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Abstract 
 

The imbalanced data problem is popular in 

biomedical classification tasks. Since trained 

classifiers using imbalanced data are mostly derived 

from the majority class, their prediction performance 

is poor for the minority class. In this paper, we 

propose a novel ensemble learning method based on 

an active example selection algorithm to resolve the 

imbalanced data problem. To compensate a possible 

sub-optimal classifier, our proposed ensemble learning 

methods aggregates classifiers built by the active 

example selection algorithm. We implement this 

ensemble learning method based on the active example 

selection algorithm using incremental naïve Bayes 

classifiers. Our empirical results show that we greatly 

improve the performance of classification models 

trained by five real world imbalanced biomedical data. 

The proposed ensemble learning methods outperforms 

other approaches by 0.03~0.15 in terms of AUC which 

solve imbalanced data problem. 

 

 

1. Introduction 
 

The imbalanced data problem has been popular 

since machine learning techniques have applied in real 

worlds of internet, industry, scientific and business 

research [1, 2]. When we train a classifier from data, 

we call the training data is imbalanced if there is much 

less examples in one or more classes than others. It 

happens when class examples are rare inherently or it is 

very hard to collect data (e.g. biomedical data such as 

rare disease and abnormal prognosis or data which is 

obtained from expensive experiments). The most of 

machine learning algorithms train a classifier under the 

assumption that the numbers of training examples 

between classes are almost same. Thus, when we apply 

machine learning algorithms to imbalanced data, 

trained classifiers are mostly derived from the majority 

class. Also, we may miss or ignore essential patterns 

from the minority class. In this case, the prediction 

performance of a minority class is almost meaningless 

since the training for minority class has not been done. 

However, users are frequently interested more in the 

minority. Therefore, solving imbalanced data problem 

is very important to improve classification performance 

for training minority class patterns.  

In Ref [3], we proposed an Active Example 

Selection (AES) method. AES is the method to build a 

classifier by starting from a small balanced subset of 

training data and training a classifier iteratively through 

adding useful examples into the current training set. 

Even though AES performs well for improving the 

imbalanced classification performances, AES has some 

cons too. Its computational cost is high because its 

model training step and example selection step are 

iterated. Also, its output classifiers can be different 

from each other depending on the initial training 

examples. 

In this paper, we propose a novel ensemble learning 

(EAES) which is an extension of the active example 

selection algorithm to resolve the imbalanced data 

problem. We address AES’s high computational cost 

from the iterative model training and example selection 

with applying an incremental learning algorithm. For 

the proposed EAES, we use incremental naïve Bayes 

algorithm as a base classifier of AES instead of 

iterative batch one. As a result, we make the training 

time of AES shorter than time of iterative batch 

learning algorithm.  

Additionally, we build an ensemble model by 

connecting various classifiers from different initial 

training datasets to reduce the variance of classification 

errors of AES and to get a robust output classifier. By 

integrating the different predictions from individual 

classifiers, the ensemble model can increase 
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classification performance along with avoiding biased 

decisions. 

We organized this paper as follows. In section 2, 

we present related works. We present our proposed 

ensemble learning method based on AES in detail in 

section 3. In section 4, we show our empirical 

experiments and discuss about the results. We conclude 

in section 5. 

 

2. Related works 
 

Recent research on the imbalanced data problem 

has focused on several major groups of techniques. The 

popular method to solve imbalanced data problem is 

balancing the number of training examples among 

classes by re-sampling examples. To balancing the 

number of training examples among classes, random 

under sampling (RUS) randomly discards examples of 

majority class while random over sampling (ROS) 

duplicates examples in a minority class. We can 

combine these two techniques to apply oversampling 

for minority class and under sampling for majority 

class respectively.  

These random re-sampling techniques are easy to 

apply and improve the performance of classifiers by 

compensate imbalanced class distribution. However, 

they also produce unwanted effects such as overfitting 

or information loss through duplicating or deleting 

examples from training sets by the techniques. To 

overcome these imbalanced data problems of random 

re-sampling, several new techniques are introduced 

using intelligent approach (e.g. creating new examples 

for minority class which is inferred from existing 

examples and removing noise or duplicated examples 

from majority class [4, 5]). However, according to 

recent studies which compare performances of various 

re-sampling techniques, rather simple RUS or ROS 

generally produce better performance than new 

intelligent techniques mentioned above [6, 7].  

Biomedical domain is our main focus of application 

of this paper. Here are some recent important studies 

about handling imbalance biomedical data problem: 

One of frequently used methods is dividing the original 

dataset into a balanced dataset and an imbalanced 

dataset using one for training and one for testing 

respectively. We can avoid imbalanced data problem 

by using a balanced dataset for training. The method is 

used to diagnose myocardial perfusion using cardiac 

SPECT (Single Proton Emission Computed 

Tomography) images and to predict polyadenylation 

signals in human sequences [8, 9].  

For the imbalanced biomedical data, RUS 

techniques also can be applied easily. To discriminate 

deleterious nsSNPs from neutral nsSNPs with 

imbalanced training dataset, prediction performances 

are improved by applying RUS method combined with 

a decision tree algorithm [10]. As well, classifiers from 

the RUS method can be combined together into an 

ensemble machine (ERUS). An ensemble of under-

sampled classifiers is constructed for predicting the 

activity of drug molecules based on structural 

characteristics of compounds and for predicting 

glycosylation sites in genomic sequences [11, 12]. 

 

3. Ensemble learning based on active 

example selection 
 

In this section, we present our proposed EAES. 

Before we describe our method which is the main topic 

of this paper, we describe the AES to solve imbalanced 

data problem and the incremental naïve Bayes classifier 

which is a base learner of EAES. 

 

3.1 Active example selection 
 

Our AES is an active learning method to solve 

imbalanced data problem. AES starts with small 

number of examples which is balanced among classes 

and trains a classifier by adding useful examples 

incrementally. After the unselected examples are used 

as validation examples for the current classifier, AES 

evaluates the classification result of the validation 

examples. Then, useful examples which can make up 

the current classifiers will be added without 

considering the example ratio among the classes.  

These steps including model evaluation, example 

selection, and model update using selected examples 

are iterated until we get the output classifier. In this 

training process, all the examples in the dataset are 

utilized, but output classifier is trained using selected 

examples [3].  

To select the useful examples, AES evaluates 

misclassified examples from validation data and ranks 

them according to their error degree. Then, it adds 

examples to training dataset by the rank. Let let 

x=(x1, ... , xm) be a validation example represented by a 

attribute value vector, y∈C be a target class of x, and θ 

be a parameter vector of the current classifier. Then, 

error degree εp(x) can be calculated using following 

formula (1) 
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When AES selects useful examples, it counts only 

error degree, not counts imbalanced ratio degree 
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among data. AES will terminate the training until it 

used up the validation examples or there is no 

validation error.  

While we apply the procedure of AES repeatedly, 

the classifier evolves efficiently using small subset of 

training dataset. Even though it is not explicitly 

considering the imbalanced degree of given dataset, 

AES resolves the imbalanced data problem through 

selecting procedure of useful examples. Detailed 

description is presented in Ref [3]. 

 

3.2. Base learner: incremental naïve Bayes 

classifier 
 

The active example selection (AES) can be applied 

as a wrapper learner of classification algorithms which 

outputs predicted class with confidence value. In this 

paper, we use incremental naïve Bayes classifier as a 

base learner of AES. 

Naïve Bayes classifier is a simple probabilistic 

classifier based on Bayes’ theorem. In particular, it 

assumes that the predictive attributes are conditionally 

independent given the class, and it hypothesizes that no 

hidden or latent attributes influence the prediction 

process [13]. These assumptions make classification 

algorithm efficient. Let c be the random variable 

denoting the class of an example and let x be an 

observed example. Further, let c represent a particular 

class label and let xi represent the i-th attribute of x. It 

selects the class label c* with the maximum probability 

which is calculated according to the following equation, 
 

))|()((maxarg* ∏
∈

=
j

j
Cc

cxPcPc             (2) 

Despite its naïve design and over-simplified 

assumptions, naïve Bayes classifier shows good 

performances in many complex real-world problems. 

Moreover, naïve Bayes classifier requires a small 

amount of training data for parameter estimation. Since 

independent attributes are assumed, only the variances 

of the attributes for each class need to be determined 

and not the entire covariance matrix. All the 

probabilities required for solving equation (2) can be 

computed from the training data in one step. As a result, 

it leads low computational cost and relatively low 

memory consumption. 

Another interesting aspect of the algorithm is that it 

is easy to implement in an incremental fashion because 

only counters are used. Naïve Bayes classifier builds a 

table for each attribute. The table reflects the 

distribution on the training data of the attribute-values 

over the classes. Incremental naïve Bayes classifier is 

initialized with zero training examples. Then it can 

learn incrementally using one example at a time by 

updating the tables. The trained incremental naïve 

Bayes classifier can be utilized by calculating the class 

membership probabilities for the given test example 

based on the tables. 

The AES works well with iterative naïve Bayes 

classifier because it has small number of parameters to 

be tuned and spends short training time. In addition, 

incremental learning algorithms [14] are very suitable 

for incorporating with iterative procedure of AES. 

 

3.3 An ensemble learning based on active 

example selection 
 

AES resolves the imbalanced data problem nicely 

by iteratively selecting useful examples and update a 

current classifier. An output classifier is resulted from 

initial training examples which are just a small part of 

entire training data. However, since used examples 

cover a part of sample space, slight changes to the 

training data may easily lead to changes to the output 

model. Therefore, we propose ensemble learning based 

on active example selection (EAES) to improve 

classification performance and make it more robust.  

Ensemble learning methods combine multiple models 

and use them as a committee for decision making. 

Ensemble learning method increase memory and 

computational cost. Nevertheless, it increases 

prediction performance over a single model in many 

cases, because it reduces the variance of prediction 

errors and avoids biased decisions [15]. 

Our EAES builds an ensemble of component 

classifiers learned with different composition of 

training data which is derived from AES. Since each 

component classifiers are trained with different 

compositions of initial training examples, diverse 

subset of original training data is used for training each 

component classifier. Each of the component classifiers 

covers different part of sample space. Thus, resulting 

ensemble model can improve generalized prediction 

performance. For making final decision, our EAES use 

weighted voting policy: using the weighted sum of 

classification results with prediction probability 

distribution and weight derived from classifier’s 

training performance. 

EAES algorithm can be pseudo-coded in Figure 1 

and overview of EAES is depicted in Figure 2. As 

depicted, EAES trains N component classifiers based 

on AES using randomly selected initial training data. In 

this study, we use incremental naïve Bayes classifier as 

a base learner of AES. After that, EAES binds N 

component classifiers from N different training subset 
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to make a final classification result. EAES calculates a 

prediction result using weighted voting.  

Let x be a test example, and θi (i=1,...,N) be a 

parameter vector of the i-th component classifier from 

AES. To get the target class of test example x, we 

calculate it as follows:  

            ∑
=∈

=
N

i

iii
Cc

cPf
1

),|(maxarg)( θxx α                 (3) 

 

where, αi is calculated based on training error rate εi of 

the i-th component classifier of the form: 
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                              (4) 

 

Our EAES not only address the imbalanced data 

problem using AES, but also achieve more competitive 

performance by combining AES with ensemble 

learning method. 
 

 

 
Figure 1. Pseudo-code for EAES 
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Figure 2. Ensemble learning based on  

active example selection 

4. Experiments and evaluations 
 

In this section, we present empirical results which 

show the performance of EAES. Since we already 

presented the architecture, characteristics, and 

performance on imbalanced data of AES in Ref [3], we 

focus on analyzing the classification performance of 

EAES with imbalanced biomedical data in this section. 

 

4.1. Experimental datasets 
 

We perform empirical experiments using five real-

world biomedical benchmark datasets: hepatitis clinical 

data (Hepatitis), voice data of Parkinson’s disease 

(Parkinson), diabetes clinical data (Diabetes), image 

data of prognostic breast cancer (WPBC), and image 

data of cardiac disease (SPECT) from UCI machine 

learning repository [16]. We consider binary 

classification problems in this study and the overview 

of the datasets is given in Table 1. An interesting target 

class is called the positive class and a normal class is 

called the negative class. As a data preprocessing step 

continues, a range of numeric attributes in the dataset is 

discretized into nominal attributes for naïve Bayes 

classifier. 

 

Table 1. Overview of datasets 

Dataset 
# of 

Examples 

# of  

Features 
Class Distribution 

Imb. 

Ratio 

Hepatitis 158 19 
Positive (terminal): 32 

Negative (survival):123 
1:3.84 

Parkinson 194 22 
Negative (healthy): 47 

Positive (disease): 147 
1:3.13 

Diabetes 768 8 
Positive (diabetes): 268 

Negative (healthy): 500 
1:1.87 

WPBC 198 33 
Positive (recur): 47 

Negative (non-recur): 151 
1:3.12 

SPECT 267 43 
Negative (normal): 55 

Positive (abnormal): 212 
1:3.85 

 

4.2. Experiments 
 

To investigate proposed AES and EAES 

performances, we conducted experiments to compare 

1) naïve Bayes classifier algorithm (NB), 2) RUS, 3) 

AES, 4) ERUS and 5) EAES. Since AES produces a 

subset of training set, we compare the performance of 

AES with that of RUS which produces a randomly 

selected subset of training set. We choose RUS because 

it shows generally good performance than new 

intelligent approaches [6]. Since EAES is an ensemble 

method based on AES, we compare the performance of 

EAES with that of ERUS which is an ensemble method 

based on RUS. ERUS is chosen because it was used to 

solve many biomedical imbalanced data problem [11, 

Model generation 

For each of N iterations: 

  Perform AES   

Initialize a component classifier using a predefined 

classification algorithm 

Randomly select initial training examples per class. 

Until meet termination conditions 

Update classifier using selected examples 

Validate current classifier 

Select useful examples 

Classification 

For each of the N models: 

  Assign weight to each model using its training error 

  Predict a class label of an example using weighted voting 

Return the class label with highest voting score. 
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12]. RUS and ERUS are incorporated with naïve Bayes 

classifier algorithm. To make training time shorter, 

AES and EAES are incorporated with incremental 

version of naïve Bayes classifier. 

For all data, the parameters for AES procedures are 

set as follows: the number of initial training example 

per class is 1 and the incremental example size is 2. In 

ensemble learning (i.e. ERUS and EAES), the number 

of component classifiers is set to 15.  

To evaluate the performance of classification 

methods, AUC (Area Under the ROC Curve), overall 

accuracy, and true positive rates are calculated. When 

dataset is highly skewed and the overall accuracy tends 

to be overwhelmed by the prediction power for the 

majority class, the performance comparison of overall 

accuracy is very much misleading. For this reason, we 

used the AUC which give balanced evaluation by 

incorporating measures of both positive and negative 

classes with equal weights. In the imbalanced data 

problem, the AUC have been widely used as a 

performance evaluation measure. We also use the true 

positive rate (TPR) as an evaluation measures which 

represent the classification performances per class. The 

true positive rates are computed by the ratio of 

correctly predicted examples of a class among all 

available examples of the class during the test. 

To estimate general performances of AES and 

EAES, for each combination of 5 datasets and 5 

learning strategies, 10-fold cross validation were 

executed. The performances of total runs for each 

combination are averaged with standard deviation. The 

results are shown from Table 2 to Table 4.  

 

4.3. Results and discussion 
 

From the experiment results, we find some 

interesting issues to be discussed. First, we argue that 

our EAES and AES settles imbalanced data problem 

and achieve superior classification performance against 

RUS and ERUS. The improvement in AUC by 

0.04~0.15 implies that our EAES effectively deals with 

the imbalanced data problem (Table 2). The AUC of 

EAES is higher than that of AES. It indicates that 

proposed EAES reduces the possibility of distorting the 

data distribution which is caused by training a model 

using a subset of total data. Also, the improvement in 

accuracy by 3.3~14.6% implies that our EAES upgrade 

general performance of output classifier by employing 

several classifiers as a decision committee (Table 3). 

Second, our empirical study shows that real 

imbalanced data problem is not an imbalanced class 

distribution but an imbalanced prediction performance. 

In terms of true positive rates, the imbalanced class dis- 

Table 2. Comparison of AUC 
Dataset NB RUS AES ERUS EAES 

Hepatitis 0.86±0.08 0.88±0.07 0.92±0.03 0.89±0.07 0.94±0.03 

Parkinson 0.85±0.12 0.86±0.11 0.91±0.07 0.86±0.11 0.92±0.09 

Diabetes 0.81±0.04 0.82±0.04 0.84±0.04 0.82±0.03 0.84±0.03 

WPBC 0.69±0.13 0.66±0.15 0.79±0.07 0.67±0.10 0.84±0.14 

SPECT 0.86±0.08 0.85±0.07 0.91±0.05 0.86±0.08 0.90±0.04 

 

Table 3. Comparison of accuracy (%) 
Dataset NB RUS AES ERUS EAES 

Hepatitis 83.7±9.2 81.8±8.7 93.5±8.1 81.1±9.2 92.8±9.0 

Parkinson 68.7±10.0 68.7±10.4 76.8±9.2 69.2±10.1 81.4±9.1 

Diabetes 75.1±4.0 74.5±2.3 77.9±4.3 74.3±3.1 78.4±4.3 

WPBC 67.2±7.9 61.7±11.9 73.7±8.7 61.6±7.6 81.8±7.8 

SPECT 68.9±5.9 66.0±6.4 77.2±5.6 66.3±4.7 79.8±6.6 

 

Table 4. Comparison of true positive rate  
per class (%) 

Dataset Class NB RUS AES ERUS EAES 

Hepatitis 
Pos 

Neg 

67.5±27.3 

87.7±10.6 

77.5±27.2 

82.9±9.6 

87.5±16.3 

95.1±8.8 

77.5±22.2 

82.1±10.2 

87.5±16.3 

94.3±11.0 

Parkinson 
Neg 

Pos 

86.5±19.2 

62.5±11.7 

89.0±19.1 

61.9±12.5 

95.5±9.6 

70.6±11.5 

91.0±19.1 

61.9±12.9 

93.5±10.6 

77.4±9.9 

Diabetes 
Pos 

Neg 

60.1±9.8 

83.2±4.2 

68.6±4.7 

77.6±2.5 

68.7±7.1 

82.8±3.9 

68.3±5.5 

77.6±4.2 

70.2±8.1 

82.8±3.7 

WPBC 
Pos 

Neg 

47.0±17.2 

73.4±9.6 

53.0±17.2 

64.1±16.5 

57.5±18.7 

78.8±8.1 

56.0±16.3 

63.5±7.5 

62.0±20.3 

88.0±8.2 

SPECT 
Neg 

Pos 

87.7±11.7 

64.2±8.3 

93.0±9.1 

59.0±8.6 

96.7±7.0 

72.2±7.0 

93.0±9.1 

59.5±5.7 

100±0 

74.6±8.1 

 

tribution does not always induce the imbalanced 

classification performance. As we can see in Table 4, 

in Parkinson and SPECT dataset, the true positive rates 

of majority class are lower than that of minority class.  

The learning pattern of abnormal class is often 

harder than that of normal ones. More examples are 

needed to capture the patterns of the class, if the 

training examples of a class are derived from several 

groups. In those cases, AES selects more examples of 

complicated class regardless of balancing the training 

data distribution [3]. By adding useful examples into 

current classifier, AES effectively covers up weak 

points of the current existing classifier and improves 

prediction performance of each class. Moreover, we 

can achieve better prediction performance in almost 

every case by combining ensemble learning with AES.  

Third, by adopting incremental learning algorithm 

(in this paper, we use incremental version of naïve 

Bayes classifier), AES selects new examples by active 

selection strategy and update the current model with 

the selected examples without training all the examples 

repeatedly. As a result, we make training time of AES 

shorter than time of iterative batch learning algorithm. 

Overall computational cost of EAES is strictly reduced 
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by using incremental learning algorithm, because 

EAES includes several component classifiers which are 

trained based on iterative AES procedure. Due to space 

limitation, details of the results are omitted. 

Finally, the performance of RUS and ERUS is not 

good comparing to our proposed methods. They 

sometimes show slightly improved AUC by at most 

0.03 (Table 2) and no improvement in the classification 

accuracy (Table 3). In terms of true positive rates of 

RUS and ERUS, the classification performance on 

majority class is rather decreased by -5.2~-9.9% (Table 

4). We presume that the performance degradation on 

majority class may be caused by the information loss 

from randomly discarding majority class examples. 

 

5. Conclusion 
 

Examples in the imbalanced data may exist 

redundantly or some of them are less useful. Our AES 

[3] solves the imbalanced data problem by iteratively 

collecting the useful training examples from entire 

training data as well as ignoring redundant or less-

useful examples to select. By paying no attention to 

redundant or less-useful examples and learning a 

classifier using informative examples, AES can 

effectively make up the performance degradation 

caused by the imbalanced data problem. However, the 

composition of selected training examples may make 

variations of the resulting model. 

In this paper, we propose an ensemble learning 

method based on AES called EAES to avoid biased 

decisions. In addition, we adopt incremental version of 

naïve Bayes classifier algorithm to speed up iterative 

AES procedure. Empirical results from five real-world 

biomedical datasets shows that our EAES and AES 

perform better than RUS and ERUS in dealing with the 

imbalanced data problem and improve prediction 

performance strictly.  

We expect that our EAES and AES can be applied 

to other real world data mining applications where we 

suffer from the imbalanced data problem. Also, our 

EAES can be used to identify discriminative or 

representative examples of some classes via 

investigating selected training examples which are 

commonly appeared among various AES runs.  
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