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Abstract

Fusion of functional magnetic resonance imaging (fMRI) and genetic information is becoming 

increasingly important in biomarker discovery. These studies can contain vastly different types of 

information occupying different measurement spaces and in order to draw significant inferences 

and make meaningful predictions about genetic influence on brain activity; methodologies need to 

be developed that can accommodate the acute differences in data structures. One powerful, and 

occasionally overlooked, method of data fusion is canonical correlation analysis (CCA). Since the 

data modalities in question potentially contain millions of variables in each measurement, 

conventional CCA is not suitable for this task. This paper explores applying a sparse CCA 

algorithm to fMRI and genetic data fusion.
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I. INTRODUCTION

Increased interest in fusion of fMRI and genetic information has driven several recent 

research inquiries [1]. While fMRI techniques can provide a narrow range of activations, 

genetic information can vary widely depending upon the type of measurement being made. 

For example, single nucleotide polymorphism (SNP) measurements can span millions of 

sites and when coupled with fMRI data the researcher is presented with a significant data 

mining challenge. Only a small number of potentially interrelated sites may be connected to 

brain function.. Unconstrained CCA [2] approaches suffer from the high dimensionality; 

since there are far more sites than the number of observations, collinearity becomes an issue 

leading to unstable estimates and results which cannot be generalized.

Another type of genetic measurement, copy number variation (CNV), which has shown 

significant promise as a biomarker in several diseases [3], presents a different set of 

challenges. The dimensionality of CNV measurements are dramatically reduced from SNP 

studies, with values representing insertions and deletions in the DNA sequence covering kilo 

to mega bases. Even with this dramatic data reduction; there typically are still fewer 

observations than CNV regions of interest leading again to collinearity issues. Coupled with 

this, the quantization of CNV data does not immediately lend itself to some prevalent blind 
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data reduction and analysis techniques like independent component analysis [4]. A different 

analysis framework which can satisfy the collinearity issues as well as accommodate 

quantized data is needed.

The problem of collinearity can be mitigated by use of sparse loadings in the CCA 

algorithm. In recent years, several researchers have produced penalized or sparse versions of 

CCA. In [5], a penalized matrix decomposition is introduced using a LASSO penalty [6], to 

compute a rank-K approximation of a matrix. This approach is very similar to the one 

adopted in [7] where a sparse singular value decomposition (SVD) is used to compute the 

sparse CCA loadings and variates. In [8], the elastic net [9] is applied constrained CCA. 

While these approaches all attempt to solve the collinearity problem, typically applied to 

gene association studies, they do not necessarily produce sparse variates. In [10] the 

collinearity issues are ignored and problem of producing sparse variates is considered using 

an alternating least squares approach. While this paper is principally concerned with 

collinearity issues, it should be noted there are some cases where sparse variates are of 

interest, particularly in interpreting results.

This paper investigates adapting one of the penalized CCA formulations, dubbed sparse 

CCA (SCCA), to fMRI and genetic data fusion. First, the SCCA algorithm is introduced and 

issues with its formulation are explained. Next the algorithm is applied to simulated linked 

fMRI and genetic data sets to demonstrate its applicability to this type of data fusion. The 

algorithm’s performance under varying conditions is discussed along with some directions 

for improvement and continuing work.

II. SPARSE CCA

Consider two sets of variables, X of size n x p and Y of size n x q. Where n is the number of 

observations and p and q are the number of variables in each set. The goal of the CCA 

algorithm is to find a linear combination of variables from X and Y which are maximally 

correlated. Explicitly this can be written as

max
u, v

uTXTYv, (1)

subject to

uTXTXu ≤ 1, vTYTYv ≤ 1 (2)

The optimal weight vectors, u and v have a closed form solution involving the eigenvectors 

of the covariance matrices ΣXX, ΣY Y and the cross covariance matrix ΣXY [11]. Practically 

these can be found by computing the left and right singular vectors of

K = ∑XX

− 1
2 ∑XY ∑YY

− 1
2 . (3)
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For very high dimensional data (p, q >> n), collinearity between variables becomes a 

problem in the standard CCA analysis. Furthermore, in many cases only a small number of 

available variables may be related across sets. Even in cases where p and q are on the order 

of n, collinearity may still be an issue, due to intrinsic dependencies in the variables. This 

problem can be remedied in part by adding penalty terms to the weight vectors in Eq.(2)

P1 (u) ≤ cu, P2 (v) ≤ cv . (4)

Here, P1 and P2 are chosen to be convex penalty functions. Since the goal is to produce 

sparse weight vectors, it is appropriate to use the LASSO penalty so that

P1 (u) = ∑
i = 1

p
ui , (5)

where P2(v) takes on a similar form. The resulting optimization problem using the LASSO 

constraints can be optimized using a soft thresholding update rule for both weight vectors

ui + 1 = Kvi

ui + 1 = ui + 1 − 1
2λu +

Sign ui + 1

vi + 1 = KTui + 1

vi + 1 = vi + 1 − 1
2λv +

Sign vi + 1

(6)

where the weight vector is first found using a typical SVD power iteration and then soft-

thresholded to satisfy the LASSO constraint. The initial vectors can be chosen at random 

and the sparsity parameters λu and λv can be chosen using cross-validation or by utilizing 

prior information.

While a sparse SVD or penalized matrix decomposition solves the problem of removing 

collinear variables from the canonical variates, in practice there is still another problem that 

must be addressed. Eq.(3) requires the computation of ∑XX
−1  and ∑YY

−1; these matrices may be 

singular in many cases, especially when there is a high degree of collinearity. Regularization 

is often used as a solution to ill-posed inverse problems [12]. A more extreme form is used 

here which considers diag (ΣXX) and diag (ΣY Y ) as estimates of the actual covariance and 

cross covariance matrices.

III. SIMULATIONS

To explore the effectiveness of applying SCCA to fMRI and genetic data fusion several 

simulations were carried out. First, two sets of cross correlated variables were generated 

using a latent model similar to [7]. The variables were generated so that the traditional 
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canonical correlation between sets was 0.5 and each set was then embedded into a larger 

data set of independent variables. The independent fMRI variables were generated using an 

fMRI image collected during an auditory task. One hundred fifty cross correlated variables 

were embedded into the contrast image at points of high activation and unit variance noise 

was added to create fifty realizations. One realization is shown in Fig.(1(a)), the embedded 

variables can be seen in the regions of slightly higher intensity. The second set of thirty cross 

correlated variables was embedded into a larger data set consisting of 10000 Gaussian 

independent variables to simulate the gene signal; the first one hundred variables are shown 

in Fig.(2).

The SCCA algorithm was then run on the two sets of variables with λfMRI ranging between 

0.005 and 0.05 and λgene between 0.01 and 0.1. Parameter values higher than 0.1 resulted in 

no variables being selected. Using k-fold cross-validation, λfMRI = 0.015 and λgene = 0.065 

were selected corresponding to a maximum variate correlation averaged over cross-

validation steps of 0.4130. For each step of the cross-validation a k − 1
k  portion of the data is 

used to identify canonical variates using a set of sparseness parameters from the selected 

range. The correlation between the obtained canonical variates is then evaluated on the 

remaining testing sample of data. These correlations are averaged over k steps with the 

optimal combination of sparseness parameters corresponding to the highest average 

correlation.

The resulting SCCA fMRI weight component is shown in Fig.(1(b)). In each realization 

there were 1500 embedded voxels corresponding to the cross correlated variables, the SCCA 

component contains 1281 voxels corresponding to the original embedded variables and an 

additional 124 voxels corresponding to unrelated variables. The SCCA gene weight 

component is shown in Fig.(2), only the first 100 positions are shown for ease of 

visualization. In each realization there were 30 embedded variables, the SCCA weight 

component contains 10 nonzero weights corresponding to these variables and 2 

corresponding to the independent variables.

To investigate the effect of quantization on the SCCA algorithm Fig.(4) shows an integer 

valued data set similar to what is found with CNV data. The same SCCA procedure was 

applied, with λfMRI = 0.016 and λgene = 0.3 chosen after cross-validation. 100 CNV 

variables were simulated at integer values between zero and four in the gene data set to 

correspond to the low dimensionality of CNV studies. The number of variables remained 

unchanged in the fMRI set. As before the SCCA fMRI component picks up most of the 

embedded variables seen in Fig.(3(a)) with 1283 voxels corresponding to the embedded 

variables and 111 corresponding to the separate independent variables. Similarly, Fig.(4) 

shows the SCCA weights for the simulated CNV data. The nonzero weights almost all 

correspond to the original 30 embedded variables.

The noise variance was increased in the fMRI data set to 1.5 times of the embedded 

variable’s variance. A sample realization is shown in Fig.(5(a)), the cross correlated 

variables were embedded in the same positions but the noise variance is much higher 

making it difficult to see them. The SCCA algorithm was then run on the two sets with 

λfMRI and λgene in the same range as before. Again using cross-validation, λfMRI = 0.008 
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and λgene = 0.062 were selected corresponding to a maximum variate correlation averaged 

over cross-validation steps of 0.2230. The SCCA fMRI component is shown in Fig.(5(b)) 

and gene component is shown in Fig.(6). In either case the nonzero weights do not 

correspond to the cross correlated variables. This indicates the the algorithm is vulnerable to 

high noise or the correlation structure of the embedded variables is not sufficient for 

identification when unrelated variables have a larger variance.

These results are encouraging in the sense that the SCCA algorithm is able to deal with high 

dimensional data sets of different measurements under appropriate conditions. Fig.(1) and 

Fig.(2) show that the SCCA algorithm is able to recover the majority of the embedded 

variables with only a few unrelated variables having nonzero weights. If there is some prior 

information available about the expected number of influential variables in each set, the 

effect can be mitigated by further adjusting the sparsity parameters λfMRI and λgene. The 

algorithm was able to recover the embedded variables in the simulated CNV case as well. It 

should be noted that the sparsity parameters depend on the dimensionality of the data, so for 

lower dimensional data the associated sparsity parameter must be larger in magnitude. The 

high variance case of Fig.(5) and Fig.(6) demonstrates the algorithm’s weakness in cases 

where the independent variables’ variance is much higher than the embedded variables’ 

variance. While this is certainly a limitation, fMRI and genetic studies are usually designed 

to produce areas of high activation in the brain which are believed to be linked to a genetic 

data set. This situation precludes cases where the unrelated variables swamp the cross 

correlated set.

IV. CONCLUSION

CCA is a powerful tool that can be used for data fusion. However, fMRI and genetic studies 

provide a particularly difficult set of problems in the form of two things. First, the high 

dimensionality of the data sets in question causes collinearity between variables resulting in 

improper associations. Second, the sparse nature of some genetic data, namely CNV studies, 

coupled with collinearity issues makes conventional CCA unsuited for this type of fusion. 

However, the SCCA algorithm built around a penalized singular value decomposition can 

accommodate collinearity issues as well as integer valued data.

These preliminary simulations are encouraging in their ability to recover associations 

between high dimensional data sets. There are, however, some limitations that need to be 

addressed as well further investigations that need be made. First, the selection of the optimal 

sparsity parameters is often a difficult task, relying heavily upon cross-validation. Aside 

from adopting a general rule of thumb for the sparsity parameters, an alternative selection 

method based up minimum description length principles may prove to be more robust. Next, 

while these simulations are illustrative of the SCCA algorithm’s power in these types fMRI 

and genetic information problems, a better latent variable model needs to be developed that 

can more accurately simulate real world fMRI activations. Finally, the effects of the 

independent variable variance need to be further explained and a better determination of 

what fMRI tasks and genetic measurements SCCA is applicable to.
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Figure 1. 
Sample simulated fMRI and associated SCCA weights on 16 axial slices. Fifty simulated 

fMRI images were generated to conduct a group simulation. Notice the locations of slightly 

higher intensity in the fMRI data, these are the cross set correlated variables. The SCCA 

weights appear at the locations that cross set correlated variables were inserted into the fMRI 

data set.
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Figure 2. 
Sample simulated profile and resulting SCCA weights. The set of 30 cross correlated 

variables was embedded at the beginning in a set of 10000 independent variables, for ease of 

visualization only the first 100 variables are shown. The cross set correlated variables are 

located in the first 30 marker positions. Notice the majority of the nonzero SCCA weights 

appear in that marker range.
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Figure 3. 
Simulated fMRI weights on 16 axial slices for simulated CNV data. The cross set correlated 

variables are embedded at the same locations, using the same generative model. The 

majority of the embedded variables appear with nonzero weights after the SCCA algorithm 

is run.
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Figure 4. 
Sample simulated CNV profile and resulting SCCA loadings. The cross set correlated 

variables are located in the first 30 marker positions, the resulting nonzero SCCA weights 

appear predominately at these positions.
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Figure 5. 
Here the unrelated variables variance is increased. The cross set correlated variables are 

embedded at the same locations, however, the SCCA weights do not account for the 

embedded variables. Some weights correspond to cross set correlated variables, however 

several variables are not represented and several weights correspond to variables that are not 

cross set correlated.
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Figure 6. 
Sample simulated profile and resulting SCCA loadings in high noise. The cross set 

correlated variables are located in the first 30 marker positions, however the resulting 

nonzero SCCA weights are no longer appearing in the cross set correlated variables.
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