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Abstract—Medical image segmentation has become an es-
sential technique in clinical and research-oriented applications.
Because manual segmentation methods are tedious, and fully
automatic segmentation lacks the flexibility of human inter-
vention or correction, semi-automatic methods have become
the preferred type of medical image segmentation. We present
a hybrid, semi-automatic segmentation method in 3D that
integrates both region-based and boundary-based procedures.
Our method differs from previous hybrid methods in that we
perform region-based and boundary-based approaches sepa-
rately, which allows for more efficient segmentation. A region-
based technique is used to generate an initial seed contour that
roughly represents the boundary of a target brain structure,
alleviating the local minima problem in the subsequent model
deformation phase. The contour is deformed under a unique
force equation independent of image edges. Experiments on
MRI data show that this method can achieve high accuracy
and efficiency primarily due to the unique seed initialization
technique.
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I. INTRODUCTION

In recent years, medical image segmentation has become
a standard technique for visualizing structures of the human
brain as well as performing various types of volumetric
and shape comparisons among these structures. Since the
introduction of medical image segmentation, many methods
have been implemented for brain structure segmentation
from magnetic resonance imaging (MRI). These methods
can be categorized into manual, semi-automatic, and fully
automatic methods. Manual segmentation is tedious, requires
training and much attention to detail, and the results are not
reproducible. On the other hand, fully automatic methods
require no training and are completely reproducible for
the same data, but these methods do not allow for human
intervention or manipulation and severely limit the autonomy
of the one performing the segmentation. These issues have
caused semi-automatic methods to become the preferred type
of medical image segmentation [[1]].

Semi-automatic segmentation can also be divided into
several categories, but the two primary classifications for
medical image segmentation include region-based (region
growing, region merging) [2] and boundary-based (snake

and balloon) [3]], [4]], [S] techniques. Region-based methods
provide quick segmentation results by assigning membership
to voxels according to homogeneity statistics, but the inho-
mogeneity among MRI voxel intensities can result in inac-
curate segmentation (i.e. holes and irregular boundaries) [2].

Boundary-based methods attempt to align an initial de-
formable boundary with the object boundary by minimizing
an energy functional which quantifies the gradient features
near the boundary. This technique works well for images
with little noise but these methods are also generally unre-
liable because image noise and low contrast edges between
brain structures can result in false or non-existent boundaries
causing under- or over-segmentation [3]], [4]. For boundary-
based methods, defining the initial geometry prior to defor-
mation (i.e. the seed) is also a critical issue that has yet
to be resolved. Without a proper method for seed contour
initialization, the seed will deform to local rather than global
minima in most circumstances due to image noise. [6],
[7] provide evidence for these advantages and drawbacks.
These unrefined seeding methods increase the time required
to complete each segmentation.

The most effective way to overcome the issues with
region-based and boundary-based methods is to utilize both
methods in parallel. [8], [9] used region-based information
to drive the explicit deformable models in their techniques,
while [[10], [11], [12], [13]], [14] have addressed these issues
by interlacing region-based and boundary-based methods
into a united, iterative segmentation process. The efficacy
of these types algorithms exceed that of region-based or
boundary-based methods independently, but the most notable
disadvantages of these methods are that they limited to
slice-by-slice (2D) segmentation and have relatively low
efficiency compared with other segmentation algorithms.
Also, texture has been used as a criteria to drive a hybrid
deformable model as in [15]. However, this method also
lacks an efficient seed initialization technique.

II. OVERVIEW

In this paper, we present a hybrid semi-automatic seg-
mentation method in 3D that integrates both region-based
and boundary-based procedures. The goal of this algorithm



is to achieve robust, efficient, and reproducible results while
avoiding the downfalls of region-based and boundary-based
procedures methods individually. Unlike previous methods,
we use a clustering technique to initialize the deformable
model and then deform the model with a unique force
equation independent of image edges. Separating the two
methods allows for more efficient segmentation in compar-
ison with previous hybrid procedures. By initializing the
model with a region-based technique, we are able to avoid
most, if not all, local minima in which the model may
fall into during deformation. The speed of segmentation is
also substantially improved because of this near-boundary
seeding method. We utilize an implicit deformable model
to alleviate the problem of topology changes, such as self-
intersection [16]. The model is driven by the PDE similar
to the one derived in [[17], which allows the evolution of the
model to be less affected by image noise and low-contrast
edges.

III. METHODS

The algorithm consists primarily of two independent
phases: seed initialization and implicit deformation. To ini-
tialize the seed, a user must first specify a voxel inside
the target structure in the MRI. Next, the MRI is clustered
(using K-Means) based on voxel intensity to obtain a general
outline of the structure. We refine this seed by performing a
mixture of mathematical morphology combined with a con-
nected components search. Specifically, the seed obtained
from clustering is first eroded several times. Once erosion
is complete, a connected components search originates from
the point the user has previously specified, and the voxels
that are not found during this search (i.e. not connected to
the primary cluster) are removed from seed. This ensures
that the seed is now a connected structure, like those in the
MRI we wish to segment. A matching number of dilation
steps are performed on the seed to ensure that the seeds
volume has not diminished to an insufficient size. These
steps remove pieces of the cluster that may not be a part of
the target structure.

To remove artifacts from the seed and complete the
segmentation, the seed is deformed based on an implicit
level set PDE. Before deformation, the fast sweeping method
for distance field initialization is used to create an implicit
representation of the seed. The distance field is a discrete
scalar function that determines the distance from a voxel
to the nearest point on the boundary of the implicit sur-
face. Once a distance field has been created, the field is
deformed according to a PDE that does not rely heavily on
image edges, but rather takes into account surrounding voxel
information. This type of PDE is used to ensure accurate
segmentations on structures that have low-contrast edges,
such as the hippocampus. A narrow band algorithm for level
set evolution is also employed during the deformation in
order to increase the efficiency of the segmentation. Once
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Figure 1. Progression through each phase of the semi-automatic segmen-
tation algorithm. First, a point is specified by the user. Next, the seed is
created by clustering the 3D image, eroding the seed cluster (morphology),
ensuring connectedness, and then dilating the seed cluster (morphology).
Then, the seed is passed to the deformation phase where a signed distance
field is initialized and deformed, and an explicit mesh is then extracted
from the deformed distance field. This mesh represents the completed brain
structure segmentation.

the equilibrium of the PDE is reached, the segmentation is
complete and an implicit representation of the structure is
obtained. We use a standard marching cubes algorithm to
obtain an explicit mesh representation of the object for later
shape and volumetric comparison. Figure |I| diagrams the
main phases of the algorithm as well as the intermediate
stages within each phase.

A. Seed Generation

One of the most important process of the algorithm is the
initialization process in which a suitable seed is determined
for the deformable model. For the purposes of this paper, the
seed is defined as the initial geometry prior to deformation
(i.e. t = 0). The seed created during this initial phase
provides a coarse representation of the target shape. We are
able to create this seed using a simple clustering technique
as well as several iterations of connected components and
mathematical morphology.

Let I be a mapping such that 7 : @ — [0, 1] where 2 is
defined by the dimensions of the 3D MRI. In order to ensure
that [ is valued in the interval [0, 1], we normalize the MRI
data by setting all voxel intensities below the 2 percentile
to 0, all intensities above the 98" percentile to 1, and
linearly interpolating the values in between so that all voxel
intensities fall between 0 and 1. To initiate the algorithm, a
user must specify a point inside a target structure (xg € €2).



The next step is to cluster €2 using the k-means clustering
algorithm as found in [18]. This is done by minimizing the
error term &:

k
£=3 > () -1 (1)

where k is the number of clusters to be used, each Cj
is a subset of (2 and disjoint from one another such that
Ule C; =, and X; is the average intensity of all voxel
intensities in the cluster C;. Either a mean shift algorithm
can be applied to I to determine k, or a user can specify
this value.

Clustering separates the domain, 2 into k& clusters. The
most important cluster is the one which contains xq since
this cluster provides an initial estimate of the target shape.
Thus, the other clusters can be disregarded. Assume that
xg € Cy, where m € {1,...,k}. Then, let Z = C,, and
O =0\ C,,. We use T to denote the voxels inside of the
deformable model, and O to denote the voxels outside of
the model. This notation is important when discussing the
future level-set deformation of the model. The next steps will
further refine the seed (Z) by ensuring it’s connectedness
and removing voxels from the seed which are not strongly
affiliated with the target structure.

Voxels which are not affiliated with the target structure
will in most cases be in or near the boundary of Z, denoted
OZ. To remove these voxels, Z is eroded with a mathemat-
ical morphology operation a certain number of iterations
(dependent on the size of 2). This essentially removes 07
from Z at each iteration, and then recalculates Z after each
step of erosion. In some cases, essential voxels of the target
structure are removed from Z, but the deformation stage (see
section 3.2) is used to overcome these seeding artifacts.

As with most mathematical morphology operations, 7
should then be dilated the same number of steps that it
was eroded. However, in our implementation, this step is
proceeded by a connected components step to ensure the
connectedness of Z because there is no guarantee, and little
possibility, that Z is connected. Since most structures in
the brain are connected, we make an assumption that our
seed should be connected as well to produce more accurate
segmentations. To alleviate this possible unconnectedness,
a simple connected components algorithm is implemented
originating from the point xq. During the connected com-
ponents search, only voxels in Z are available to be searched.
T is recalculated based on all voxels that are visited during
the search, and the outside set is also recalculated with the
equation O = Q\ 7.

Finally, the set Z is dilated the same number of steps that
it was eroded, recalculating Z and O dynamically. These
seed creation steps can be done very efficiently, and allow
for the development of a seed that is roughly equivalent to
the target structure. Figure 2] shows the progression of the

Figure 2. Demonstration of the clustering, erosion, connected components,
and dilation stages of the seed generation phase during segmentation of a
right lateral ventricle (chronologically, from top to bottom). The 3D seed
(left) and a 2D slice from the MRI (right) are rendered corresponding to
the current stage. On the 2D image slice, pixels are rendered as blue if they
belong to the seed. a) seed after K-means clustering; b) seed after erosion;
c) seed after connected components search; and d) seed after dilation.

seed initialization phase from start to finish.

B. Deformation

Some seeds will be coarse and also contain various
artifacts or imperfections due to image noise. To increase the
accuracy of segmentation, a subsequent deformation phase
is applied to the initial seed. Figure [3]illustrates the necessity
and benefits of this subsequent deformation phase.

To begin deformation, the seed, Z is transformed into an
implicit distance field first and will deform based on a level-
set PDE. A signed distance function, ¢ : {2 — R is initialized
such that ¢(x) is the signed euclidean distance (positive on
the set O and negative on the set Z) from x to the closest
voxel in JZ.

We have found that the most efficient method to perform
this distance field initialization is to use a 3D fast sweeping
method as described in in [[19]. The fast sweeping method
works by first initializing ¢ to be very large at all points in
its domain. Then, directly compute ¢ for all voxels that are
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Figure 3. Seed contours rendered before and after level-set deformation. a)
right lateral ventricle seed prior to deformation; b) completed segmentation
after deforming the generated seed (a). c) left lateral ventricle seed prior to
deformation; d) completed segmentation after deforming the generated seed
(c). Notice that the deformation phase removes holes, and non-smoothness
from the initial seed.

in or adjacent to 9Z with the following equation:

 minlk — vl ifx € T
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The rest of ¢’s domain is computed by propagating an
approximation of the actual distance using elements which
have previously been computed. To achieve this, the domain
is “swept” a total of eight times (starting from a new corner
of the 3D rectangle and ending at the opposite corner for
each sweep) using the below method of computation to solve
for the values of ¢. In three dimensions, this calculation is
done by solving the following equation at each grid point,
assuming a uniform grid size of one:

(@ —a)™ P+ [z —a) P+ [(w—as) P =1 3

Where (m)7 is the maximum between m and 0, z is the
value of ¢ at the point in question, and a1, as,as are the
minimum surrounding values in each direction of the point
such that a; < as < as. For a detailed explanation of the
fast sweeping algorithm in n dimensions, refer to [19]. To

make ¢ a true signed distance field, it must be ensured that
¢ is negative when acting on any voxels in Z and positive
for all values in O.

¢ is then deformed based on a PDE similar to those
described in [17], [20]. The PDEs in these works focus
heavily on using information other than edge detection
functions to drive the level-set deformation. The idea behind
the deformation is to introduce an artificial time variable ¢
and to update the level-set function ¢ as time elapses. We
update ¢ by numerically solving the following PDE at each
time step:
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where Z and O are the arithmetic means of the intensities
of all voxels in their respective sets, and «, £, 71, and o
are coefficients. More specifically, o determines the weight
to be associated with the curvature term, 3 is an external
force to be applied to ¢, and ; and -, are weights for the
distance functions (I — Z)? and (I — O)? respectively. It
is important to note that the sets Z and O are updated at
each iteration to match the way they had been previously
defined with respect to ¢, i.e. Z = {x € 2 : ¢(x) < 0} and
O ={x€Q:¢(x) >0} Thus, Z and O will need to be
recalculated at each iteration as well.

For the purpose of efficiency, we also implement a narrow
band algorithm so that only values of the distance field
that are within a certain threshold are updated. For exam-
ple, while updating the distance field, we only solve the
aforementioned PDE near the voxel points where ¢ = 0. A
similar approach and more detailed implementation can be
found in [21].

Once the deformation is complete, the signed distance
function ¢ now provides us with an implicit representation of
the target shape; however, an explicit mesh must be extracted
from ¢ for further shape analysis and shape comparison. For
our implementation, this is done with a standard marching
cubes algorithm as discussed in [22]. This algorithm takes
a three dimensional signed distance function as input and
returns a mesh of triangles and vertices that represents a
discrete approximation of the zeroth level-set of the distance
function.

IV. RESULTS AND VALIDATION

This method has been used to segment various brain
structures from actual patient MRI as well as test data. We
have successfully segmented the corpus callosum, lateral
ventricles, hippocampi, and thalami from these data sets
with few failures. Figure [] shows several examples of
completed segmentations from several different orientations
and perspectives.

To test the validity and accuracy of the segmentations, we
have compared segmented structures using our algorithm to
manual (ground truth) segmentations of the structure from



Figure 4. Completed segmentations from two different MRI (top and
bottom) using the technique presented in this paper, rendered in different
orientations and perspectives. a) and c) display results superimposed on
2D slices in the sagittal (left), coronal (middle), and axial (right) planes. b)
and d) show the segmentations rendered as 3D objects from two different
perspectives. Blue corresponds to the corpus callosum, red corresponds to
the left and right lateral ventricles, and green corresponds to the left and
right hippocampi for both MRI (best viewed electronically).

the same MRI. Only real patient MRI were used in these
experiments to verify that our technique is applicable in
clinical research settings. For the comparisons, we calculate
volumetric comparison statistics (dice similarity and overlap
coefficients) between the two segmentations. The range of
these statistics lie between O and 1, with 1 indicating a
perfect agreement between our segmentation and the manual
segmentation. We tested the corpus callosum, left and right
ventricles, and left and right hippocampi segmentations
using our algorithm against corresponding manual segmen-
tation of these structures performed by a trained expert to
obtain the dice similarity and overlap coefficients. Overall,
our method was able to closely reproduce the accuracy of
the manual segmentations. Table [[V] provides a summary of
the results.

We have also compared the efficiency of our segmenta-
tion method to a boundary-based method using a generic
seed (a sphere centered at the user-specified point). The
only difference between these two methods was the way
in which the seed was created. The results are shown in

Table I
COMPARISONS OF THE SEMI-AUTOMATIC SEGMENTATION ALGORITHM
PRESENTED IN THIS PAPER TO MANUAL (GROUND TRUTH)
SEGMENTATIONS. N DENOTES THE NUMBER OF SEGMENTATIONS USED
FOR EACH STRUCTURE. pp IS THE ARITHMETIC MEAN OF THE DICE
SIMILARITY CALCULATION FOR EACH STRUCTURE, AND o IS THE
STANDARD DEVIATION FOR THESE CALCULATIONS. SIMILARLY, o IS
THE ARITHMETIC MEAN OF THE OVERLAP COEFFICIENT CALCULATION
FOR EACH STRUCTURE, AND 0 IS THE STANDARD DEVIATION FOR
THESE CALCULATIONS. FOR BOTH THE DICE SIMILARITY AND
OVERLAP COEFFICIENT MEANS, EACH VALUE RANGES FROM 0 TO 1,
WITH LARGER VALUES INDICATING BETTER RESULTS.

Structure N 1735 op Lo oo

Corpus 16 079 005 079  0.03
callosum

Lateral ventricle 3 0.81 0.04 073 0.05

(left)
Lateral ventricle

8 0.78 0.06 0.81 0.03

(right)

Hippocampus 8 0.69 0.08 0.66 0.06
(left)

Hippocampus 8 070 007 065 005
(right)

Table II
COMPARISONS OF THE EFFICIENCY OF SEGMENTATION USING
DIFFERING SEEDING METHODS. METHOD A WAS SEEDED WITH THE
TECHNIQUE DESCRIBED IN THIS PAPER; METHOD B WAS SEEDED BY
INITIALIZING A SPHERE CENTERED AT A USER-SPECIFIED POINT. ALL
OTHER ASPECTS OF THE SEGMENTATION REMAINED CONSTANT. THE
AMOUNT OF TIME EACH SEGMENTATION TOOK IS MEASURED IN

SECONDS.
Structure Method A Method B
Corpus callosum 33s 102s
Lateral ventricle (left) 54s 263s
Lateral ventricle (right) 58s 240s
Hippocampus (left) 47s 142s
Hippocampus (right) 46s 148s

Table where Method A uses with our seeding method
for segmentation, and Method B uses the aforementioned
generic seeding method for segmentation. The results show a
large increase in efficiency when using the seeding technique
described in this paper, with a speed-up of nearly 300 to 500
percent based on the structure. Combined with the accuracy
our algorithm attains, this efficiency comes at little to no
cost to the overall segmentation results.

V. CONCLUSION AND FUTURE WORK

Differing from previous hybrid segmentation methods,
this paper presents a technique for seeding that can improve
the accuracy and efficiency of current deformable model
semi-automatic segmentation methods. This initialization
method is novel and can substantially increase the segmen-
tation time of modern deformable geometry segmentation,
both explicit and implicit. We have also introduced a new
method for combining region-based and boundary-based
segmentation methods, which is significantly different than
the previous hybrid methods. This semi-automatic segmen-
tation algorithm maintains accuracy while significantly im-
proving the speed of modern boundary-based segmentation;



the validation results attest to this. The method works with
a number of structures in the brain and is not limited to a
specific structure. Also, the algorithm is designed to segment
3D structures outright, as opposed to performing 2D slice-
by-slice segmentation and stitching the resulting contours
together to obtain a 3D shape.

While our algorithm has been able provide consistent
results among the data sets we have tested, there have been
a few failed segmentations. This was primarily caused by
excessive noise in the MRI, or due to low image resolution.
In the future, we hope to address these issues by perfecting
the seeding and deformation phases, or perhaps adding
several MRI preprocessing stages to our algorithm. We
would also like to increase the robustness of our algorithm to
allow for segmentation of several other complex structures,
such as the cerebellum, by incorporating a texture parameter
into the PDE in which our deformable model is governed
by, such as in [[15].
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