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Abstract—EEG continues to find a multitude of uses in both
neuroscience research and medical practice, and independent
component analysis (ICA) continues to be an important tool
for analyzing EEG. A multitude of ICA algorithms for EEG
decomposition exist, and in the past, their relative effectiveness
has been studied. AMICA is considered the benchmark against
which to compare the performance of other ICA algorithms for
EEG decomposition. AMICA exposes many parameters to the
user to allow for precise control of the decomposition. However,
several of the parameters currently tend to be set according
to “’rules of thumb” shared in the EEG community. Here, 70-
channel AMICA decompositions are run on data from a collec-
tion of participants while varying certain key parameters. The
running time and quality of decompositions are analyzed based
on two metrics, Pairwise Mutual Information (PMI) and Mutual
Information Reduction (MIR), and derived recommendations for
selecting parameter values are presented.
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I. INTRODUCTION

Brain EEG signals recorded from the scalp are thought to
be largely generated by emergent, locally synchronous field
potential activity in cortical sources, each associated with a
patch of adjacent, radially oriented cortical pyramidal cells,
volume conducted from cortex to scalp and linearly mixed at
the channel electrodes [1f], [2]. This is supported by several
biological factors:

1) Connections between neurons in close proximity are
much denser than those between neurons located further
apart [3[], [4].

2) Inhibitory and glial cell networks have no long-range
connectivity [3].

3) Connections between the thalamus and cortex are pri-
marily radial [5], [6].

As a result, the majority of the cortical contributions to
EEG signals recorded at the scalp should be generated by
coherent field activity emergent within cortical patches. This
means that the effective sources of EEG signals recorded at
the scalp are primarily the mixture of locally synchronous or
near-synchronous activity in such compact cortical patches.



Substantial additional contributions to scalp-recorded signals
arise from eye movements and neck muscle activities, as well
as line and channel noise.

Scalp-channel recorded mixtures of activity should be well
suited for separation using Independent Component Analysis
(ICA). Over the years, multiple ICA algorithms have been
proposed, many explicitly for the task of source separation in
EEG recordings [7] [8]-[[10]. AMICA, or Adaptive Mixture
ICA [10], has become a popular choice of ICA algorithm for
processing EEG data. This is due to its unique abilities to
(1) model individual component source densities as mixtures
of generalized Gaussians and (2) when asked, separate the
data into subsets of data points each well fit by its own ICA
model. AMICA has also been previously shown to perform
the best compared to other ICA algorithms when judged on
a set of empirical metrics designed to assess the quality of
the produced decompositions [11[]. However, effective use of
AMICA requires users to select values for various adjustable
parameters. Currently, these parameters are typically selected
based on suggested “rule of thumb” defaults. Here we attempt
to provide quantitative arguments for the selections of some
key AMICA parameters based on two metrics: Pairwise Mu-
tual Information (PMI) among the derived component time
courses, and Mutual Information Reduction (MIR) produced
by the decomposition.

II. BACKGROUND
A. Decomposition Metrics

Two metrics are used to assess the quality of ICA decom-
positions.

1) Mutual Information Reduction (MIR): Mutual Informa-
tion Reduction, or MIR, represents the amount of mutual infor-
mation removed when ICA is applied to data. More precisely,
for the case of ICA, this is the reduction in mutual information
caused when W (the unmixing matrix) is applied to x (the
data being decomposed), that is, in linearly transforming the
channel time series data to to the discovered independent
component (IC) basis.

The reduction in mutual information that results from ap-
plying an unmixing matrix W to the data = can be estimated
relatively easily using only one-dimensional density models, as
pointed out by J. Palmer in [11]. MIR, or Mutual Information
Reduction, can be defined as follows:

MIR

= I(z) = I(y)

= [A(z1) +- -+ h(zn)] = [A(y2) + -+ + hlyn)]

— h(z) + log|detW |+h(x)
=log|detW|+[h(z1)+- - -+ h(zn)] — [h(y1) + - -+ 1(yn)]
(D

where I(x) and I(y) are the mutual information of the source
and ICA components, respectively. Intuitively, this value repre-
sents how much mutual information is removed from the data

by performing ICA (or any Blind Source Separation, BSS,
technique). The above formulation for MIR depends only on

the log of the determinant of W and the marginal entropies
of z and y.

It has generally been shown when sample sizes are large,
entropy may be estimated via taking the Riemann sum of a
constructed histogram with relatively accurate results. Since
EEG data does in fact meet the criteria of having large sample
sizes, this approach is used here.

The Riemann sum of the estimated continuous density func-
tion correctly integrates to one. Allow the number of bins in
the histogram B to be some fixed value. Let b;(k),k € 1,..B
be the histogram of x;, where b;(k) is the number of samples
in z;(t) in bin k of the histogram. Let Ay be the width of
bin k and N be the total number of bins. Then b;(k)/(NAy)
estimates p(x;) and thus the Riemann sum integrates to one
as expected.

ICA seeks to minimize mutual independence and thereby
maximize MIR. We can expect that the ICA algorithms that
produce the most independent source activities for a dataset
(and therefore minimize remaining mutual information) will
give the highest MIR values, although the produced MIR
values themselves may differ widely across datasets.

2) Pairwise Mutual Information (PMI): Pairwise Mutual
information (PMI) offers a simpler metric of the quality of
an EEG decomposition. PMI takes all possible pairs of rows
or columns in a matrix and computes the mutual information
between those pairs. If we define x as a vector with length N
and let x;(t) be a time series that is an element of z of length
n and define M as a naxn matrix then mathematically we can
express PMI as

[M]ij = I(z;25)
= h(xi) + h(z;) — h(wi,75),14, ] @)
€l,...,n

These marginal entropies may be computed in a manner
similar to that described for MIR.

B. The AMICA algorithm

AMICA is considered to be perhaps the best-performing
ICA decomposition algorithm for EEG data decomposition
[10], [11]. AMICA’s performance, quantified by MIR, achieves
the highest score among over 20 tested ICA/BSS algorithms
[12]. AMICA has multiple unique features that set it apart
from other ICA algorithms. First, AMICA uses mixtures of
Gaussian scale mixture sources to estimate individual source
density models, and shapes its learning process based on these.
Second, AMICA uses the Amari Newton optimization tech-
nique to achieve training with reasonable convergence times
for large EEG datasets [[13]. AMICA converts second deriva-
tive source density quantities to first derivative quantities. Fi-
nally, when required AMICA can be used to identify relatively
source stationary data subsets and learn ICA models for each
[14], a capability not tested here. For all analyses, except
when otherwise noted, we used the default AMICA parameters
(AMICA 1.7, available at https://github.com/sccn/amica). To
make analyses comparable across multiple runs, the random
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Fig. 1: (a) MIR (mutual information reduction) for each dataset as a function of the number of iterations. Baseline MIR differs
widely across datasets. Dashed vertical line at 50 indicates where newton descent begins. Each color represents a single dataset.
The thick red line indicates the median. (b) MIR for each dataset after normalization (see result section). Values are plotted
from iteration 100 onward. Each color represents a single dataset. Dashed vertical line at 2000 indicates the default number
of iterations for AMICA, and the dashed line at 250 marks a large change in A MIR (see result section). The thick red line

is the median MIR across all datasets for each time point.

seed value in the AMICA parameters was set to the fixed pair
of values (123456, 654321).

C. EEG Data

We used the same data that we have used in the past to
test the performance of a number of ICA/BSS algorithms
[11]. Data was collected from more than 20 participants
performing a visual working memory task. Participants were
asked to first fixate on a small cross presented in the center
of a screen for five seconds. Participants were then presented
with a sequence of single letters at a rate of about one per
second at screen center. Letters were colored either black
or green. Black letters were to be memorized; green letters
were to be ignored. Participants were then presented with a
probe letter, and were tasked with pressing one of two finger
buttons indicating whether the probe letter was or was not
in the memorized (black letter) set. 400 ms later, participants
received auditory feedback as to whether their response was
correct. Each subject participated in 100-150 trials. Data was
recorded from 71 scalp channels at 250 Hz/channel after
applying an analog 0.1 to 100 Hz pass band filter. All channels
were referenced to the right mastoid. Channels’ impedances
were kept below 5 KHz. Data was further processed with a
custom pipeline implemented in MATLAB using EEGLAB
[15] as follows: data was high-pass filtered at 0.5 Hz with
a linear FIR filter. Data epochs were extracted from 700 ms
before to 700 ms after a letter presentation onset. The mean
of each epoch was subtracted, and noisy epochs were rejected

by visual inspection. Between 1 and 16 epochs were rejected
per subject. The MIR and PMI traces for subjects 8 and
10 proved to be erratic, an effect also observed in previous
analyses [11], [[12], and thus, data from these participants
were excluded from further analysis. For this analysis, 14
datasets were selected such that half of them would return
relatively “good quality” ICA decompositions (as per visual
inspection of the IC scalp topographies), and half of them were
selected as exhibiting relatively poor ICA decompositions [[1 1.
Each participant dataset comprised data for between 269,000
and 315,000 time samples ( 18-21 minutes of data). All data
collected from human participants followed an experimental
protocol approved by an Institutional Review Board of the
University of California San Diego.

III. RESULTS

A. Iteration Number

In practice, AMICA uses a maximum iterations value as its
stopping rule. The default maximum used in the EEGLAB im-
plementation of AMICA used here is 2,000 iterations. AMICA
is a particularly computationally intensive ICA algorithm, so
it would be of benefit if this default stopping parameter could
be minimized.

We ran single-model AMICA decompositions for 5,000
iterations on each of the 14 EEG datasets. The seed pair for
initialization was the same across all decompositions. Each ten
iterations, the current ICA data unmixing matrix was saved and
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Fig. 2: (a) PMI (pairwise mutual information) for each dataset as a function of the number of iterations. Baseline PMI differs
widely across datasets. The thick red line indicates the median. Dashed vertical line at 50 indicates where newton descent
begins.(b) PMI for each dataset after normalization (see result section). Dashed vertical line at 2000 indicates default number
of iterations for AMICA. Each color represents a single dataset. Median PMI is shown in the thick red trace.

MIR and PMI measures were computed on the then-current
component activations.

Figure ma shows that large, stable differences exist between
datasets. A grey dashed trace shows the trend for one of the
two datasets omitted from further processing and the other
omitted dataset’s values are greater than the Y-axis scale of
this plot. For many datasets, a steeper MIR increase begins
at 50 iterations, the (here, default) value at which AMICA
newton descent training begins. MIR increases appear to stop
after about 200 iterations. In figure ma MIR traces are shifted
vertically to have zero mean. Here, decompositions beginning
with iteration 100 are shown. MIR values on the Y axis
are plotted using an inverse log scale to detail how they
further evolve during longer decompositions. The broad red
trace shows the median MIR across the selected 12 datasets.
(MIR trace colors for individual datasets are identical in both
panels). Further MIR increases become smaller after about 250
iterations, and even smaller after about 1000 iterations. Vertical
dashed lines indicate the 250 iteration point and the AMICA
default stopping iteration (2000). Note the large difference
(approximately 500:1) in y-axis scales in the two panels.

Figure 2 plots PMI for each dataset as a function of the
number of iterations, and shows that, like for MIR, PMI differs
between datasets. Again, the decrease in PMI accelerates when
newton descent begins at iteration 50. In figure [2p, the traces
are normalized and plotted on an inverse log scale in the same
way as figure [Tb. Values from iteration 100 and onward are
plotted. Here, the red line is again the median PMI across
all datasets for each time point. The median trace for PMI
is somewhat more erratic than MIR. It can be seen that
diminishing decreases in PMI occur around 1,000 iterations,

again with a slight increase after that point.

B. Training Data Quantity

We have recommended that data decomposed by AM-
ICA has a length of at least K 22, where K

number of data frames = A the JCA weight matrix contains
(number of channels)

(number of channels)?, this is equivalent to suggesting that
the training data have at least 22 frames per value in the ICA
weight matrix to be learned from the data. To test this heuristic,
data epochs were randomly dropped to create datasets with
lengths corresponding to several K values, and 5000-iteration
AMICA decompositions were performed of these reduced
datasets as well as of the full datasets. Epochs in the datasets
are composed of 350 frames, thus if the required number
of frames to achieve a given value of K was not evenly
divisible by 350 the included number of frames was rounded
up to the nearest multiple of 350. The mean K value for full
datasets was 61.3. The thick red traces in figure 3ab show
median MIR and PMI across datasets, as well as MIR and
PMI values for each dataset. Results in figure 3ab are plotted
as percent relative to the results for the full data. Figure 33
shows changes in MIR have no consistent trend as more data
is used. However, figure [3b] shows that PMI is decreased as
the amount of data is increased.

C. Number of Mixture Models

A primary source of strength for AMICA compared to
other ICA algorithms is its ability to use mixtures of extended
Gaussians to model the source probability density distribution
of each source. The number of extended Gaussian distributions
used in these models is controllable by the “num_mix_comp”
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Fig. 3: Effect of data quantity and number of mixture models on decompositions. @) shows effect of data quantity on MIR
(mutual information reduction). (b)) shows effect of data quantity on PMI (pairwise mutual information). shows median run
time per iteration across number of mixture models. @) shows median MIR (mutual information reduction) across number of

mixture models.

parameter. The higher the number, the better an ICA decompo-
sition can model the probability density functions (pdf’s) of the
EEG sources, increasing the specificity of further adaptations
of the source mixing matrix. The number of extended Gaus-
sians may affect both run time and decomposition quality. To
test the possible effects of this number, we ran AMICA with 3,
4,5, and 6 extended Gaussian models, again performing 5,000
iterations with the same seed as in earlier decompositions.
Figure shows the median run time per AMICA iteration
for each subject (thin traces) and the median across subjects
in red (thick red trace). Run time increases approximately
linearly with the number of extended Gaussian models (e.g.,
by about 50% from 3 to 6 distributions). Figure [3d| shows
mutual information reduction for each participant, normalized
to be zero mean, and the median across subjects in red.
MIR for individual subjects’ fluctuation across mixture model
numbers appears to be inconsistent, and no noticeable trend
in the change in the median is apparent. The lack of change

in MIR doesn’t suggest a difference in near dipolarity of
the decomposition created with different numbers of mixture
models, but this is still open to further investigation.

D. PMI vs MIR

Since both MIR and PMI are measures of association
between components, we might expect them to covary. PMI
only considers bivariate independence, while MIR takes into
account multivariate independence. For each dataset, 75% of
epochs were randomly selected, and decomposition was per-
formed with AMICA for four different trials. 5,000 iterations
were run using the same starting seed. Figure [ plots PMI
versus MIR for each dataset. For each subject, the results of
all four trials are shown to be clustered together. Although the
resulting quality of AMICA decomposition is sensitive to the
amount of data used, the exact subset of data used in these
decompositions appear to be associated with relatively small
differences in outcome.
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E. Seed Values

By default, in AMICA the starting weight matrix is ran-
domly initialized. For numerically complex algorithms, choice
of initialization may have important consequences on results
— this is the case for example in deep learning [16]. To
investigate the effect this initialization has on AMICA decom-
position quality, data for a single participant was decomposed
using a random seed and 4 fixed seeds for the generation of
initial conditions. 5,000 iterations were run, and a single ICA
model was fit. For each seed, a decomposition was run five
times. MIR values spanned a range of 0.000511 Kb/s with
a standard deviation of 0.000148 Kb/s. PMI values spanned
a range of 8.603883 * 10~7 Kb/s and a standard deviation
of 2.087273 % 10~7 Kb/s. Thus, compared to the variation
observed in Figures [T]and [2] the change in MIR or PMI based
on the seed used is very minor.

IV. DISCUSSION

We performed a quantitative assay of the effect of iteration
number, number of mixture models, and data quantity on the
quality of ICA decompositions of 71-channel EEG data pro-
duced by AMICA. We found that the most significant changes
in resulting MIR and PMI occurred in the first 1000 training
iterations. After the initial 1,000 iterations, MIR appeared to
fluctuate relatively little, although quite small increases did
continue to at least 4,000 iterations. PMI showed a similar
trend, with a large decrease in the first 1,000 value and then
continued improvement up to at least 3,000 iterations. As for
the quantity of EEG data suitable for AMICA decomposition,
we verified that for these data a value of K (see results) equal
to or greater than 30 was ideal for decomposing EEG data.
Increasing the amount of training data was shown to decrease
PMI, but had no discernible effect on MIR. Increasing the
number of extended Gaussian scale mixtures used by AMICA
to model the component pdfs increased run time but did not
seem to effect MIR.

V. CONCLUSION

The analysis included in this paper should provide useful
guidance for EEG researchers looking for a better understand-
ing of the effects certain AMICA parameters have on the
quality of the resulting decompositions. Future explorations
involving a larger array of datasets and parameters are likely
to yield further insight. In this work, we did not explore the
physiological localizability of the derived cortical component
scalp maps. Future work should also explore the data length
required to learn more than one AMICA model, each account-
ing for a learned subset of the training data.
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