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Abstract
Strains of the Mycobacterium tuberculosis complex (MTBC) can be classified into coherent
lineages of similar traits based on their genotype. We present a tensor clustering framework to
group MTBC strains into sublineages of the known major lineages based on two biomarkers:
spacer oligonucleotide type (spoligotype) and mycobacterial interspersed repetitive units (MIRU).
We represent genotype information of MTBC strains in a high-dimensional array in order to
include information about spoligotype, MIRU, and their coexistence using multiple-biomarker
tensors. We use multiway models to transform this multidimensional data about the MTBC strains
into two-dimensional arrays and use the resulting score vectors in a stable partitive clustering
algorithm to classify MTBC strains into sublineages. We validate clusterings using cluster stability
and accuracy measures, and find stabilities of each cluster. Based on validated clustering results,
we present a sublineage structure of MTBC strains and compare it to the sublineage structures of
SpolDB4 and MIRU-VNTRplus.

Index Terms
Tuberculosis; Mycobacterium tuberculosis complex; multiway models; clustering; cluster
validation

I. Introduction
Tuberculosis (TB) is a bacterial disease caused by Mycobacterium tuberculosis complex
(MTBC), and is a leading cause of death worldwide. In the United States, isolates from all
TB patients are routinely genotyped by multiple biomarkers. The biomarkers include Spacer
Oligonucleotide Types (spoligotypes), Mycobacterial Interspersed Repetitive Units -
Variable Number Tandem Repeats (MIRU-VNTRs), IS6110 Restriction Fragment Length
Polymorphisms (RFLP), Long Sequence Polymorphisms (LSPs) and Single Nucleotide
Polymorphisms (SNPs).

Genotyping of MTBC is used to identify and distinguish MTBC into distinct lineages and/or
sublineages that are useful for TB tracking and control and examining host-pathogen
relationships [1]. The major lineages of MTBC are M. africanum, M. canettii, M. microti,
M. bovis, M. tuberculosis subgroup Indo-Oceanic, M. tuberculosis subgroup Euro-
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American, M. tuberculosis subgroup East Asian (Beijing) and M. tuberculosis subgroup
East-African Indian (CAS). These major lineages can be definitively characterized using
LSPs [2], but typically only MIRU and spoligotypes are collected for the purpose of TB
surveillance. Classification, similarity-search, and expert-rule based methods have been
developed to correctly map isolates genotyped using MIRU and/or spoligotypes to the major
lineages [3]–[5].

While sublineages of MTBC are routinely used in the TB literature, their exact definitions
and names have not been clearly established. The SpolDB4 database contains 39,295 strains
and their spoligotypes, with the vast majority of them labeled and classified into 62
sublineages [6], but many of these are considered to be “potentially phylogeographically-
specific MTBC genotype families”. Therefore, further analysis is needed to confirm these
sublineages. The highly-curated MIRU-VNTRplus database, which focuses primarily on
MIRU, defines 22 sublineages. New definitions of sublineages based on LSPs and SNPs are
being discovered; e.g. the RD724 polymorphism corresponds to the previously defined
SpolDB4 T2 sublineage, also known as the Uganda strain in MIRU-VNTRplus [7]. The
SpolDB4 sublineages were created using only spoligotypes. Now large databases using both
MIRU and spoligotypes exist. The United States Centers for Disease Control and Prevention
(CDC) has gathered spoligotypes and MIRU isolates for over 37,000 patients. Well-defined
TB sublineages based on MIRU and spoligotypes are critical for both TB control and
research.

This study uses unsupervised multiway analysis to examine the sublineage structure of
MTBC on the basis of spoligotype and MIRU patterns. The proposed method reveals
structure not captured in SpolDB4 spoligotype families. When MIRU patterns are
considered, SpolDB4 families that may be well supported by spoligotype signatures, become
ambiguous, or may allow further subdivision. A key issue is how to combine spoligotype
and MIRU into a single unsupervised learning model. A spoligotype-only tool,
SPOTCLUST, was used to find MTBC sublineages using an unsupervised probabilistic
model reflecting spoligotype evolution [8]. Existing phylogenetic methods can be readily
applied to MIRU patterns, but specialized methods are needed to accurately capture how
spoligotypes evolve. It is not known how to best combine spoligotype and MIRU to infer a
phylogeny. The online tool www.miru-vntrplus.org determines lineages by using similarity
search to a labeled database. The user must select the distance measure which is defined
using spoligotypes and/or MIRU, possibly yielding different results.

In this study, we develop a tensor clustering framework for sublineage classification of
MTBC strains labeled by major lineages. We generate multiple-biomarker tensors of MTBC
strains and apply multiway models for dimensionality reduction. The model accurately
captures spoligotype evolutionary dynamics by using contiguous deletions of spacers. The
tensor transforms spoligotypes and MIRU into a new representation where traditional
clustering methods apply (we use modified k-means clustering) without the users having to
decide a priori how to combine spoligotype and MIRU patterns. Strains are clustered based
on the transformed data without using any information from SpolDB4 families. Clustering
results lead to the subdivision of major lineages of MTBC into groups with clear and
distinguishable spoligotype and MIRU signatures. Comparison of the clusters with SpolDB4
families suggests dividing and merging some SpolDB4 families, while strongly validating
others.

II. Background
In this study, we used two genotyping methods, spoligotyping and MIRU-VNTR typing, to
cluster MTBC strains. We generated high-dimensional arrays to represent genotype
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information of MTBC strains. We mapped these high-dimensional arrays to two-
dimensional space using multiway models and used score matrices of these models as input
to k-means clustering of MTBC strains. We validated the clustering results using cluster
stability and accuracy measures. In this section, we give a brief background on genotyping,
multiway modeling and clustering of MTBC strains.

A. Spoligotyping
Spoligotyping is a DNA fingerprinting method that exploits the polymorphisms in the direct
repeat (DR) region of the MTBC genome to distinguish between strains. The DR region is a
polymorphic locus in the genome of MTBC which comprises of direct repeats (36 bp),
separated by unique spacer sequences of 36 to 41 bp [9]. The method uses 43 spacers, thus a
spoligotype is typically represented by a 43-bit binary sequence. Zeros and ones in the
sequence correspond to the absence and presence of spacers respectively. Mutations in the
DR region involve deletion of contiguous spacers. To capture this evolution, we represent
spoligotype deletions as a binary vector, where one indicates that a specific contiguous
deletion occurs (i.e. a specified contiguous set of spacers are all absent) and zero means at
least one spacer is present in that contiguous set of spacers.

B. MIRU-VNTR typing
MIRU is a homologous 46–100 bp DNA sequence dispersed within intergenic regions of
MTBC, often as tandem repeats. Among the 41 identified mini-satellite regions on the
MTBC genome, different subsets of size 12, 15 and 24 are proposed for standardization of
MIRU genotyping [3]. In this study, we used 12-loci MIRU for genotyping MTBC. Thus,
the MIRU pattern is represented as a vector of length 12, each entry representing the number
of repeats in each MIRU locus.

C. Multiway analysis of biomarker tensor
The multiple-biomarker tensor captures three key properties of MTBC strains: spoligotype
deletions, number of repeats in MIRU loci, and coexistence of spoligotype deletions with
MIRU loci. This information is captured in a multidimensional array or tensor with three
modes representing spoligotype deletions, MIRU patterns and strains. Mathematically, each
strain is represented as the outer product of the binary spoligotype deletion vector and the
MIRU pattern vector, which results in a biomarker kernel matrix. Kernel matrices of the
same size for each strain form the multiple-biomarker tensor. Multiway models analyze
tensors by decomposing multiway arrays into two-way arrays. In this study, we use two
common multiway models, PARAFAC and Tucker3. Dimensionality reduction on the tensor
data using multiway models returns a score vector for each MTBC strain, which is used to
measure similarities and corresponding distances between strains in a clustering algorithm.
This is a key property of the algorithm since we don't know a priori how to measure
evolutionary distance between isolates genotyped by MIRU typing and spoligotyping.

III. Methods
Clustering MTBC strains using multiple biomarkers consists of a sequence of steps. First,
we generate a tensor with one mode representing the strains to be clustered, and two other
modes representing the two biomarkers. Second, we apply multiway models on the strain
mode of the tensor to get a score matrix of strains. Third, we use this score matrix to decide
similarity between strains, and cluster them using a stable version of k-means. In the final
step, we evaluate the results of clusterings using cluster validity indices to select the best k.
We outline the steps of the clustering framework in this section.
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A. Datasets
The dataset comprises of 6848 distinct MTBC strains as determined by spoligotype and 12-
loci MIRU, labeled with major lineages and SpolDB4 families. The strains are mainly from
the CDC dataset - a database collected by the CDC from 2004–2008 labeled with the major
lineages [4]. We also used the MIRUVNTRplus dataset which is labeled with SpolDB4
lineages. The original SpolDB4 labeled dataset contains only spoligotypes. We found all
occurrences of these spoligotypes in the CDC dataset. In this way we constructed a database
with spoligotype and MIRU patterns, with major lineages as determined by CDC, and
sublineages as given in SpolDB4. In total, the dataset has 571 East Asian (Beijing), 508
East-African Indian (CAS), 4580 Euro-American, 1023 Indo-Oceanic, 64 M. africanum and
102 M. bovis strains. We created 6 datasets from the CDC+MIRU-VNTRplus dataset, one
for each major lineage, and divided them into sublineages.

Multiple-Biomarker Tensor—The dataset is arranged as a three-way array with strains in
the first mode, spoligotype deletions in the second mode, and MIRU patterns in the third
mode. Each entry A(i, j, k) in the array corresponds to the number of repeats in MIRU
pattern k of strain i with spoligotype deletion j. If spoligotype deletion j does not exist in
strain i, then the tensor entry A(i, j, .) is 0. Thus strain datasets are formed as strain ×
spoligotype deletion × MIRU pattern tensors. Generation of these multiple-biomarker
tensors from the biomarker information of each strain is shown in Figure 1. We represent
spoligotype deletions with , where si ∈ {0, 1} and i ∈ {1, .., n} where n is the number of
informative spoligotype deletions found using feature selection. All possible deletions are
classified by their frequency as nonexistent, uncommon and common deletions. Then, every
uncommon deletion that is a supersequence of a common deletion is removed. The numbers
of spoligotype deletions used for each major lineage are as follows: East Asian (Beijing) 5,
East-African Indian (CAS) 18, Euro-American 109, Indo-Oceanic 28, M. africanum 22, and
M. bovis 34. We represent 12-loci MIRU with , where mj ∈ {0, .., 9, ≥ 9} and j ∈ {1, ..,
12}. Details of the multiple-biomarker tensor generation can be found in [10].

B. Multiway modeling
We used the PARAFAC and Tucker3 techniques to model the three-way biomarker tensor.
We determined the number of components for each model to ensure a bound on the
explained variance of data.

1) Multiway models—We used PARAFAC and Tucker3 models to explain the tensor
with high accuracy. Multiway modeling of multiple-biomarker tensors was carried out using
the n-way Toolbox of MATLAB by Andersson et al. [11].

PARAFAC: PARAFAC is a generalization of SVD to multiway data [12]. A 3-way array
 is modeled by an R-component PARAFAC model as follows:

(1)

where A ∈ , B ∈ , C ∈  are component matrices of first, second and third
mode respectively. G  is the core array and E ∈  is the residual term
containing all unexplained variation.

Tucker3: Tucker3 is an extension of bilinear factor analysis to multiway datasets [13]. A 3-
way array X ∈  is modeled by a (P, Q, R)-component Tucker3 model as follows:
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(2)

where A ∈ , B ∈ , C ∈  are component matrices of first, second and third
mode. G ∈  is the core array and E ∈  is the residual term.

2) Model validation—A multiway model is appropriate if adding more components to any
mode does not improve the fit considerably. We used the core consistency diagnostic
(CORCONDIA) to determine the number of components of the PARAFAC model [14]. The
core consistency diagnostic measures the similarity of the core array G of the model and the
superdiagonal array of ones. As a rule of thumb, Bro et al. suggests that a core consistency
above 90% implies an appropriate model [14].

In order to determine the number of components of the Tucker3 model, we started by fitting
a Tucker3 model to the tensor with the same number of components. We picked the number
of components that explains the variance of the data with close to 100% accuracy. Then we
decreased the number of components until the most important factor combinations are found
that explain over 90% of the variance of the data. The validated number of components
along with core consistency values for PARAFAC models and explained variance for
Tucker3 models are included in Table I.

C. Clustering algorithm
We developed the kmeans_mtimes_seeded algorithm, a modified version of the k-means
algorithm, to group MTBC strains based on the score matrices of the multiway models. K-
means is a commonly used clustering algorithm with two weaknesses: 1) Initial centroids are
chosen randomly, 2) The objective value of k-means, measured as within-cluster sum of
squares, may converge to local minima, rather than finding the global minimum. We solve
these problems with two improvements: 1) Initial centroids are chosen by careful seeding,
using a heuristic called kmeans++, suggested by Arthur et al. [15]. Let D(x) represent the
shortest Euclidean distance from data point x to the closest center already chosen. kmeans++
chooses a new centroid at each step such that the new centroid is furthest from all chosen
centroids. 2) The local minima problem is partially solved by repeating the k-means
algorithm multiple times and getting the run with minimum objective value. The
kmeans_mtimes_seeded algorithm is more stable than the k-means algorithm, and produces
more accurate results. The number of clusters, k, is selected as described below. Details of
kmeans_mtimes_seeded algorithm are included in [10].

D. Cluster Validation
Clustering results for the MTBC strains are evaluated to determine the best k and compare it
with existing sublineages using cluster validity indices. We used best-match stability to pick
the most stable clusterings. In case of a tie in average best-match stability, we used DD-
weighted gap statistic or F-measure for cluster validation [16].

Best-Match Stability—The stability of a clustering is found by the distribution of
pairwise similarities between clusterings of subsamples of the data. We use best-match
stability suggested by Hopcroft et al. [17]. The algorithm clusters the data multiple times,
and compares the reference cluster to the model clusterings. The stability of each cluster is
calculated by finding the average best match between this cluster and the clusters identified
using model clusterings. Given two sets C and C′, the match value is:
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and we define the best-match stability of cluster C compared to a clustering of strains into k
clusters as:

High average best-match values denote that the two clusters have many strains in common
and are of roughly the same size.

DD-weighted Gap Statistic—We used the DD-weighted gap statistic developed by Yan
et al. to validate clusterings and pick the correct number of clusters [18]. This is an
improved version of the gap statistic suggested by Tibshirani et al., and it measures within-
cluster homogeneity. We used uniform distribution over a box aligned with the principal
components of the dataset as the reference distribution, referred to as DDgap/PC. This
measure can also find the hierarchical structure of a dataset if it exists.

F-measure—The F-measure is the harmonic mean of the precision and recall of a
clustering with respect to a reference clustering. We use it to evaluate how similar the tensor
sublineages are to the SpolDB4 families. According to the contingency table in Table II,
precision, recall and F-measure are defined as follows:

Since the F-measure combines precision and recall of clustering results, it has proven to be a
successful metric.

IV. RESULTS
We subdivide each of the major lineages of MTBC into sublineages using multiple-
biomarker tensors. For each major lineage, we generated the multiple-biomarker tensor
using spoligotypes and MIRUs and applied multiway models to identify putative
sublineages of each major lineage. To evaluate the resulting clusters, we compare them with
the published SpolDB4 families for each major lineage dataset. The results are summarized
in Table III. For each lineage, results show that the tensor approach finds highly stable
sublineages (the best-match stability is ≥85%) and that the number of sublineages found
using tensors is close but not always identical to the number of SpolDB4 families.

The F-measures range from 57% to 87% indicating that the sublineages found by the tensor
only partially overlap with those of SpolDB4. Recall that the SpolDB4 families were created
by expert analysis using only spoligotypes and that analysis by alternative biomarkers such
as SNP and LSP has led to alternative definitions of MTBC sublineages. The tensor
sublineages are based on spoligotype and MIRU, thus in some cases the tensor divides
SpolDB4 families due to difference in MIRU even if the spoligotypes match. In other cases,
the tensor analysis merges together the SpolDB4 families because the collective
spoligotypes and MIRU are very close. In some cases, the tensor analysis almost exactly
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reproduces a SpolDB4 family providing strong support for the existence of these families
with no expert guidance. Thus multiway analysis of MTBC strains of each major lineage
with multiple biomarkers leads to new sublineages and reaffirms existing ones. Further
insight can be obtained by examining the putative sublineages for each major lineage. The
confusion matrix, PCA plot, spoligotype signatures and MIRU signatures for all lineages
can be found in the full length technical report [10].

A. Sublineage structure of M. africanum
The tensor methodology used Tucker3 to construct four distinct sublineages for M.
africanum. Figure 2 shows heat maps representing the spoligotype and MIRU signatures for
each of the tensor sublineages with white indicating 0 probability and black indicating
probability of 1. Table IV gives the stability of each sublineage and the correspondence
between the tensor sublineages and the SpolDB4 families. The four sublineages are quite
distinct as shown by the stability of 1 for each sublineage and the clear separation of the four
sublineages in the PCA plot in Figure 2.

The tensor sublineages strongly support the existence of the SpolDB4 AFRI_1, AFRI_2 and
AFRI_3 families and show that the AFRI family is composed of these three families. With
an F-measure of 66%, the tensor sublineages differ markedly from the SpolDB4 families for
the M. africanum lineage. The AFRI family results largely explain this difference – AFRI is
spread across three tensor sublineages. Disregarding AFRI, sublineages MA2 and MA3
match families AFRI_3 and AFRI_2 respectively. Interestingly, AFRI_1 is further
subdivided into sublineages MA1 and MA4. The spoligotypes in MA1 and MA4 differ by
only one contiguous deletion of spacers 22 through 24, but their MIRU signature clearly
distinguishes them especially in MIRU loci 10, 12 and 40. The tensor indicates that the
AFRI sublineage classification defines somewhat generic M. africanum strains that can be
distinctly placed in the groups MA1 (part of AFRI_1), MA4 (other part of AFRI_1), MA2
(AFRI_3) and MA3 (AFRI_2).

The MIRU-VNTRplus labels, determined on the basis of LSPs indicate that there are two
sublineages, West African 1 and West African 2 within M. africanum. Table V indicates the
correspondence between the tensor sublineages and MIRU-VNTRplus labels. MA1 and
MA4 clearly correspond to West African 2 and MA3 corresponds to West African 1. There
are no data labeled by MIRU-VNTRplus in MA2, but we speculate that it is West African 1
since MA2 and MA3 have more closely related MIRU and spoligotype signatures than MA2
and MA1.

B. Sublineage structure of M. bovis
The tensor methodology used PARAFAC to construct 3 sublineages for M. bovis, MB1,
MB2 and MB3, while the dataset contains 5 SpolDB4 families, BOV, BOVIS1,
BOVIS1_BCG, BOVIS2 and BOVIS3. All the clusters have perfect stability and are well
distinguished in the PCA plot [10]. Much like the M. africanum SpolDB4 AFRI family, the
BOV family defines a generic M. bovis that spreads across all three tensor sublineages.
Disregarding BOV, MB1 consists of all of BOVIS1 and BOVIS1_BCG. Since
BOVIS1_BCG is the attenuated bacillus Calmette-Guérin (BCG) vaccine strain, it is
difficult to distinguish it from BOVIS1 using only MIRU and spoligotypes. Therefore, the
merger of BOVIS1 and BOVIS1_BCG makes genetic sense. Disregarding BOV, the MB2
and MB3 sublineages exactly match the SpolDB4 families BOVIS3 and BOVIS2
respectively.
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C. Sublineage structure of East Asian (Beijing)
The tensor methodology used PARAFAC to construct five distinct sublineages for East
Asian denoted B1 through B5. The variability in the spoligotypes of East Asian is limited to
spacers 35 through 43 since all East Asian strains have spacers 1 to 34 absent. Since the
SpolDB4 classification is based only on spoligotypes, the limited variability allows only two
families, BEIJING and BEIJING-LIKE. The tensor cleanly subdivides BEIJING into three
sublineages B1, B4 and B5 all with stability 1. Spoligotype signatures of these sublineages
differ, and MIRU signature of sublineage B5 is clearly distinct in MIRU locus 40. The
tensor subdivides the BEIJING-LIKE into sublineages B2 and B3 each with distinct
spoligotype signatures. Thus the tensor strongly supports the existence of BEIJING and
BEIJING-LIKE families, but also suggests that they can be further subdivided.

D. Sublineage structure of East-African Indian (CAS)
The tensor methodology used PARAFAC to construct three distinct sublineages for East-
African Indian (also known as CAS) denoted C1, C2 and C3, while the dataset has four
SpolDB4 lineages CAS, CAS1_DELHI, CAS1_KILI and CAS2. All sublineages are highly
stable with stability 1. Much like with AFRI and BOV, the generic CAS family was divided
across C1, C2, and C3 sublineages. Disregarding CAS, C1 only contains CAS1_DELHI and
C3 only contains CAS2. C2 contains all of CAS1_KILI. C2 also contains 6 CAS1_DELHI
strains, but the vast majority (327 strains) of CAS1_DELHI fall in C1. Variabilities in
MIRU loci 10, 26, and 40 are key to defining differences in the sublineages along with
distinct deletion patterns in the spoligotypes.

E. Sublineage structure of Indo-Oceanic
The tensor methodology used PARAFAC to construct eleven distinct sublineages for Indo-
Oceanic denoted IO1 to IO11 while the dataset has thirteen SpolDB4 lineages. The EAI5
family acts much like the CAS, BOV and AFRI families, spreading across all the Indo-
Oceanic sublineages except IO2 and IO5. The small MANU1 family also spreads across
four sublineages. The existence of the MANU1 family has not been well established by
other biomarkers. Disregarding these two troubling families, the tensor sublineages
correspond closely to the SpolDB4 families. Specifically, the mapping between the most
stable clusters (with sublineage stability) and the families are IO1 (.99) equals EAI3_IND,
IO2 (1) equals ZERO, IO3 (.99) equals EAI2_NTB, IO4 (.98) equals a subset of EAI5, IO9
(.97) equals some EAI5 plus all of EAI8_MDG and some of EAI1_SOM, IO11 (.94)
contains the vast majority of EAI1_SOM and EAI6_BDG1, and some of EAI5, and IO7 (.
79) equals EAI4_VNM and EAI. EAI2_MANILLA is subdivided into three sublineages:
IO8 (1) consisting of 241 strains, IO5 (.81) with 24 strains, and IO10 (.69) with 11 strains.
While the spoligotype and MIRU signatures show that there are distinct EAI5 subgroups,
the definition of the EAI5 and MANU1 groups are not well supported by the tensor analysis.
They may represent a more general sublineage that is further subdivided. Distinct patterns
are observable in the spoligotype and MIRU signatures for most of the lineages.

F. Sublineage structure of Euro-American
We used Tucker3 to find 33 sublineages for Euro-American denoted E1 to E33, the same
number as the dataset which has 33 SpolDB4 lineages. Strains belonging to families H2,
H37Rv, H4, LAM12_MAD1, T1 (Tuscany variant), T1_RUS2, T4, T5_MAD2 and
T5_RUS1 are clustered in tensor sublineages E15, E24, E12, E8, E18, E6, E29, E29 and
E18 respectively. In contrast, the T1 family, an ancestral strain family, is distributed across
25 tensor sublineages, with most of the T1 strains in E29. Sublineage stability is above .90
for 18 tensor sublineages. Spoligotype and MIRU signatures of sublineages suggest either
subdivision or merging of SpolDB4 families. For instance, tensor sublineages E2, E14 and
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E25 include T1 strains only. In addition to common spacer deletions of Euro-American
strains, E2 lacks spacers 15 through 26, E14 lacks spacers 9 through 23 and E25 lacks
spacers 3 through 12 and 14 through 18. This sublineage classification further subdivides the
poorly-defined ancestor T1 family. Strains of LAM families on the other hand are grouped
together in tensor sublineages E1 and E21. Prior studies have found that LAM Rio strains
identified by SNPs are found in multiple SpolDB4 lineages [19]. Therefore, it is not
surprising that use of the multiple biomarkers leads to subdivision or merging of some
SpolDB4 families.

V. Conclusion
We developed a clustering framework which groups MTBC strains based on their
spoligotype and MIRU information via multiple-biomarker tensors. We generated multiple-
biomarker tensors for representation of high-dimensional biomarker information and used
multiway models for dimensionality reduction. The multiway representation determines a
transformation of the data that captures the similarities and differences between strains
based on two distinct biomarkers. We clustered MTBC strains based on transformed data
using improved k-means clustering and validated clustering results. We evaluated the
sublineage structure of major lineages of MTBC and found similarities and clear distinctions
in our subdivision of major lineages compared to the SpolDB4 classification. Simultaneous
analysis of spoligotype and MIRU through multiple-biomarker tensors and clustering of
MTBC strains lead to coherent sublineages of major lineages with clear and distinctive
spoligotype and MIRU signatures.

The clustering framework used in this study can be further extended to find subgroups of
MTBC strains based on other biomarkers such as RFLP and SNPs. We can use spoligotype
and MIRU to group MTBC strains and compare them to labels derived from SNPs.
Representation of MTBC genotype via multiple-biomarker tensors can also be extended to
include 15-loci and 24-loci MIRU patterns. Moreover, more biomarkers can be used in the
MTBC strain genotype representation. We can extend multiple-biomarker tensors and add a
new mode for each biomarker added to the genotype representation of strains, e.g. RFLP.
This would be a major advancement because there is no way to define a similarity measure
between RFLPs of strains other than determining whether or not the patterns match exactly.
Addition of new biomarkers will increase the number of modes of the multiple-biomarker
tensor, while the multiway analysis methods remain the same.

Future work will involve using various biomarkers to group MTBC strains. Multiple-
biomarker tensors with spoligotype, MIRU patterns, and RFLP in modes may lead to a
clustering of MTBC strains which is comparable with lineages identified on the basis of
SNPs. This flexible representation should enable identification of subgroups of MTBC
strains based on nucleotide sequences in one of the modes. Since many subfamilies are
clearly known and more biomarkers are being developed, the multiple-biomarker tensor can
be used in supervised and even semi-supervised classification to build reliable classifiers of
MTBC sublineages and can be used to enhance TB control, epidemiology and research.
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Fig. 1.
Biomarker kernel matrix  ⊗  for each strain forms multiple-biomarker tensor. 
represents spoligotype deletions and  represents MIRU patterns.
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Fig. 2.
PCA plot of clustering, spoligotype signatures and MIRU signatures of tensor sublineages of
M. africanum strain dataset.
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TABLE I

Number of components used in PARAFAC and Tucker3 model to fit the tensors for the datasets to be
clustered. We used core consistency diagnostic to validate PARAFAC models and percentage of explained
variance to validate Tucker3 models.

Major Lineage
PARAFAC Tucker3

# Components Core Consistency # Components Variance

M. africanum 3 94.79 [4 4 3] 95.66

M. bovis 2 100.00 [7 6 4] 95.05

East Asian (Beijing) 2 100.00 [3 4 2] 93.09

East-African Indian (CAS) 2 100.00 [11 10 4] 97.23

Indo-Oceanic 4 94.32 [15 13 5] 95.55

Euro-American 14 99.03 [14 13 5] 89.77
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TABLE II

Contingency table. Given that there are n data points in the dataset, the following condition holds:

 .

Same cluster Different clusters

Same class a b

Different classes c d
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TABLE III

Number of SpolDB4 families and number of tensor clusters for each major lineage. F-measure and best-match
stability values assess the agreement of the sublineages to the SpolDB4 families and the certainty of tensor
sublineages respectively.

Major Lineage # SpolDB4 families # Tensor sublineages F-measure Average best-match stability

M. africanum 4 4 0.66 1

M. bovis 5 3 0.71 1

East Asian (Beijing) 2 5 0.87 1

East-African Indian (CAS) 4 3 0.82 1

Indo-Oceanic 13 11 0.57 0.90

Euro-American 33 33 0.61 0.85
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TABLE IV

Confusion matrix for 64 distinct M. africanum strains showing the correspondence between the SpolDB4
families and tensor sublineages. The stability of each of the tensor sublineages is given in the second row.

MA1 MA2 MA3 MA4

Stability 1 1 1 1

AFRI 2 1 5 0

AFRI_1 21 0 0 16

AFRI_2 0 0 12 0

AFRI_3 0 6 1 0
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TABLE V

Confusion matrix for 64 distinct M. africanum strains showing the correspondence between the West African
1 and 2 sublineages and tensor sublineages. For data not from MIRU-VNTRplus, the lineage is indicated as
unspecified.

MA1 MA2 MA3 MA4

West African 1 0 0 5 0

West African 2 21 0 0 16

Unspecified 2 7 13 0
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