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Abstract—We have recently found that the computation time
of homology-based subcellular localization can be substantially
reduced by aligning profiles up to the cleavage site positions of
signal peptides, mitochondrial targeting peptides, and chloro-
plast transit peptides [1]. While the method can reduce the
profile alignment time by as much as 20 folds, it cannot
reduce the computation time spent on creating the profiles.
In this paper, we propose a new approach that can reduce
both the profile creation time and profile alignment time. In
the new approach, instead of cutting the profiles, we shorten
the sequences by cutting them at the cleavage site locations.
The shortened sequences are then presented to PSI-BLAST
to compute the profiles. Experimental results and analysis
of profile-alignment score matrices suggest that both profile
creation time and profile alignment time can be reduced without
sacrificing subcellular localization accuracy. Once a pairwise
profile-alignment score matrix has been obtained, a one-vs-rest
SVM classifier can be trained. To further reduce the training
and recognition time of the classifier, we propose a perturbation
discriminant analysis (PDA) technique. It was found that PDA
enjoys a short training time as compared to the conventional
SVM.

Keywords-Subcellular localization; cleavage sites prediction;
profiles alignment; protein sequences; kernel discriminant anal-
ysis; SVM.

I. INTRODUCTION

A. Motivation of Subcellular Localization Prediction

Proteins must be transported to the correct organelles of
a cell and folded into correct 3-D structures to properly
perform their functions. Therefore, knowing the subcellular
localization is one step towards understanding its functions.
The determination of this information by experimental means
is often time-consuming and laborious. Given the large
number of un-annotated sequences from genome projects,
it is imperative to develop efficient and reliable computation
techniques for annotating biological sequences.

In recent years, impressive progress has been made in the
computational prediction of subcellular localization. A num-
ber of approaches have also been proposed in the literature.
These methods can be generally divided into four categories,
including predictions based on sorting signals [2], [3], [4],
[5], [6], [7], global sequence properties [8], [9], [10], [11],
homology [12], [13], [14] and other information in addition
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to sequences [15], [16]. Methods based on sorting signals
are very fast, but they typically suffer from low prediction
accuracy. Homology-based methods are more accurate, but
they are very slow. Therefore, fast and reliable predictions
of subcellular localization still remain a challenge.

B. Approaches to Subcellular Localization Prediction

Signal-based methods predict the localization via the
recognition of N-terminal sorting signals in amino acid
sequences. PSORT, proposed by Nakai in 1991 [3], is one
of the early predictors that use sorting signals for pro-
tein’s subcellular localization. PSORT and its extensions –
WoLF PSORT [4], [5] – derive features such as amino
acid compositions and the presence of sequence motifs for
localization prediction. In the late 90’s, researchers started
to investigate the application of neural networks [17] to
recognize the sorting signals. In a neural network, patterns
are presented to the input layer of artificial neurons, with each
neuron implementing a nonlinear function of the weighted
sum of the inputs. Because amino acid sequences are of
variable length, the input to the neural network is extracted
from a short window sliding over the amino acid sequence.
TargetP [18], [19] is a well-known predictor that uses neural
networks.

Another type of approaches relies on the fact that proteins
of different organelles have different global properties such
as amino-acid composition. Based on amino-acid composi-
tion and residue-pair frequencies, Nakashima and Nishikawa
[11] developed a predictor that can discriminate between
soluble intracellular and extracellular proteins. Another pop-
ular predictor based on amino acid composition is SubLoc
[8]. In SubLoc, a query sequence is converted to 20-dim
amino-acid composition vector for classification by SVMs.
Recently, Xu et al. [20] proposed a semi-supervised learning
technique (a kind of transductive learning) that makes use of
unlabelled test data to boost the classification performance
of SVMs. One limitation of composition-based methods is
that information about the sequence order is not easy to
represent. Some authors proposed using amino-acid pair
compositions (dipeptide) [21], [10], [9] and pseudo amino-
acid compositions [22] to enrich the representation power of
the extracted vectors.

The homology-based methods use the query sequence to



search protein databases for homologs [12], [13] and predict
the subcellular location of the query sequence as the one
to which the homologs belong. This kind of method can
achieve very high accuracy when homologs of experimen-
tally verified sequences can be found in the database search
[23]. A number of homology-based predictors have been
proposed. For example, Proteome Analyst [24] uses the
presence or absence of the tokens from certain fields of the
homologous sequences in the Swiss-Prot database as a means
to compute features for classification. In Kim et al. [25],
an unknown protein sequence is aligned with every training
sequences (with known subcellular locations) to create a
feature vector for classification. Mak et al. [14] proposed
a predictor called PairProSVM that uses profile alignment
to detect weak similarity between protein sequences. Given
a query sequence, a profile is obtained from PSI-BLAST
search [26]. The profile is then aligned with every training
profile to form a score vector for classification by SVMs.

Some predictors not only use amino acid sequences as
input but also require extra information such as lexical
context in database entries [15] or Gene Ontology entries
[16] as input. Although studies have shown that this type
of method can outperform sequence-based methods, the
performance has only been measured on data sets where all
sequences have the required additional information. Thus, the
applicability is limited.

C. Limitations of Existing Approaches

Among all the methods mentioned above, the signal-based
and homology-based methods have attracted a great deal of
attention, primarily because of their biological plausibility
and robustness in predicting newly discovered sequences.
Comparing these two approaches, the signal-based methods
seem to be more direct, because they determine the localiza-
tion from the sequence segments that contain the localization
information. However, this type of method is typically lim-
ited to the prediction of a few subcellular locations only.
For example, the popular TargetP [6], [7] can only detect
three localizations: chloroplast, mitochondria, and secretory
pathway signal peptide. The homology-based methods, on
the other hands, can in theory predict as many localizations
as available in the training data. The downside, however, is
that the whole sequence is used for the homology search or
pairwise alignment, without considering the fact that some
segments of the sequence are more important or contain more
information than the others. Moreover, the computation re-
quirement will be excessive for long sequences. The problem
will become intractable for database annotation where tens
of thousands of proteins are involved.

D. Our Proposal for Addressing the Limitations

Our earlier report [1] has demonstrated that computation
time of subcellular localization based on profile alignment
SVMs can be substantially reduced by aligning profiles up to
the cleavage site positions of signal peptides, mitochondrial
targeting peptides, and chloroplast transit peptides. Although

20-fold reduction in total computation time (including align-
ment, training and recognition time) has been achieved, the
method fails to reduce the profile creation time, which will
become a substantial part of the total computation time when
the database becomes large. In this paper, we propose a
new approach that can reduce both the profile creation time
and profile alignment time. In the new approach, instead of
cutting the profiles, we shorten the sequences by cutting them
at the cleavage site locations. The shortened sequences are
then presented to PSI-BLAST to compute the profiles. To
further reduce the training and recognition time of the clas-
sifier, we propose replacing the SVMs by kernel perturbation
discriminants.

II. KERNEL DISCRIMINANT ANALYSIS

This section derives the formulation of kernel discriminant
analysis and explains how it can be applied to multi-class
problems such as subcellular localization. The key idea lies
on the equivalency between the optimal projection vectors
in the Hilbert space, spectral space and empirical space. A
more in-depth treatment can be found in [28].

A. Input, Hilbert, Spectral, and Empirical Spaces

Denote the mapping from an input space X into a Hilbert
space H as:

−→
φ : X → H such that x 7→ −→

φ (x).

In bioinformatics, X is a vectorial space for microarray
data and a sequence space for DNA or protein sequences.
Given a training dataset {x1, . . . ,xN} in X and a kernel
function K(x,y), an object can be represented by a vector
of similarity with respect to all of the training objects [29]:

−→
k (x) ≡ [K(x1,x), . . . ,K(xN ,x)]T .

This N -dim space, denoted by K, will be named empirical
space. The associate kernel matrix is defined as

K =
[−→
k (x1), . . . ,

−→
k (xN )

]
.

The construction of the empirical space for vectorial and
non-vectorial data are quite different. For the former, the
elements of K are a simple function of the corresponding
pair of vectors in X . For the latter, the elements in K are
similarities between the corresponding pairs of objects.

The kernel matrix K can be factorized with respect
to the basis functions in H: K = ΦTΦ, where Φ =
[
−→
φ (x1), . . . ,

−→
φ (xN )]. Alternatively, it can be factorized via

spectral decomposition: K = UTΛU = UTΛ
1
2Λ

1
2U =

(Λ
1
2U)T (Λ

1
2U) = ETE, where E = Λ

1
2U .

Denote the i-th row of E as e(i) =[
e(i)(x1), . . . , e

(i)(xN )
]
. Because EET = Λ

1
2UUTΛ

1
2 =

Λ, the rows of E exhibit a vital orthogonality property:

e(i)e(j)
T
=

{
0 if i 6= j
λi if i = j,

where λi is the i-th element of the diagonal of Λ.
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Figure 1: Two schemes for reducing the computation of the subcellular localization process. In Scheme I, a full-length
query sequence is presented to PSI-BLAST for computing a full-length profile; then the profile is truncated at the predicted
cleavage site. The truncated profile is then aligned with all of the truncated training profiles to produce a profile-alignment
score vector for classification. In Scheme II, the query sequence is truncated at the predicted cleavage site before inputting
to PSI-BLAST for computing the profile. The cleavage sites are predicted by CSitePred [27] or TargetP [6].

For any positive-definite kernel function K(x,y) and
training dataset {x1, . . . ,xN} in X , there exists a (nonlinear)
mapping from the original input space X to an N -dim
spectral space E :1

−→e : X → E such that x 7→ −→e (x) ≡ Λ− 1
2U

−→
k (x).

Many kernel-based machine learning problems involve
finding optimal projection vectors in H, E , and K, which
will be respectively denoted as w, v, and a. It can be shown
[28] that the projection vectors are linearly related as follows:

wT−→φ (x) = vT−→e (x) = aT−→k (x), (1)

where we have used the relationships w = Φa and v = Ea.

B. Orthogonal Hyperplane Principle (OHP)

Assume that the dimension of H is M and that the training
data in H are mass-centered. When M ≥ N , all of the N
training vectors {−→φ (xi); i = 1, . . . , N} will fall on an (M−
1)-dim data hyperplane. Mathematically, the data-hyperplane
is represented by its normal vector p such that ΦTp = 1.
The optimal decision-hyperplane in H (represented by w)
must be orthogonal to the data-hyperplane:

wTp = 0 ⇒ aTΦTp = 0 ⇒ aT1 = 0.

C. Kernel Fisher Discriminant Analysis (KFDA)

The objective of KFDA [30] is to determine an optimal
discriminant function (linearly) expressed in the Hilbert
space H:

f(x) = wT−→φ (x) + b,

where b is a bias to account for the fact that training data
may not be mass-centered. The discriminant function may
be equivalently expressed in the N -dim spectral space E :

f(x) = vT−→e (x) + b.

The finite-dimensional space E facilitates our analysis and
design of optimal classifiers. In fact, the optimal projection

1K = ETE, i.e., E = (ET)−1K = (UTΛ
1
2 )−1K = Λ− 1

2 UK.
Therefore, −→e (xi) = Λ− 1

2 U
−→
k (xi), i = 1, . . . , N .

vector vopt in E can be obtained by applying conventional
FDA to the column vectors {−→e (xi)}. To derive the objective
function of KFDA, let us define

d =
2

d+ + d−
(d+1+ − d−1−) , (2)

where d+ =
√

N−
NN+

and d− =
√

N+

NN−
; 1+ and 1− contain

1’s in entries corresponding to Classes C+ and C−, respec-
tively, and 0’s otherwise; and N+ and N− are the number of
training samples in classes C+ and C−, respectively. It can
be shown that the objective function of KFDA is:

JKFDA(v) =
vTSE

b v

vTSE
wv

=
vTEddTETv

vTE
(
I − 11T

N

)
ETv

, (3)

where 1 is an N -dim vector with all elements equal to
1 and SE

b = EddTET and SE
w = E(I − 11T

N )ET are
between-class and within-class covariance matrices in E
space, respectively.

D. Perturbational Discriminant Analysis (PDA)

The FDA and KFDA are based on the assumption that the
observed data are perfectly measured. It is however crucial
to take into account the inevitable perturbation of training
data. For the purpose of designing practical classifiers, we
can adopt the following perturbational discriminant analysis
(PDA).

It is assumed that the observed data is contaminated by
additive white noise in the spectral space. Denote the center-
adjusted matrix of E as Ē and the uncorrelated noise as N ,
then the perturbed scattered matrix is

(Ē+N)(Ē+N)T ≈ ĒĒT+ρI = E

(
I − 11T

N

)
ET+ρI,

where ρ is a parameter representing the noise level. Its
value can sometimes be empirically estimated if the domain
knowledge is well established a priori. Under the perturbation
analysis, the kernel Fisher score in Eq. 3 is modified to the



following perturbed variant:

JPDA(v) =
vTEddTETv

vT
[
E

(
I − 11T

N

)
ET + ρI

]
v
. (4)

By taking the derivative of JPDA(v) with respect to v, the
optimal solution to Eq. 4 can be obtained as:

vopt =

[
E

(
I − 11T

N

)
ET + ρI

]−1

Ed,

and using the Sherman-Morrison-Woodbury identity it can
be shown that

vopt =
(
EET + ρI

)−1
E(d−η1) = (Λ+ ρI)

−1
E(d−η1)

(5)
where η is a scalar whose value can be determined through
the optimal solution in K space as follows.

Recall from Eq. 1 that dot-products in the three spaces are
equivalent. Therefore, the discriminant function in K space
can be written as:

f(x) = aT−→k (x) + b. (6)

Given the optimal solution vopt in the E space, the corre-
sponding optimal solution in the K space is2

aopt = E−1vopt

= UTΛ− 1
2 (Λ+ ρI)−1Λ

1
2U(d− η1)

= (K + ρI)−1(d− η1),

(7)

where we have used K = UTΛU and E = Λ
1
2U . Note that

unlike Eq. 5, Eq. 7 does not require spectral decomposition,
thus offering a fast close-form solution. Now using the
orthogonal hyperplanes principle (Section II-B), we have

aT
opt1 = (dT − η1T )(K + ρI)−11 = 0

⇒ η =
dT (K + ρI)−11

1T (K + ρI)−11
.

(8)

The value of b can be obtained by using the relationship
[28]:3 (y − b1) = (d− η1), which gives

b = yi − (di − η) for any i = 1, . . . , N. (9)

E. Application of PDA to Multi-Class Problems
A C-class problem can be formulated as C binary clas-

sification problems in which each problem is solved by
a one-versus-rest binary classifier. Here, we propose two
approaches to applying PDA to solve multi-class problems.

1) One-vs-Rest PDA Classifier: Given the training sam-
ples of C classes, we train C PDA score functions as follows:

fi(x) = aT
i

−→
k (x) + bi, i = 1, . . . , C,

where ai and bi are obtained by using Eq. 7 and Eq. 9,
respectively. Then, given a test sample x, the class label is
obtained by

l = argmax
i

fi(x).

2Eq. 1 suggests that aTK = vTE. Therefore, we have aT =
vTEK−1 = vTE(ETE)−1 = vTE−T , which suggests that a =
E−1v.

3Note that our definition of d in Eq. 2 and that of [28] differ by a
proportional constant.

Class Index Subcellular Location Number of Proteins
1 Extracellular 693
2 Mitochondria 167
3 Chloroplast 74
4 Others(Cytoplasm/Nucleus) 1617

2552(total)

Table I: Breakdown of eukaryotic dataset derived from the
Swiss-Prot database (release 57.5).

2) Cascaded Fusion of PDA and SVM: Because of the de-
pendence in di, i = 1, . . . , C, the rank of matrix [d1, . . . ,dC ]
is C−1. Therefore, there are C−1 independent sets of PDA
parameters:

Â = [a1, . . . ,aC−1]

= (K + ρI)−1([d1, . . . ,dC−1]− 1[η1, . . . , ηC−1]).

During recognition, an unknown sample x is projected onto
a (C − 1)-dim PDA space spanned by [a1, . . . ,aC−1] using

g(x) = ÂTk(x) + [b1, . . . , bC−1]
T .

Then, g(x) is classified by one-vs-rest SVMs. In the sequel,
we refer to this cascaded fusion as PDAproj+SVM.

III. EXPERIMENTS

A. Data Set Construction
Protein sequences with experimentally annotated subcel-

lular locations were collected from the Swiss-Prot Release
57.5 according to the following criteria.

1) Only the entries of Eukaryotic species are included,
which are annotated with “Eukaryota” in the OC
(Organism Classification) fields in Swiss-Prot.

2) A large amount of sequences in Swiss-Prot are an-
notated with ambiguous words, such as “probable”,
“by similarity” and “potential”. These entries were
excluded because of the lack of experimental evidence.

3) Sequences annotated with “fragment” were excluded.
4) Sequences that have 25% or higher sequence identity

to any other sequences are excluded.
5) For signal peptides, mitochondria, and chloroplast,

only sequences with experimentally annotated cleavage
sites are included.

Table I shows the breakdown of the dataset.

B. Assessment of the Prediction Results
We used 5-fold cross validation to evaluate the perfor-

mance. The overall prediction accuracy, the accuracy for
each subcellular location, and the Matthew’s correlation
coefficient (MCC) [31] were used to quantify the prediction
performance. MCC allows us to overcome the shortcoming
of accuracy on unbalanced data [31].

We used TargetP and a CRF-based predictor (CSitePred)
[27] for cleavage site prediction and SVM [14] and PDA
for classification. We measured the computation time on a
Core(TM)2 Duo 3.16GHz CPU running Matlab and SVM-
light. The computation time was divided into profile creation
time, alignment time, classifier training time, and classifica-
tion time.
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Figure 2: Profile-alignment score matrices produced by (a)
Scheme I and (b) Scheme II in Fig. 1.

Profile Subcellular
Scheme Input to PSI-BLAST Creation Localization

Time (sec.) Accuracy
I Full-length sequences 30.5 91.69%
II Sequences truncated at

predicted cleavage sites 4.7 91.45%

Table II: Average computation time to create a profile by
PSI-BLAST using sequences of different length as input.
In Scheme I, full-length sequences were presented to PSI-
BLAST and the resulting profiles were truncated at the
predicted cleavage sites. In Scheme II, truncation was applied
to the sequences before presenting to PSI-BLAST. In both
cases, CRFs (CSitePred) were used to predict the cleavage
sites.

IV. RESULTS AND DISCUSSIONS

A. Comparing Profile Creation Schemes

Fig. 2 shows the score matrices obtained by the two profile
creation schemes (see Fig. 1). The figure shows that the two
alignment score matrices exhibit a similar pattern, suggesting
that classifiers based on these matrices will produce similar
classification accuracy. This argument is confirmed by Ta-
ble II, which shows that cutting the sequences at cleavage
sites before inputting to PSI-BLAST can reduce the profile
creation time by 6 times without significant reduction in
subcellular localization accuracy.

B. SVM versus PDA

Table III shows that the training time of PDA and
PDAproj+SVM are only one-fifth of that of SVM. However,
the accuracy of PDA and PDAproj+SVM are lower than that
of SVM.

C. Compared with State-of-the-Art Predictors

We compared the accuracy of our cascaded fusion method
with SubLoc[8] and TargetP by presenting the sequences
to their webservers. The results suggest that the overall
accuracy of our method is 5.2% higher than that of TargetP
and is significantly better than that of SubLoc. Our method
outperforms TargetP in Ext and Cyt/Nuc prediction while
performing worse than TargetP in predicting Mit and Chl.

Classification Training Classification SubLoc
Method Time (sec.) Time (sec.) Acc.
SVM 51.4 0.7 91.45%
PDA 9.9 1.9 90.24%
PDAproj+SVM 8.9 0.1 89.97%

Table III: The computation time and performance of dif-
ferent classifiers in the subcellular localization task. The
classification time is the time to classify a profile-alignment
score vector with dimension equal to the number of training
vectors. The training time is time required to train a classifier,
given a profile-alignment score matrix. In PDAproj+SVM,
PDA was applied to project the samples in the input space
to a (C − 1)-dim space (C = 4 here); the projected vectors
were then classified by RBF-SVMs.

V. CONCLUSIONS

This paper has demonstrated that homology-based subcel-
lular localization can be speeded up by reducing the length
of the query amino acid sequences. Because shortening
an amino acid sequence will inevitably throw away some
information in the sequence, it is imperative to determine
the best truncation positions. This paper shows that these
positions can be determined by cleavage site predictors such
as TargetP and CSitePred. The paper also shows that as far as
localization accuracy is concerned, it does not matter whether
we truncate the sequences or truncate the profiles. However,
truncating the sequence has computation advantage because
this strategy can save the profile creation time by as much
as 6 folds.
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