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Abstract
We present a novel Bayesian network (BN) to classify strains of Mycobacterium tuberculosis
Complex (MTBC) into six major genetic lineages using mycobacterial interspersed repetitive units
(MIRUs), a high-throughput biomarker. MTBC is the causative agent of tuberculosis (TB), which
remains one of the leading causes of disease and morbidity world-wide. DNA fingerprinting methods
such as MIRU are key components of modern TB control and tracking. The BN achieves high
accuracy on four large MTBC genotype collections consisting of over 4700 distinct 12-loci MIRU
genotypes. The BN captures distinct MIRU signatures associated with each lineage, explaining the
excellent performance of the BN. The errors in the BN support the need for additional biomarkers
such as the expanded 24-loci MIRU used in CDC genotyping labs since May 2009. The conditional
independence assumption of each locus given the lineage makes the BN easily extensible to additional
MIRU loci and other biomarkers.
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1. INTRODUCTION
Tuberculosis (TB) is an acute or chronic infection caused by the Mycobacterium
tuberculosis complex (MTBC). TB is a leading cause of death from infectious diseases world-
wide. Increasingly MTBC has developed resistance toward the drugs that cure TB. There were
an estimated 0.5 million cases of multi-drug resistant TB in 2007, and by the end of 2008, 55
countries and territories had reported at least one case of extensively drug resistant TB [13].

TB genotyping enriches traditional epidemiological approaches and plays an increasingly
important role in TB control strategies. It helps track transmission routes, distinguish
reactivation of latent infections from potential recent transmission, identify outbreaks, and
quantify their severity. Additionally, laboratory cross-contamination events can be detected.
Two types of DNA fingerprinting methods based on PCR are routinely used in the United
States for genotyping all culture-positive TB cases: spacer oligonucleotide typing
(spoligotyping) and mycobacterial interspersed repetitive units - variable number of tandem
repeats (MIRU-VNTR). Spoligotyping is based on the polymorphisms found in the direct
repeat locus of the mycobacterial chromosome, while MIRU is the number of repetitive units
present in multiple loci [8].

Classification of strains of MTBC may help track transmission routes and enable suitable
control measures given recent studies on the existence of stable host-pathogen associations
[1] and phylogeographic distributions of strains [9]. Existing work for classifying strains of
MTBC predominantly relies on deletion analysis to distinguish lineages [5,7]. Unfortunately
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deletion analysis results are often not available in large genotyping data collections or for
routine public health TB patient investigations. So alternatives such as mathematical models
and visual rules for sub-lineage classification based on spoligotyping alone have been
developed [6,3]. Traditionally, RFLP-based typing has also been used, however this method
is time-consuming and the results are not comparable between labs. MIRU-VNTRplus [2] is
a multimarker-based curated database that classifies strains by finding their nearest neighbors
in the database. High accuracy results were reported using MIRU-VNTR types of strains alone,
which were further boosted when augmented with other biomarkers: spoligotypes, large
sequence polymorphisms (LSPs), and single nucleotide polymorphisms (SNPs).

This paper introduces a model to classify isolates into the major genetic lineages using only
MIRU types. We accomplish this by creating a fast and accurate probability-based model which
is readily extensible to adding further MIRU loci and other biomarkers in the future. The
method identifies 6 major lineages of MTBC as identified by LSPs [9] consisting of three
ancestral strains: Indo-Oceanic, M. bovis, and M. africanum, and three modern strains: Euro-
American, East-African-Indian (CAS), and East-Asian (Beijing). Note that East-African-
Indian lineage (EAI) will be called EAI (CAS) with the East-African-Indian referring to the
lineage name in [10] determined by LSPs and CAS referring to the spoligotype family name
determined by spoligotype such as in [5]. This convention is also used for East-Asian (Beijing).

A hierarchical Bayesian network (BN) was created using a database maintained by the Centers
for Disease Control and Prevention (CDC). The data consists of 4768 distinct 12-loci MIRU-
VNTR types pertaining to isolates collected from across the United States. The BN achieves
high accuracy on the CDC data and on three other datasets from the New York State Department
of Health (NYSDOH), MIRU-VNTRplus, and a study in Brussels [14]. We also study the
distribution of the MIRU loci and shed light on the strengths and limitations of 12-loci MIRU.

We give background on MIRU in Section 2, and continue with a description of the BN model
in Section 3. In Section 4 we describe the data and experiments, followed by discussion and
future work.

2. MIRU ANALYSIS
MIRU typing is a VNTR analysis bacterial typing scheme for molecular typing of MTBC. It
provides a high-throughput reproducible method for molecular typing of MTBC with the
degree of discrimination depending on the number of loci used.

In this study, we primarily utilize a database of 4768 distinct MIRU types as determined by 12
MIRU loci amassed from surveillance of tuberculosis in the United States by the CDC.
Altogether, there are 41 MIRU loci, of which 12 are used in this study. The names of these 12
loci are 02, 04, 10, 16, 20, 23, 24, 26, 27, 31, 39, and 40. Each MIRU genotype is labeled with
one of 6 distinct lineages and weighted with the number of isolates found with that genotype
in the United States from approximately 2003–2008, resulting in 31482 records. The labels
were determined by Dr. Lauren Cowan of the CDC from spoligotypes and the MIRU locus 24
using a refinement of rules from the spoligotyping literature [9,5,10,7,4,3].

MIRU used in conjunction with spoligotyping has become a standard method for MTBC DNA
fingerprinting. MIRU allows high-throughput, discriminatory, and reproducible analysis of
clinical isolates. Because of its portable data format, MIRU typing has the potential to be a
versatile tool for individual strain identification based on large reference databases or
classification models. Beyond studying genetic diversity of MTBC, MIRU has become a major
method for epidemiological tracking of MTBC because of its portable data and discriminatory
power [11,2].
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3. BAYESIAN NETWORK
A hierarchical Bayesian network (BN) is created to predict the 6 lineages. A BN is a graphical
representation of a probability distribution. Formally speaking, a BN is a directed acyclic graph
G(N,E) consisting of a set of nodes X = {xi | xi ∈ N} to represent the variables and a set of
directed links to connect pairs of nodes.

Each node has a conditional probability distribution that quantifies the probabilistic relation
between the node and its parents, such that for a network of k nodes:

Therefore, one can compute the full joint probability distribution from the information in the
network. In other words, a well-represented Bayesian network can capture the complete nature
of the relationship between a set of variables.

A. Bayesian Network for Efficient MIRU Classification
The 12 MIRU loci are scattered throughout the chromosome of MTBC [15]. Hence, the number
of repeats present at each loci are independent of each other. Also, each locus has been shown
to exhibit different degrees of allelic diversity [16]. The hierarchical BN given in Figure 1 is
designed to exploit this known structure of MIRU. The random variable L represents the lineage
and the random variables Mi i∈I= {02, 04, 10, 16, 20, 23, 24, 26, 27, 31, 30 and 40} represent
the MIRU loci.

The BN is a generative model. The value of MIRU24 generates the lineage which in turn
determines the number of repeats in the remaining loci. This hierarchical structure exploits the
fact that MIRU24 is known to correspond to the TbD1 deletion, a known marker for ancestral
versus modern strains [2,12]. Modern strains have MIRU24 with less than 2 repeats. With rare
exceptions, ancestral strains have 2 or more repeats at MIRU24. Thus the top-level variable,
M24, indicates whether MIRU24 is less than two (indicating modern lineages with high
probability) or at least two (indicating ancestral lineages with high probability). The joint
probability function represented by the Hierarchical BN is:

where L ∈ {Indo-Oceanic, M. africanum, M. bovis, East-Asian(Beijing), East-African-Indian
(CAS), Euro-American}, M24∈ {< 2, ≥ 2}, M i∈ {0,1,2,3,4,5,6,7,8, ≥ 9}.

We also assume that the MIRU loci are conditionally independent given the lineage - a
reasonable assumption since the MIRU loci are distributed throughout the genome. Each MIRU
locus is modeled as a multinomial distribution with possible values 0, 1…8, and ≥9. Note all
values greater than 9 are binned together since they are very rare. Standard Laplacian smoothing
with parameter 1 was used for parameter estimation in the BN.

Bayes’ rule can predict the lineage for new data by determining the lineage with maximum
probability:
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B. MIRU Datasets
Four datasets were used in this study. The primary CDC dataset was used to construct the
classification models. Three additional datasets collected and labeled in independent studies
were used to test the models.

The CDC dataset consists of 4768 distinct MIRU types that correspond to genotypes of 31482
occurrences of TB cases across the United Sates. The dataset was pre-processed to exclude
MIRU types with unknown numbers of repeats. The records were assigned labels based on
expert-defined rules [5,9,7,4,3] that use spoligotype and MIRU24. The distribution of number
of cases (number of distinct genotypes weighted by the number of occurrences of the genotype)
by lineage was as follows: Indo-Oceanic (n=4409), M. africanum (n=123), M. bovis(n=583),
Euro-American (n=20965), East-Asian (Beijing) (n=4188), and EAI (CAS) (n=1214).

Three additional datasets comprising MIRU data collected as part of independent studies were
used to test the model constructed using the CDC dataset. There exists some overlap of
genotypes between the CDC dataset and the three other datasets. The first dataset contains 163
MIRU types from MIRU-VNTRplus with 16 Indo-Oceanic, 29 M. africanum, 11 M. bovis, 87
Euro-American, 10 East-Asian (Beijing), and 10 EAI (CAS) MIRU types. The dataset from
the NYSDOH consists of 668 MIRU isolates with 68 Indo-Oceanic, 5 M. africanum, 7 M.
bovis, 435 Euro-American, 57 East-Asian (Beijing), and 43 EAI (CAS) records. Finally, the
Brussels dataset as described in [14] contains 27 Indo-Oceanic, 13 M. africanum, 17 M.
bovis, 333 Euro-American, 15 East-Asian (Beijing) and 30 EAI (CAS) MIRU types.

4. COMPUTATIONAL RESULTS
Two types of computational studies were performed. The first examined the overall accuracy
of the model on the CDC dataset. The second study examined the predictive accuracy of the
BN modeling method in out-of-sample testing.

A. Overall Accuracy
The model was trained using the entire CDC dataset. Table 4.1 shows the confusion matrix for
the model trained on the CDC dataset. The diagonal elements represent the number of strains
predicted correctly for each class. Note that the total number of strains is reported (i.e. each
distinct genotype is weighted by the number of occurrences). The sensitivity for each lineage
as a metric for accuracy of the model is given in the first column of Table 1. A sensitivity rate
of over 98% is obtained for all classes except EAI (CAS) which obtains 93%. The specificity
for all lineages is quite high with that of the relatively rare M. africanum being slightly lower
due. The errors in East-African-Indian (CAS) are primarily due to confusion with East-Asian
(Beijing) resulting from the close similarity of the MIRU associated with these strains. We
discuss, in Section 4.3, the source of this confusion using MIRU signatures. Spoligotypes can
help more clearly differentiate these two modern strains.

B. Predictive Accuracy
As reported in Table 2, we performed out-of-sample testing to examine the predictive accuracy
of the model. First we applied the BN created on the CDC data as reported in section 4.1 to
the MIRU-VNTRplus, NYSDOH, and Brussels datasets. In addition, the table presents
predictive accuracy as on the CDC data as determined by 10-fold cross validation of the distinct
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MIRU genotypes. Thus the 10-fold training and testing sets are disjoint. The BN performed
well on all datasets with results similar to those observed in Section 4.1. The relatively few
errors correspond to confusion of M. africanum with Indo-Oceanic and EAI (CAS).

C. MIRU Lineage Signatures
We also studied the distribution of each MIRU locus in each lineage and provided the
probability distribution map of each locus per lineage as shown in Figure 2. We observe that
the numbers of repeats at a given loci for a lineage tend to take values that lie in a close range.
Distinct patterns of MIRU loci distributions were found for each lineage but it is difficult to
capture these patterns in simple rules or decision trees [5]. Probability-based models such as
the proposed BN can do a better job of capturing the lineages than rules.

The existence of a broad pattern within a lineage and the significant difference in patterns
across lineages might explain the success behind nearest-neighbor approaches [2] as well as
this model. However, the nearest neighbor approach used in MIRU-VNTRplus involves
selecting a suitable distance measure and cut-off. Changing the distance cut-off value yields
varying results – a large value reduces the effect of erroneous or irrelevant values of markers,
but results in multiple matches, thus making boundaries between classes less distinct. In
contrast, the BN determines the probability of lineage of the strain without tuning or parameter
choices.

Note that East-Asian (Beijing) and East-African-Indian (CAS) have similar MIRU probability
signatures differing primarily only in two loci (10 and 16). This helps explain the
misclassifications of East-African-Indian (CAS) as East-Asian (Beijing). The greater
discriminatory power of 24-loci MIRU will help further resolve the difference between these
two lineages. This contrasts with spoligotyping, where the patterns for East-Asian (Beijing)
and East-African-Indian (CAS) are quite distinct. One can clearly see how MIRU24
discriminates between the ancestral and modern strains with high probability. But there are
rare exceptions where MIRU24 does not discriminate between ancestral and modern strains.
Thus the hierarchical BN has problem differentiating these strains at times.

5. CONCLUSIONS AND FUTURE WORK
We have created a model using BN to accurately predict the major lineages of strains of MTBC
using MIRU alone. The assumption that the loci are conditionally independent given the class
makes the model immediately applicable to 24-loci MIRU which became the new United States
standard in 2009. Spoligotypes can easily be added to the model by employing the strategies
used in SPOTCLUST, a BN for lineage identification using spoligotypes [6].

The hierarchical BN developed here can be further improved. The current model assumes that
MIRU24 corresponds to ancestral and modern strains and the remaining loci are independent.
Other BN structures could be explored to further improve performance. Performance on other
types of classifiers may also be tested and results compared to determine the optimum method
for lineage identification given MIRU data.

The BN model is accurate, fast, and easy to train and use. An additional advantage of classifying
strains using MIRU is that results may be compared with lineages determined using models
that employ other biomarkers. Any discrepancies will help flag quality control problems in the
genotyping laboratories.

Future work will involve using additional MIRU loci and other biomarkers such as spoligotype
in the model. This should further improve accuracy. Present methods that use spoligotype data
involve matching patterns with expert-defined signatures. However, strains belonging to
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different lineages have been shown to exhibit similar patterns involving certain spacers
indicating the occurrence of convergent evolution. Thus spoligotype signatures alone are not
entirely reliable to classify strains into lineages.

In addition, the model may be applied to classifying strains into sub-lineages and understanding
variability of MIRU genotypes indicative of recent transmission.
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Figure 1.
Bayesian network used for lineage classification via MIRU

Aminian et al. Page 8

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2010 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Heat Map indicating probability distribution of the number of tandem repeats at the 12 loci of
MIRU for each lineage. X axis: MIRU loci, Y axis: Number of tandem repeats. The bar
alongside shows the probability values ranging from 0 (black) to 1 (white)
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