;

– Bounding-box (BB): prompting with the bounding box of the ground-
truth mask, offering a more explicit spatial constraint for segmentation; and

– Perturbed bounding-box (BBS5, BBS10, and BBS20): modifying
the size and position of the bounding box by 5%, 10%, and 20% of the
ground-truth mask size, respectively, simulating variations in the accuracy
of a physician’s initial assessment.

For the multiple points strategy, we divided the mask into three and five
sections, and for the varied bounding box strategy, we randomly altered its size
and position up to 5%, 10%, and 20% of the ground-truth mask. Given these
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variations, we ran a total of eight experiments per model/dataset, which are
shown in Fig 2: central-point (CP), random-point (RP), random-points-3 (RP3),
random-points-5 (RP5), bounding-box (BB), bounding-box-similar-5 (BBS5),
bounding-box-similar-10 (BBS10) and bounding-box-similar-20 (BBS20).

Fig. 2. Example of all prompt strategies on a skin lesion image and mask. (A): original
image, (B): CP, (C): RP, (D): RP3, (E): RP5, (F): BB in green, BBS5 in red, BBS10
in blue, and BBS20 in yellow. The size and position shown are their max variation for
BBS methods.

In the RP, RP3, and RP5 strategies, we apply an erosion morphological
operator to the ground-truth mask before selecting a random point within the
resulting region. This process ensures that the selected point is not situated
near the region of interest’s edges while preserving the element of randomness
expected in real-world scenarios. The erosion value was determined according to
the dataset: for the CXR and ISIC datasets, where the regions are larger, we
used a 30-pixel radius; for the CVC dataset, which contains smaller images that
could be completely eroded, we employed a 1-pixel radius; for all other datasets
with relatively small regions, we opted for a 10-pixel radius.

The various prompting strategies applied to a skin lesion image and mask
are illustrated in Fig 2. This figure demonstrates the original image (A), and
the different prompt strategies: CP (B), RP (C), RP3 (D), RP5 (E), and BB
(F) in green, BBS5 in red, BBS10 in blue, and BBS20 in yellow. The size and
position shown for the BBS methods represent their maximum variation, while
in our experiments, they were altered randomly.
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3.4 Preprocessing

Throughout our experimentation process, we encountered various challenges
stemming from the characteristics of the datasets under consideration. To ad-
dress these issues, we implemented a fill-holes technique aimed at rectifying mask
information, particularly in the context of the ISIC dataset, wherein some masks
solely outlined the relevant lesion. Moreover, in instances where an image con-
tained multiple masks (e.g., dual lungs or skin lesions), we isolated the two most
substantial regions and processed them independently, employing the prompt
strategies delineated in the previous section. This approach ensured accurate
and precise segmentation. A manual inspection of all images was conducted to
confirm the absence of any containing three distinct and relevant regions. The
model-generated predictions for both regions were combined to form a single
prediction.

In the case of the HJXR dataset, which uniquely contained images in a format
incompatible with SAM, we transformed the images from NII to PNG format,
normalizing their values within the range of 0 to 255. Given that masks for the
femur and ilios were available individually for each image in the dataset, we
assessed the predictions separately in HJXR-F and HJXR-I.

3.5 Evaluation

The Dice Similarity Coefficient (DSC) serves as a widely recognized statistical
metric for gauging the accuracy of image segmentation. This coefficient quantifies
the similarity between two sets of data, typically represented as binary arrays, by
comparing a predicted segmentation mask to the ground-truth mask. The DSC
operates on a scale from one to zero, with one signifying a perfect match and
zero indicating a complete mismatch. The utility of this metric lies in its ability
to discern performance differences between classifiers, rendering it an invaluable
instrument for evaluating segmentation algorithms. The DSC can be calculated
as follows:

DSC (m (xi) , yi) =
|2 ∗ (m (xi) ∩ yi)|

|(m (xi) ∩ yi)|+ |m (xi) ∪ yi|
, (1)

where |m (xi) ∩ yi| and |m (xi) ∪ yi| refer to the area of overlap and area of union,
respectively.

4 Results and Discussion

In this section, we present the results of our comprehensive experiments con-
ducted on six datasets, employing eight prompting strategies, and utilizing three
variations of the SAM. The performance of these models is compared to the
current state-of-the-art (SOTA) methods, with certain zero-shot results of SAM
surpassing established benchmarks. We subsequently engage in a qualitative dis-
cussion of the observed results, showcasing select challenging images to elucidate
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our findings. Finally, we provide a practical implementation guideline for physi-
cians to effectively utilize the SAM, ensuring minimal interaction and delivering
robust outcomes.

Table 2 shows the DSC of the predictions for ViT-H, the largest SAM model,
with results for ViT-B and ViT-L shown in the Supplementary Material. The
terms 1st, 2nd, and 3rd correspond to the three predictions generated by SAM,
and the table presents the metrics when only one of these predictions is used
consistently for all images. Fig 3 showcases an example of these predictions for
the Chest X-Ray (CXR) dataset, employing both the RP5 and BBS10 strate-
gies. The RP5 method provides better differentiation between predictions, while
the BBS10 approach demonstrates greater uniformity. This observation could
potentially be attributed to the bounding box, which simultaneously indicates
the target region for segmentation and the areas to be excluded (outside the
box).

Fig. 3. Three returning predictions from SAM using RP5 (A, B, C) and BBS10 (D, E,
F) input methods for the CXR dataset. A physician may choose the one that best fits
the corresponding region to be segmented.

In a real-world clinical setting, a physician may opt to select the most suit-
able prediction. To simulate this decision-making process, we assessed the high-
est DSC per image, irrespective of being the 1st, 2nd, or 3rd prediction. The
results are presented in Table 3. This approach led to a modest improvement of
approximately 1% compared to using only the 1st, 2nd or 3rd prediction in all
images, as shown in Fig 4. Even though the overall enhancement is marginal, it
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Table 2. DSC of predictions for the ViT-H model for six datasets using the eight
proposed prompt strategies considering the 1st, 2nd, and 3rd prediction.

Dataset Pred CP RP RP3 RP5 BB BBS5 BBS10 BBS20

ISIC
1st 0.538 0.531 0.762 0.774 0.745 0.737 0.715 0.603
2nd 0.718 0.677 0.769 0.788 0.845 0.842 0.833 0.789
3rd 0.375 0.363 0.390 0.483 0.872 0.868 0.860 0.816

HAM
1st 0.544 0.527 0.752 0.765 0.732 0.724 0.700 0.589
2nd 0.729 0.686 0.768 0.785 0.838 0.835 0.824 0.778
3rd 0.420 0.406 0.443 0.541 0.865 0.861 0.851 0.809

CXR
1st 0.904 0.863 0.923 0.927 0.936 0.934 0.911 0.686
2nd 0.758 0.727 0.766 0.828 0.942 0.939 0.929 0.826
3rd 0.471 0.469 0.482 0.514 0.935 0.930 0.913 0.803

HJXR-F
1st 0.876 0.822 0.941 0.948 0.924 0.908 0.848 0.618
2nd 0.743 0.767 0.767 0.776 0.962 0.958 0.904 0.746
3rd 0.517 0.543 0.548 0.599 0.949 0.945 0.905 0.723

HJXR-I
1st 0.211 0.742 0.808 0.828 0.875 0.866 0.734 0.624
2nd 0.393 0.479 0.449 0.491 0.855 0.849 0.790 0.620
3rd 0.294 0.295 0.316 0.384 0.800 0.796 0.758 0.629

CVC
1st 0.716 0.763 0.861 0.880 0.889 0.881 0.835 0.702
2nd 0.554 0.544 0.642 0.754 0.926 0.924 0.916 0.844
3rd 0.232 0.224 0.224 0.245 0.924 0.922 0.918 0.868

BUSI
1st 0.583 0.541 0.736 0.766 0.754 0.744 0.713 0.631
2nd 0.641 0.616 0.688 0.735 0.840 0.837 0.823 0.768
3rd 0.192 0.184 0.196 0.254 0.863 0.859 0.848 0.800
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holds significance for certain subjects and necessitates minimal input from the
physician.

Table 3. DSC of predictions for all variations of SAM for six datasets using the eight
proposed prompt strategies. For each set of predictions, only the one with the highest
DSC was considered.

Dataset Model CP RP RP3 RP5 BB BBS5 BBS10 BBS20

ISIC
ViT-H 0.788 0.768 0.820 0.835 0.877 0.874 0.866 0.829
ViT-L 0.783 0.768 0.811 0.818 0.876 0.872 0.864 0.819
ViT-B 0.764 0.733 0.804 0.815 0.879 0.876 0.864 0.822

HAM
ViT-H 0.782 0.764 0.812 0.824 0.870 0.866 0.857 0.820
ViT-L 0.784 0.772 0.809 0.819 0.867 0.864 0.854 0.809
ViT-B 0.745 0.706 0.785 0.796 0.872 0.867 0.855 0.810

CXR
ViT-H 0.922 0.902 0.928 0.936 0.952 0.950 0.942 0.862
ViT-L 0.929 0.917 0.932 0.930 0.954 0.952 0.943 0.849
ViT-B 0.915 0.893 0.930 0.935 0.948 0.943 0.932 0.858

HJXR-F
ViT-H 0.906 0.917 0.943 0.950 0.973 0.973 0.957 0.861
ViT-L 0.910 0.916 0.939 0.948 0.973 0.973 0.956 0.880
ViT-B 0.927 0.882 0.910 0.907 0.971 0.969 0.950 0.870

HJXR-I
ViT-H 0.483 0.786 0.808 0.828 0.889 0.886 0.843 0.719
ViT-L 0.478 0.841 0.865 0.860 0.894 0.889 0.839 0.726
ViT-B 0.500 0.765 0.825 0.830 0.875 0.870 0.838 0.696

CVC
ViT-H 0.838 0.854 0.884 0.898 0.940 0.938 0.934 0.889
ViT-L 0.815 0.823 0.848 0.847 0.934 0.931 0.920 0.869
ViT-B 0.739 0.749 0.783 0.784 0.932 0.930 0.921 0.851

BUSI
ViT-H 0.732 0.706 0.791 0.816 0.870 0.868 0.855 0.813
ViT-L 0.744 0.727 0.800 0.807 0.875 0.872 0.865 0.810
ViT-B 0.734 0.701 0.804 0.818 0.886 0.884 0.874 0.831

The Bounding Box (BB) strategy consistently exhibited superior perfor-
mance across all datasets, as illustrated in Table 2 and Table 3. Even with
variations of 5% or 10% (BBS5, BBS10), this method outperforms all point
prompt strategies, while BBS20 achieved results comparable to RP5. This ob-
servation underscores the robustness of the bounding box approach, even in the
presence of minor inaccuracies while delineating the desired segmentation region.

Regarding point prompt methods (CP, RP, RP3, RP5), an increased num-
ber of input points correspond to enhanced model performance. However, these
techniques could not outperform the BB, BBS5, and BBS10 strategies. More-
over, RP5 requires greater manual intervention, rendering it more labor-intensive
compared to employing a bounding box.

Our experiments do not incorporate additional prompt points that can be in-
troduced post-prediction to refine the segmentation. This fine-tuning process can
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Fig. 4. Comparison of using always the 1st, 2nd, or 3rd prediction versus choosing the
best one per image (max) with the BB strategy for all datasets.

be applied to both encompass regions excluded from the prediction and eliminate
regions that should not be part of the segmentation. As a result, physicians can
achieve even more precise segmentation masks with minimal additional effort.

We also highlight that the ViT-B model attained performance levels com-
parable to the larger variants of SAM, occasionally even surpassing them. Fur-
thermore, owing to its modest GPU memory requirements, it can be readily uti-
lized with cost-effective hardware, making SAM’s application in medical imaging
highly accessible without a significant cost.

4.1 Comparison with state-of-the-art (SOTA) segmentation models

We employ the intermediate-sized SAM (ViT-L) for a comparative analysis with
the current state-of-the-art (SOTA) models. Table 4 presents a performance com-
parison of SAM with the BB5 strategy (emulating a physician annotating with
minimal error, followed by selecting the most accurate among three predictions)
against SOTA models employed on each dataset. Notably, no baseline models
were found for evaluation in the HJXR dataset.

SAM achieved very strong results for a zero-shot (no training/fine-tuning)
approach in comparison to the SOTA. In the BUSI dataset, SAM surpassed the
SOTA by approximately 5%, sustaining its superior performance even when em-
ploying the BBS20 strategy, which accommodates a substantial margin of error
in image annotation. In the CVC dataset, SAM’s performance was marginally
lower (less than 2%), while in the CXR dataset, the gap was a mere 3%.

Although no directly comparable studies exist, SAM exhibited a very high
DSC (0.973) for femur segmentation. The segmentation of ilios is a more intricate
task due to reduced contrast with adjacent regions. Taking that into account,
the results for ilios segmentation can also be considered quite strong.
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Table 4. Comparison of the results of the BBS5 strategy using the ViT-L model with
the current state-of-the-art DL models.

Dataset Model DSC

ISIC
Rema-net [5] 0.944

SAM ViT-L BBS5 0.872

HAM
Rema-net [5] 0.936

SAM ViT-L BBS5 0.864

CXR

Attention U-Net [31] 0.982

ReSE-Net [32] 0.976

SAM ViT-L BBS5 0.952

CVC
FSA-Net [33] 0.947

SAM ViT-L BBS5 0.931

BUSI
PODDA, A. et al [34] 0.826

SAM ViT-L BBS5 0.872

HJXR-F SAM ViT-L BBS5 0.973

HJXR-I SAM ViT-L BBS5 0.889

For the ISIC and HAM datasets, SAM was outperformed by ≈ 7%. But here
we need to take into account the unique characteristics of these datasets, and a
more nuanced analysis is presented in the next section. Moreover, the substantial
volume of available data (over 10, 000 images) renders the training of task-specific
deep learning (DL) models more viable for those tasks. In contrast, with smaller
datasets like BUSI, training an end-to-end DL model becomes strenuous due to
the scarcity of data. In such scenarios, employing a model like SAM proves to
be the best option, as it benefits from exposure to an extensive range of data
across various domains.

4.2 Qualitative Analysis

The analysis of medical images presents a unique set of challenges due to the
complex and diverse nature of datasets. For instance, the CXR dataset, which
consists of chest X-rays and their corresponding segmentation masks, contains
inconsistencies in the segmented regions, as depicted in Fig 5. Some ground-truth
masks include the heart while others exclude it. Still, SAM can rapidly rectify
these discrepancies by allowing users to select the most appropriate prediction,
as demonstrated in Fig 3, or by refining input points to include or exclude specific
regions as needed.

The standard DICOM format for X-ray images typically features a 12 or
16 bit depth, enabling physicians to manipulate the window/level settings for
enhanced visualization of tissues and organs. We postulate that optimizing the
window/level parameters during conversion to JPEG or PNG formats could
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Fig. 5. Example of inconsistencies within the ground-truth region in the CXR dataset.

improve tissue delineation and subsequently enhance SAM’s performance for this
imaging modality. Nevertheless, we did not assess this approach, given that the
CXR dataset is provided in PNG format, and the HJXR dataset was normalized
and converted to PNG using its maximum and minimum values.

For the ISIC dataset, which comprises skin lesion images, we identified nu-
merous instances of inaccurate ground-truth mask annotations, as illustrated in
Fig 6. These inaccuracies impacted the DSC results, as the masks generated
by SAM appear to exhibit higher precision compared to the original masks.
Moreover, the presence of body hair in the ISIC and HAM datasets significantly
influences the segmentation process, particularly when employing point prompt
strategies. For example, a hair intersecting a lesion may erroneously indicate two
distinct regions instead of one. To address this issue, bounding box strategies can
be implemented to provide sufficient information to the model. However, SAM’s
exclusion of hair from the segmentation negatively affects its performance. Ad-
ditionally, the skin lesion datasets present challenges due to indistinct lesion
boundaries, rendering accurate segmentation of skin lesions a challenging task.

Ultrasound images pose considerable difficulties for DL models, attributable
to their inhomogeneous intensities and low signal-to-noise ratio, which hinder
the accurate delineation of breast tumors in datasets such as BUSI. Further-
more, the absorption and reflection of ultrasound can give rise to artifacts in
the image, exacerbating the segmentation task even for well-optimized models.
Despite these obstacles, SAM achieved strong results in this dataset. However, it
encountered challenges in accurately segmenting the boundaries of breast tumors
due to the inherent blurred edges in ultrasound images.

4.3 Guidelines

In light of our empirical findings, we propose a robust and pragmatic framework
for utilizing the Segment Anything Model (SAM) in the realm of medical imaging
tasks. This methodology empowers physicians to capitalize on the capabilities
of SAM to attain precise segmentation outcomes, while preserving their auton-
omy in overseeing the process. Our recommendation is to employ the largest
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Fig. 6. Example of inconsistencies in the ground-truth region in the ISIC dataset.

SAM variation that is feasible given the constraints of the available hardware;
nonetheless, any of the three model variants may be utilized.

1. Initiate with a bounding box prompt: our experimental results consis-
tently indicate that among various prompting strategies, the bounding box
technique exhibits superior performance, even in the presence of minor vari-
ations. Thus, we advocate that physicians start the segmentation procedure
by supplying a bounding box prompt encompassing the region of interest.

2. Evaluate the generated predictions: SAM generates a triplet of segmen-
tation masks in response to an input image and a bounding box, each signify-
ing a distinct interpretation of the intended region’s dimensions. Physicians
are advised to visually scrutinize and juxtapose the three produced masks
against the source image. If there is a suitable prediction, select it. If none of
the predictions correctly segment the intended region, proceed to the next
step.

3. Refine the segmentation employing point prompts: in cases where
none of the initial predictions adequately segment the intended region, assess
the best prediction and identify the areas it incorrectly captures or omits
in the segmentation. Utilize input points to include (label 1) or exclude
(label 0) these areas. SAM will generate three new predictions. Repeat the
process of refining the segmentation using point prompts until an adequate
segmentation is achieved.

Fig. 7 and Fig. 8 demonstrate the application of our proposed framework on
images from the BUSI and CVC datasets, including the bounding box prompt
and subsequent predictions. Since the intended regions were accurately seg-
mented, the physician merely has to select them.
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Fig. 7. Image from the BUSI dataset with bounding box input accompanied by SAM’s
predictions. Both the 2nd and 3rd predictions exhibit accurate segmentation of the
intended region.

Fig. 8. Image from the CVC dataset with bounding box input accompanied by SAM’s
predictions. Both the 2nd and 3rd predictions exhibit accurate segmentation of the
intended region.

Fig. 9 presents the application of our framework on an image from the ISIC
dataset, followed by the bounding box prompt and predictions. This represents
a more intricate scenario, as discussed earlier. None of the predictions provided
satisfactory results; therefore, the physician must evaluate the best one (2nd)
and incorporate point prompts to guide the model. Fig 10 displays the original
bounding box input in conjunction with the point prompts and the generated
predictions. A significant improvement in segmentation is observable in the 2nd
prediction due to the additional point prompts.

Fig. 9. Image from the ISIC dataset with bounding box input accompanied by SAM’s
predictions. None of them are adequate and require further prompt points.
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Fig. 10. Image from the ISIC dataset with bounding box and point inputs accompanied
by SAM’s predictions. The point prompts guide the model to remove these areas. The
2nd prediction reached an adequate segmentation.

This methodology ensures that the model’s output coheres with the physi-
cian’s expertise, culminating in accurate and dependable segmentation results
across diverse clinical applications and imaging modalities.1

5 Conclusion and Future Work

In this study, we thoroughly evaluated the zero-shot performance of SAM by em-
ploying eight distinct prompting strategies across six datasets from four different
2D medical image modalities. Our comprehensive analysis shed light on the ad-
vantages and limitations of these strategies in various scenarios for the three
SAM ViT sizes. Remarkably, SAM demonstrated exceptional performance as a
zero-shot approach, achieving competitive results in comparison to the state-of-
the-art segmentation methods specifically designed or fine-tuned for a particular
modality of medical imaging. Notably, SAM outperformed the current best per-
formance on the BUSI dataset by a substantial margin. Taken together, our
findings underscore the immense potential of SAM as a powerful tool for low-
effort medical image segmentation.

Drawing upon our results, we propose pragmatic guidelines that facilitate
easy implementation, necessitate minimal user interaction, and yield robust out-
comes in medical imaging segmentation with SAM. By incorporating the bound-
ing box method and refining the segmentation using point prompts, medical
practitioners can effectively harness SAM’s potential to attain accurate results
while maintaining control over the segmentation process. Furthermore, given the
comparable performance of the three SAM sizes, practitioners can choose any of
them based on their hardware resource constraints.

The segmentation results generated by SAM have the potential to exceed the
most stringent quality standards with minimal involvement from physicians. Our
findings highlight concerns regarding the quality of some manually-annotated
ground truth masks, as SAM outcomes appear to delineate the region of in-
terest more accurately in certain instances. This observation holds particular
significance for labeling new datasets, as it substantially reduces the time and

1 A demo of this framework is available at https://github.com/Malta-Lab/

SAM-zero-shot-in-Medical-Imaging.

https://github.com/Malta-Lab/SAM-zero-shot-in-Medical-Imaging
https://github.com/Malta-Lab/SAM-zero-shot-in-Medical-Imaging
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effort required for this laborious and tedious task. Consequently, SAM-generated
segmentation masks offer immense promise for streamlining data annotation pro-
cesses and enhancing workflow efficiency in the area of medical image analysis.

Future research endeavors could focus on further augmenting SAM’s capabil-
ities in this domain, achieving even higher performance while preserving SAM’s
extensive refinement options. Additionally, investigating the potential of adapt-
ing SAM for 3D medical imaging represents a valuable research direction, as it
would extend the model’s applicability to a broader spectrum of medical imaging
tasks.
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ora Gil, Cristina Rodŕıguez de Miguel, and Fernando Vilariño. WM-
DOVA maps for accurate polyp highlighting in colonoscopy: Validation
vs. saliency maps from physicians. Comput. Medical Imaging Graph., 43:
99–111, 2015. https://doi.org/10.1016/j.compmedimag.2015.02.007. URL
https://doi.org/10.1016/j.compmedimag.2015.02.007.

[30] Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy.
Dataset of breast ultrasound images. Data in Brief, 28:104863, 2020. ISSN
2352-3409. https://doi.org/https://doi.org/10.1016/j.dib.2019.104863.
URL https://www.sciencedirect.com/science/article/pii/

S2352340919312181.

[31] Minki Kim and Byoung-Dai Lee. Automatic lung segmentation on chest
x-rays using self-attention deep neural network. Sensors, 21(2):369, 2021.

[32] Tarun Agrawal and Prakash Choudhary. Rese-net: Enhanced unet archi-
tecture for lung segmentation in chest radiography images. Computational
Intelligence.

http://arxiv.org/abs/1902.03368
http://arxiv.org/abs/1803.10417
http://arxiv.org/abs/1803.10417
https://doi.org/10.1038/s41591-020-0942-0
https://doi.org/10.1038/s41591-020-0942-0
https://doi.org/10.1038/s41591-020-0942-0
https://doi.org/10.1109/TMI.2013.2284099
https://doi.org/10.1109/TMI.2013.2284099
https://doi.org/10.1109/TMI.2013.2284099
https://doi.org/10.1109/TMI.2013.2290491
https://doi.org/10.1109/TMI.2013.2290491
https://doi.org/10.1109/TMI.2013.2290491
https://data.mendeley.com/datasets/zm6bxzhmfz/1
https://data.mendeley.com/datasets/zm6bxzhmfz/1
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/https://doi.org/10.1016/j.dib.2019.104863
https://www.sciencedirect.com/science/article/pii/S2352340919312181
https://www.sciencedirect.com/science/article/pii/S2352340919312181


22 Christian Mattjie et al.

[33] Bangcheng Zhan, Enmin Song, and Hong Liu. Fsa-net: Rethinking the
attention mechanisms in medical image segmentation from releasing global
suppressed information. Computers in Biology and Medicine, page 106932,
2023.

[34] Alessandro Sebastian Podda, Riccardo Balia, Silvio Barra, Salvatore Carta,
Gianni Fenu, and Leonardo Piano. Fully-automated deep learning pipeline
for segmentation and classification of breast ultrasound images. Journal of
Computational Science, 63:101816, 2022.



Zero-Shot SAM in 2D Medical Imaging: Evaluation & Guidelines 23

6 Supplementary Material

Dataset Model Pred CP RP RP3 RP5 BB BBS5 BBS10 BBS20

ISIC

ViT-H
1st 0.538 0.531 0.762 0.774 0.745 0.737 0.715 0.603
2nd 0.718 0.677 0.769 0.788 0.845 0.842 0.833 0.789
3rd 0.375 0.363 0.390 0.483 0.872 0.868 0.860 0.816

ViT-L
1st 0.704 0.665 0.703 0.700 0.864 0.861 0.852 0.805
2nd 0.518 0.521 0.768 0.794 0.763 0.757 0.733 0.623
3rd 0.382 0.366 0.358 0.362 0.841 0.836 0.819 0.730

ViT-B
1st 0.366 0.355 0.354 0.375 0.870 0.866 0.855 0.810
2nd 0.665 0.618 0.692 0.695 0.825 0.823 0.807 0.751
3rd 0.504 0.490 0.766 0.790 0.640 0.631 0.601 0.496

HAM

ViT-H 1st 0.544 0.527 0.752 0.765 0.732 0.724 0.700 0.589
2nd 0.729 0.686 0.768 0.785 0.838 0.835 0.824 0.778
3rd 0.420 0.406 0.443 0.541 0.865 0.861 0.851 0.809

ViT-L
1st 0.731 0.689 0.723 0.721 0.859 0.856 0.846 0.799
2nd 0.522 0.518 0.764 0.793 0.766 0.761 0.740 0.626
3rd 0.435 0.413 0.406 0.408 0.830 0.824 0.805 0.699

ViT-B
1st 0.414 0.403 0.401 0.425 0.863 0.859 0.846 0.799
2nd 0.659 0.607 0.681 0.683 0.810 0.807 0.795 0.740
3rd 0.478 0.431 0.749 0.772 0.619 0.610 0.578 0.466

CXR

ViT-H
1st 0.904 0.863 0.923 0.927 0.936 0.934 0.911 0.686
2nd 0.758 0.727 0.766 0.828 0.942 0.939 0.929 0.826
3rd 0.471 0.469 0.482 0.514 0.935 0.930 0.913 0.803

ViT-L
1st 0.834 0.814 0.786 0.776 0.932 0.929 0.916 0.805
2nd 0.915 0.870 0.930 0.929 0.940 0.936 0.906 0.660
3rd 0.472 0.471 0.468 0.474 0.945 0.942 0.928 0.758

ViT-B
1st 0.459 0.459 0.467 0.497 0.916 0.910 0.894 0.817
2nd 0.804 0.782 0.786 0.803 0.937 0.933 0.921 0.813
3rd 0.882 0.813 0.928 0.932 0.916 0.898 0.818 0.524

HJXR-F

ViT-H
1st 0.876 0.822 0.941 0.948 0.924 0.908 0.848 0.618
2nd 0.743 0.767 0.767 0.776 0.962 0.958 0.904 0.746
3rd 0.517 0.543 0.548 0.599 0.949 0.945 0.905 0.723

ViT-L
1st 0.773 0.800 0.788 0.791 0.972 0.969 0.951 0.843
2nd 0.874 0.804 0.927 0.944 0.925 0.922 0.844 0.685
3rd 0.516 0.540 0.540 0.619 0.961 0.944 0.818 0.448

ViT-B
1st 0.466 0.486 0.481 0.489 0.924 0.915 0.888 0.788
2nd 0.733 0.775 0.742 0.727 0.958 0.954 0.926 0.771
3rd 0.911 0.774 0.909 0.907 0.899 0.876 0.735 0.490
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Dataset Model Pred CP RP RP3 RP5 BB BBS5 BBS10 BBS20

HJXR-I

ViT-H
1st 0.211 0.742 0.808 0.828 0.875 0.866 0.734 0.624
2nd 0.393 0.479 0.449 0.491 0.855 0.849 0.790 0.620
3rd 0.294 0.295 0.316 0.384 0.800 0.796 0.758 0.629

ViT-L
1st 0.363 0.540 0.448 0.451 0.824 0.817 0.748 0.594
2nd 0.165 0.758 0.864 0.860 0.887 0.877 0.762 0.555
3rd 0.301 0.306 0.292 0.330 0.862 0.841 0.733 0.580

ViT-B
1st 0.259 0.303 0.328 0.368 0.772 0.767 0.734 0.591
2nd 0.403 0.502 0.467 0.478 0.849 0.843 0.802 0.615
3rd 0.314 0.717 0.823 0.830 0.838 0.838 0.779 0.622

CVC

ViT-H
1st 0.716 0.763 0.861 0.880 0.889 0.881 0.835 0.702
2nd 0.554 0.544 0.642 0.754 0.926 0.924 0.916 0.844
3rd 0.232 0.224 0.224 0.245 0.924 0.922 0.918 0.868

ViT-L
1st 0.498 0.482 0.508 0.522 0.920 0.918 0.906 0.853
2nd 0.702 0.728 0.836 0.841 0.873 0.867 0.818 0.672
3rd 0.229 0.222 0.217 0.223 0.909 0.904 0.870 0.773

ViT-B
1st 0.234 0.225 0.222 0.226 0.920 0.916 0.906 0.833
2nd 0.447 0.440 0.495 0.510 0.907 0.906 0.892 0.796
3rd 0.644 0.688 0.778 0.783 0.821 0.810 0.758 0.585

BUSI

ViT-H
1st 0.583 0.541 0.736 0.766 0.754 0.744 0.713 0.631
2nd 0.641 0.616 0.688 0.735 0.840 0.837 0.823 0.768
3rd 0.192 0.184 0.196 0.254 0.863 0.859 0.848 0.800

ViT-L
1st 0.656 0.649 0.674 0.663 0.866 0.862 0.855 0.794
2nd 0.567 0.536 0.748 0.779 0.782 0.777 0.754 0.649
3rd 0.228 0.205 0.202 0.252 0.849 0.847 0.830 0.741

ViT-B
1st 0.202 0.192 0.181 0.213 0.884 0.881 0.869 0.823
2nd 0.634 0.604 0.682 0.691 0.832 0.830 0.818 0.766
3rd 0.562 0.522 0.773 0.797 0.725 0.722 0.689 0.582

Table 5: DSC of predictions for six datasets using the eight pro-
posed prompt strategies for the three SAM ViT sizes.
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