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Abstract
We study the problem of learning classification models from complex multivariate temporal data
encountered in electronic health record systems. The challenge is to define a good set of features
that are able to represent well the temporal aspect of the data. Our method relies on temporal
abstractions and temporal pattern mining to extract the classification features. Temporal pattern
mining usually returns a large number of temporal patterns, most of which may be irrelevant to the
classification task. To address this problem, we present the minimal predictive temporal patterns
framework to generate a small set of predictive and non-spurious patterns. We apply our approach
to the real-world clinical task of predicting patients who are at risk of developing heparin induced
thrombocytopenia. The results demonstrate the benefit of our approach in learning accurate
classifiers, which is a key step for developing intelligent clinical monitoring systems.

I. Introduction
Advances in data collection and data storage technologies have led to the emergence of
complex multivariate temporal datasets, where data instances are traces of complex
behaviors characterized by multiple time series. Such data appear in a wide variety of
domains, such as health care, sensor measurements, intrusion detection, motion capture,
environmental monitoring and many more. Designing algorithms capable of learning from
such complex data is one of the most challenging topics of data mining research.

This work primarily focuses on developing methods for analyzing electronic health records
(EHRs). Each record consists of multiple time series of clinical variables collected for a
specific patient, such as laboratory tests, medication orders and physiological parameters.
The record may also provide information about the patient’s diseases, surgical interventions
and their outcomes. Learning classification models from this data is extremely useful for
patient monitoring, outcome prediction and decision support.

The task of temporal modeling in EHR data is very challenging mostly because the time
series for clinical variables are acquired asynchronously, that is, they are measured at
different time moments and they are irregularly sampled in time. Hence, most time series
feature extraction techniques [1], [2], [3] cannot be applied on this data.

The key step for analyzing EHR data is to define a language that can adequately represent
the temporal dimension of the data. Our approach uses temporal abstractions [4] and
temporal logic [5] in order to define patterns able to describe temporal interactions among
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multiple time series. For example, this allows us to define complex temporal patterns like
“the administration of heparin precedes a decreasing trend in platelet counts”.

The next step is to automatically mine temporal patterns that are important to describe and
predict the studied medical condition. Our approach adopts the frequent pattern mining
paradigm. However, we are not interested in finding all frequent temporal patterns, but only
those that are important for the classification task. To address this, we present the minimal
predictive temporal patterns (MPTP) framework, which relies on a statistical test to
effectively filter out non-predictive and spurious temporal patterns.

We demonstrate the usefulness of our framework on a real-world clinical task of predicting
patients who are at risk of developing heparin induced thrombocytopenia (HIT), a life
threatening condition that may develop in patients treated with heparin. We show that
incorporating the temporal dimension is crucial for this task. In addition, we show that the
MPTP framework provides useful features for classification and can be beneficial for
knowledge discovery because it returns in a small set of discriminative temporal patterns
that are easy to analyze by a domain expert.

Our main contributions are summarized as follows:

• We propose a novel temporal pattern mining approach for classifying complex
EHR data.

• We extend our minimal predictive patterns framework [6] to the temporal domain.

• We present an efficient mining algorithm that integrates pattern selection and
frequent pattern mining.

II. Related Research
Our work relies on temporal abstractions [4] as a preprocessing step to represent the numeric
time series data in an interval-based format. The problem of mining temporal patterns from
time interval data is a relatively young research field. Most existing approaches [7], [8], [9],
[10], [11], [12], [13] extend sequential pattern mining methods [14], [15] to handle time
interval data1. All of these related methods have been mainly applied in an unsupervised
fashion to mine temporal association rules. Our work is different because we are mostly
interested in mining predictive temporal patterns and using them as features in a
classification model.

III. Methodology
Let D = {< xi, yi >} be a dataset such that xi ∈ X is the electronic health record for patient i
up to time ti, and yi ∈ Y is a class label associated with a medical condition at time ti. Our
objective is to learn a function f: X → Y that can predict accurately the class labels for future
patients. Learning f directly from X is very difficult because the instances consist of multiple
irregularly sampled time series of different length. Therefore, we want to learn a space

transformation ψ: X → X′ that maps each instance xi to a fixed-size feature vector  that
preserves the predictive temporal characteristics of xi as much as possible.

We propose using the following steps to obtain ψ:

1. Convert the time series variables into a higher level description using temporal
abstractions.

1Sequential pattern mining is a special case of temporal pattern mining, in which time intervals are instantaneous.
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2. Mine the minimal predictive temporal patterns Ω.

3. Transform each EHR instance xi to a binary vector  of size equal to |Ω|, where

every feature in  corresponds to a specific temporal pattern P ∈ Ω and its value is
1 if xi contains P; and 0 otherwise.

After applying this transformation, we can use a standard machine learning method (e.g.,

SVM, decision tree, naïve Bayes, or logistic regression) on { } to learn function f.

A. Temporal Abstraction
The goal of temporal abstraction [4] is to transform the time series for all clinical variables
to a high-level qualitative form. More specifically, each clinical variable (e.g., series of
white blood cell counts) is transformed into an interval-based representation 〈v1[b1, e1], …,
vn[bn, en]〉, where vi ∈ Σ is an abstraction that holds from time bi to time ei and Σ is the
abstraction alphabet that represents a finite set of all permitted abstractions.

The most common clinical variables in EHR data are: medication administrations and
laboratory results.

Medication variables are usually represented in an interval-based format and they specify
the time interval during which a patient was taking a specific medication. For these
variables, we simply use abstractions that indicate whether the patient is on the medication:
Σ = {ON, OFF}.

Lab variables are usually numerical time series that specify the patient’s laboratory results
over time. For these variables, we use two types of temporal abstractions:

• Trend abstraction uses the following abstractions: Decreasing (D), Steady (S) and
Increasing (I), i.e., Σ = {D, S, I}. In our work, we segment the lab series using the
sliding window method [16], which keeps expanding each segment until its
interpolation error exceeds some error bound. The abstractions are determined from
the slopes of the fitted segments. For more information about trend segmentation,
see [16].

• Value abstraction uses the following abstractions: Very Low (VL), low (L),
Normal (N), High (H) and Very High (VH), i.e., Σ = {VL, L, N, H, VH}. We use the
5th, 25th, 75th and 95th percentiles on the lab values to define these 5 states: a
value below the 5th percentile is very low (VL), a value between the 5th and 25th
percentiles is low (L), and so on.

Figure 1 shows the trend and value abstractions on a time series of platelet counts of a
patient.

State Sequence Representation—We define a state to be an abstraction for a specific
variable. For example, state E: Vi = D represents a decreasing trend in the values of
temporal variable Vi. We also use the shorthand notation Di to denote this state, where the
subscript indicates that D is abstracted from the ith variable. We define a state interval to be
a state that holds during an interval, that is, state interval (E, bi, ei) is a realization of state E
in a data instance and has specific start time (bi) and end time (ei).

Definition 1—A state sequence is a series of state intervals, where the state intervals are
ordered according to their start times:
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Note that we do not require ei to be less than bi+1 because the states are obtained from
multiple temporal variables and their intervals may overlap.

After abstracting all temporal variables, we represent every instance (i.e., patient) in the
database D as a state sequence. As a result, D can be viewed as a set of state sequences. We
will use the terms instance and state sequence interchangeably hereafter.

B. Temporal Relations
Allen’s temporal logic [5] describes the relations for any pair of state intervals using 13
possible relations. However, it suffices to use the following 7 relations: before, meets,
overlaps, is-finished-by, contains, starts and equals because the other relations are simply
their inverses. Allen’s relations have been used by the majority of research on mining time
interval data ([7], [8], [11], [12]).

Most of Allen’s relations require equality of one or two of the intervals end points. That is,
there is only a slight difference between overlaps, is-finished-by, contains, starts and equals
relations. These relations are too specific for pattern discovery when the time information in
the data is noisy (not precise) [9], which is the case in EHR data.

Therefore we opt to use only two temporal relations, before (b) and co-occurs (c), which we
define as follows: Given two state intervals Ei and Ej:

• (Ei, bi, ei) before (Ej, bj, ej) if ei < bj

• (Ei, bi, ei) co-occurs with (Ej, bj, ej), if bi ≤ bj ≤ ei, i.e. Ei starts before Ej and there
is a nonempty time period where both Ei and Ej occur.

C. Temporal Patterns
In order to obtain temporal descriptions of the data, basic states are combined using
temporal relations to form temporal patterns.

Definition 2—A temporal pattern is defined as P = (〈S1, …, Sk〉, R) where Si is the ith
state of the pattern and R is an upper triangular matrix that defines the temporal relations
between each state and all of its following states:

The size of pattern P is the number of states it contains. If size(P)=k, we say that P is a k-
pattern. Hence, a single state is a 1-pattern (a singleton). We also denote the space of all
temporal patterns of arbitrary size by TP.

Figure 2 graphically illustrates a 4-pattern with states 〈A1, B2, C3, A2〉, where the states are
abstractions of temporal variables V1, V2 and V3 using abstraction alphabet Σ = {A, B, C}.
The half matrix on the right represents the temporal relations between every state and the
states that follow it.

Interesting patterns are usually limited in their temporal extensions, i.e., it would not be
interesting to use the before relation to relate states that are temporally very far away from
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each other. Therefore, the definition of temporal patterns usually comes with a specification
of a window size that defines the maximum pattern duration.

In our task, we are interested in detecting events (medical conditions) that may happen at a
specific time ti during patient xi hospitalization period. Hence, recent measurements of the
clinical variables of xi (close to ti) are usually more predictive than distant measurements
[17]. The approach taken in this paper is to define windows of fixed widths that are aligned
with ti for every xi and only mine temporal patterns that can be observed inside these
windows.

Definition 3—Let T = 〈(E1, b1, e1), …, (El, bl, el)〉 be a state sequence that is visible within
a specific window. We say that pattern P = (〈S1, …, Sk〉, R) occurs in T (or that P covers T),
denoted as P ∈ T, if there is an injective mapping π from the states of P to the state intervals
of T such that:

Notice that checking the existence of a temporal pattern in a state sequence requires: (1)
matching all k states of the patterns and (2) checking that all k(k − 1)/2 temporal relations
are satisfied.

Definition 4—P = (〈S1, …, Sk1〉, R) is a subpattern of , denoted as P
⊆ P′, if there is an injective mapping π from the states of P to the states of P′ such that:

Definition 5—The support of temporal pattern P in database D is the number of instances
that contain P:

Note that the support definition satisfies the Apriori property [18]:

We define a rule to be an implication of the form P ⇒ y, where P is a temporal pattern and y
∈ Y is a specific value of the target class variable. We say that rule P ⇒ y is a subrule of
rule P′ ⇒ y′ if P ⊆ P′ and y = y′.

Definition 6—The confidence of rule P ⇒ y is the proportion of instances from class y in
all instances covered by P:

where Dy denotes all instances in D that belong to class y.
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The confidence of rule R: P ⇒ y is the maximum likelihood estimation of the probability
that an instance covered by P belongs to class y. If R is a predictive rule, then its confidence
should be larger than the prior probability of y in the data.

D. Mining Frequent Temporal Patterns
In this section, we present the algorithm for mining frequent temporal patterns. We chose to
utilize the class information and mine frequent patterns from each class separately. The
algorithm takes Dy: the state sequences from class y and min-supy: a user specified minimum
support threshold. It outputs all frequent temporal patterns in Dy:

The mining algorithm performs an Apriori-like level-wise search [18]. It first scans the
database to find all frequent 1-patterns. Then, it performs the following two phases to obtain
the frequent k-patterns:

1. The candidate generation phase: To generate candidate k-patterns using the
frequent (k−1)-patterns.

2. The counting phase: To count the generated candidates and remove the infrequent
ones.

In the following, we discuss how to improve the efficiency of each phase.

1) Candidate Generation—We generate a candidate (k+1)-pattern by adding a new state
(1-pattern) to the end of a frequent k-pattern. Let us assume that we are extending pattern P
= (〈S1, …, Sk〉, R) with state Sk+1 in order to generate candidate P′ = (〈S1, …, Sk, Sk+1〉, R′).

First, we set  for i ∈ {1, …, k − 1} ∧ j ∈ {i + 1, …, k} so that P ⊂ P′. In order to
fully define P′, we still need to specify the temporal relations between states S1, …, Sk and

the new state Sk+1, i.e., we should define  for i ∈ {1, …, k}. Since we have two possible
temporal relations (before and co-occurs), there are 2k possible ways to specify the missing
relations. That is, 2k possible candidates can be generated when adding state Sk+1 to pattern
P. However, many of these candidates are not necessary to generate because they are
incoherent, as we see in the following.

Definition 7: A temporal pattern P is incoherent if there does not exist any valid state
sequence that contains P.

We introduce the following two propositions to avoid generating incoherent candidates
when extending frequent pattern P = (〈S1, …, Sk〉, R) with state Sk+1.

Proposition 1: P′ = (〈S1, …, Sk, Sk+1〉, R′) is incoherent if  and Si and Sk+1 are
extracted from the same variable.

Proposition 2: P′ = (〈S1, …, Sk, Sk+1〉, R′) is incoherent if .

We omit the proofs of these simple propositions due to space limitation.

Example 1: Assume we want to extend pattern P = (〈A1, B2, C3, A2〉, R) in Figure 2 with
state B3 to generate candidates of the form (〈A1, B2, C3, A2, B3〉, R′). The relation between

A2 and the new state B3 can be either before or co-occurs:  or . However,
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according to proposition 1, C3 and B3 cannot co-occur because they both belong to temporal

variable . Also, according to proposition 2, B2 cannot co-occur with 

because B2 is before  and A2 should start before B3. Similarly, A1 cannot co-occur

with  because A1 is before . Therefore, instead of naively generating
all 24 = 16 candidates, we generate only 2 candidates.

2) Speeding up the Counting Phase—Even by eliminating incoherent patterns, the
mining algorithm is still computationally expensive because for every generated candidate,
we need to scan the entire database in the counting phase to check whether or not it is a
frequent pattern. So can we omit portions of the data that are guaranteed not to contain the
candidate we are counting? The proposed solution is inspired by [19] that developed the
vertical data format for itemset mining and later expended it to sequential pattern mining
[15].

The idea is to associate every frequent pattern P with a list of identifiers for all state
sequences that contain P:

Clearly, sup(P; Dy) = |P.id-list|.

Definition 8: The potential id-list (pid-list) of pattern P is the intersection of the id-lists of
its subpatterns:

Proposition 3: ∀P ∈ TP: P.id-list ⊆ P.pid-list

Proof: Assume Ti is a state sequence in the database such that P ∈ Ti. By definition, i ∈
P.id-list. We also know that Ti must contain all subpatterns of P according to the Apriori
property: ∀S ⊂ P: S ∈ Ti. Therefore, ∀S ⊂ P: i ∈ S.id-list ⇒ i ∈ ∩S⊂P S.id-list = P.pid-list.

Putting it all together, we compute the id-lists in the counting phase (based on the true
matches) and the pid-lists in the candidate generation phase. The key idea is that when we
count a candidate, we only need to check the state sequences in its pid-list because:

This offers a lot of computational savings since the pid-lists get smaller as the size of the
patterns increases, making the counting phase much faster.

Figure 3 shows the candidate generation algorithm. After generating coherent candidates
(line 3), we apply the standard Apriori pruning [18], which states that for a (k+1)-candidate
to be frequent, all of its k-subpatterns must be frequent as well (lines 5 and 6). In our
implementation, we hash all patterns in Fk, so that searching the subpatterns in Fk requires
only k operations. Now that we found all k-subpatterns, we simply intersect their id-lists to
compute the pid-list of the candidate (line 7). Note that the cost of the intersection is linear
because the id-lists are always sorted according to the order of the instances in the database.
Line 8 is used to mine the minimal predictive temporal patterns and will be explained later
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in Section III-F. Finally, line 9 applies an additional pruning to remove candidates that are
guaranteed not to be frequent according to the following implication of proposition 3:

E. Minimal Predictive Temporal Patterns
Applying frequent pattern mining on data usually results in a very large number of temporal
patterns, most of which may be unimportant for the classification task. Using all of these
patterns as features can hurt the classification performance due to the curse of
dimensionality. Therefore, it is crucial to develop effective methods to select a subset of
patterns that are likely to improve the classification performance.

The task of pattern selection is more challenging than the standard task of feature selection
due to the nested structure of patterns: if P is frequent, all instances covered by P are also
covered by all of its subpatterns, which are also in the result of the frequent mining method
(the Apriori property). This nested structure causes the problem of spurious patterns, which
we will define and then explain using an example.

Definition 9—A temporal pattern P is a spurious pattern if P is predictive when evaluated
by itself, but it is redundant given one of its subpatterns.

Example 2: Assume that having very low platelet counts (PLT) is an important risk factor
for heparin induced thrombocytopenia (HIT). If we denote pattern PLT=VL by P, we expect
conf (P ⇒ HIT) to be much higher than the HIT prior. Now assume that there is no causal
relation between the patient’s potassium (K) level and his risk of HIT, so a pattern like K=N
(normal potassium) does not change our belief about the presence of HIT. If we combine
these two patterns, for example P′:K=N before PLT=VL, we expect that conf (P′ ⇒ HIT) ≈
conf (P ⇒HIT). The intuition behind this is that the instances covered by P′ can be seen as a
random sub-sample of the instances covered by P. So if the proportion of HIT cases in P is
relatively high, we expect the proportion of HIT cases in P′ to be high as well.

The problem is that if we examine P′ by itself, we may falsely conclude that it is a good
predictor of HIT, where in fact this happens only because P′ contains the real predictive
pattern P. Having spurious patterns in the mining results is undesirable for classification
because it leads to many redundant and highly correlated features. It is also undesirable for
knowledge discovery because spurious patterns can easily overwhelm the domain expert and
prevent him/her from understanding the real causalities in the data.

Having discussed these problems, we propose the minimal predictive temporal patterns
framework for selecting predictive and non-spurious temporal patterns for classification.

Definition 10—A frequent temporal pattern P is a minimal predictive temporal pattern
(MPTP) with respect to class y if rule P ⇒ y is significantly more predictive than all of its
subrules.

In order to complete the definition, we define the MPTP statistical significance test and
explain how to address the issue of multiple hypothesis testing.

The MPTP Significance Test: Assume we want to check whether temporal pattern P is an
MPTP with respect to class y. Suppose that P covers N instances in the entire database D
and covers Ny instances in Dy (the instances from class y). Let best_conf be the highest
confidence achieved by any subrule of P ⇒ y:
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The null hypothesis presumes that Ny is generated from N according to the binomial
distribution with probability best_conf. We perform a one sided statistical test and calculate
its p-value:

This p-value is the probability of observing Ny or more instances of class y out of the N
instances covered by P if the true underlying probability is best_conf. If the p-value is
smaller than a significance level α (e.g., p-value < 0.01), then this hypothesis is very
unlikely and we conclude that P ⇒ y is significantly more predictive than all its subrules,
hence P is an MPTP.

This test can filter out many spurious patterns. Going back to example 2, we do not expect
spurious pattern K=N before PLT=VL to be an MPTP because it does not predict HIT
significantly better that the real pattern: PLT=VL.

Correcting for Multiple Hypothesis Testing: When testing the significance of multiple
patterns in parallel, it is possible that some patterns will pass the significance test just by
chance (false positives). This is a concern for all techniques that rely on statistical tests. In
order to tackle this problem, the significance level should be adjusted by the number of tests
performed during the mining. In this work, we adopt the FDR (False Discovery Rate)
technique [20], which directly controls the expected proportion of false discoveries in the
result (the type I error). FDR is a simple method for estimating the rejection region so that
the false discovery rate is on average less than α. It takes as input sorted p-values: p(1) ≤ p(2)
≤ … ≤ p(m) and estimates k̂ that tells us that hypothesis associated with p(1), p(2), …, p(k̂) are
significant. We apply FDR to post-process all potential MPTP (patterns satisfying the MPTP
significance test) and select the ones that satisfy the FDR criteria.

F. Mining Minimal Predictive Temporal Patterns
The algorithm in Section III-D describes how to mine all frequent temporal patterns from
Dy. In this section, we explain how to mine the MPTP set from Dy. To do this, the algorithm
requires another input: D¬y, which is the instances in the database that do not belong to class
y: D¬y = D − Dy.

The process of testing whether temporal pattern P is an MPTP is not trivial because the
definition demands checking the pattern against all its subpatterns. That is, for a k-pattern,
we need to compare it with all of its 2k − 1 subpatterns!

In order to avoid this inefficiency, we associate every frequent pattern P with two values:

1. P.mcs (Maximum Confidence of Subpatterns) is the maximum confidence of all
proper subpatterns of P:

(1)

2. P.mc (Maximum Confidence) is the maximum confidence of P and all of its proper
subpatterns:
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(2)

Note that P.mcs is all we needed to perform the MPTP significance test for pattern P.
However, we need a way to compute P.mcs without having to access all subpatterns. The
idea is that we can reexpressed P.mcs for any k-pattern using the maximum confidence
values of its (k−1)-subpatterns:

(3)

This leads to a simple dynamic programming type of algorithm for computing these two
values. Initially, for every frequent 1-patterns P, we set P.mcs to be the prior probability of
class y in the data and compute P.mc using expression (2). In the candidate generation
phase, we compute mcs of a new candidate k-pattern using the mc values of its (k−1)-
subpatterns according to expression (3) (Figure 3: line 8). Then, we compute the mc values
for the frequent k-patterns, and repeat the process for the next levels.

1) Lossless Pruning—The MPTP significance test can help us to reduce the search
space. The idea is to prune pattern P if we guarantee that none of P’s superpatterns will be
an MPTP. However, since the algorithm is applied in a level-wise fashion, we do not know
the superpatterns of P. To overcome this difficulty, we define the optimal superpattern of P,
denoted as P*, to be a hypothetical pattern that covers all and only the instances of class y in
P, i.e., sup(P*, Dy) = sup(P, Dy) and sup(P*, D¬y) = 0. Clearly, P cannot generate any
superpattern that predicts y better than P*. Now, we prune P if P* is not an MPTP with
respect to P.mc (the highest confidence achieved by P and its subpatterns). Note that this
pruning is anti-monotonic and is guaranteed not to miss any MPTP.

Example 3: Assume that the support of pattern P in Dy is 10 and that P.mc = 0.75. We can
safely prune P because Prbinom(x ≥ 10; 10, 0.75) = 0.056, which is not significant at
significance level α = 0.01.

2) Lossy Pruning—This section describes a lossy pruning technique that speeds up the
mining at the risk of missing some MPTPs. We refer to the patterns mined with the lossy
pruning as A-MPTP (Approximated MPTP). The idea is to prune P if it does not show any
sign of being more predictive than its subpatterns. To do this, we simply perform the MPTP
significance test, but at a higher significance level α2 than the significance level used in the
original MPTP significance test: α2 ∈ [α, 1]. If P does not satisfy the MPTP test with respect
to α2, we prune P. Note that α2 is a parameter that controls the tradeoff between efficiency
and completeness. So if we set α2 = 1, we do not perform any lossy pruning. On the other
end of the spectrum, if we set α2 = α, we prune every non-MPTP pattern, which leads to
very aggressive pruning!

IV. Experimental Evaluation
In this section, we test and present results of our temporal pattern mining approach on the
problem of predicting patients who are at risk of developing heparin induced
thrombocytopenia (HIT) [21]. HIT is a prothrombotic disorder induced by heparin exposure
with subsequent thrombocytopenia (low platelets in the blood) and associated thrombosis
(blood clot). It is a life-threatening condition if it is not detected and managed properly.
Hence, it is extremely important to detect the onset of the condition.
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A. Dataset
We use data acquired from a database that contains 4,281 electronic health records of post
cardiac surgical patients [22]. From this database, we selected 220 instances of patients who
were considered by physicians to be at risk of HIT and 220 instances of patients without the
risk of HIT. The patients at risk of HIT were selected using information about the heparin
platelet factor 4 antibody (HPF4) test orders. The HPF4 test is ordered for a patient when a
physician suspects the patient is developing HIT and hence it is a good surrogate of the HIT-
risk label. The HIT-risk instances included clinical information up to the time HFP4 was
ordered. The negative (no HIT-risk) instances were selected randomly from the remaining
patients. These instances included clinical information up to some randomly selected time.

For every instance, we consider the following 5 clinical variables: platelet counts (PLT),
activated partial thromboplastin time (APTT), white blood cell counts (WBC), hemoglobin
(Hgb) and heparin orders. PLT, APTT, WBC and Hgb are numerical time series and we
segment them using trend and value abstractions (Section III-A). Heparin orders are already
in an interval-based format that specifies the time period the patient was taking heparin. We
set the window size of temporal patterns to be the last 5 days of every patient record.

B. Classification Performance
In this section, we test the ability of our methods to represent and capture temporal patterns
important for predicting HIT. We compare our methods, MPTP and its approximate version
A-MPTP, to the following baselines:

1. Last_values: The features are the most recent value of each clinical variable.

2. Last_abs: The features are the most recent abstractions of the clinical variables.

3. TP_all: The features are all frequent temporal patterns.

4. TP_IG: The features are the top 100 frequent temporal patterns according to
information gain (IG).

5. TP_chi: The features are the frequent temporal patterns that are statistically
significant according to the χ2 test with significance level α = 0.01. This method
applies FDR to correct for multiple hypothesis testing.

The first two methods (1–2) are atemporal and do not rely on any temporal ordering when
constructing their features. On the other hand, methods 3–5 use temporal patterns that are
built using temporal abstractions and temporal logic. However, unlike MPTP and A-MPTP,
they select the patterns using standard feature selection methods without considering the
nested structure of the patterns.

We set the significance level α = 0.01 for MPTP and A-MPTP, and we set the pruning
parameter α2 = 0.25 for A-MPTP (see Section III-F2). We set the minimum support (min-
sup) to be 10% of the number of instances in the class for all compared methods.

We judged the quality of the different feature representations in terms of their induced
classification performance. More specifically, we use the features extracted by each method
to build an SVM classifier and evaluate its performance using the classification accuracy
and the area under the ROC curve (AUC).

Table I shows the classification accuracy and the AUC for each of the methods. All
classification results are reported using averages obtained via 10-folds cross validation.

The results show that temporal features generated using temporal abstractions and temporal
logic are beneficial for predicting HIT, since they outperformed methods based on atemporal

Batal et al. Page 11

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2012 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



features. The results also show that the MPTP and A-MPTP are the best performing
methods. Note that although the temporal patterns generated by TP_all, TP_IG, and TP_chi
subsume or overlap MPTP and A-MPTP patterns, they also include many irrelevant and
spurious patterns that negatively effect their classification performance.

C. Knowledge Discovery
In order for a pattern mining method to be useful for knowledge discovery, the method
should provide the user with a small set of understandable patterns that are able to capture
the important information in the data.

Figure 4 compares the number of temporal patterns (on a logarithmic scale) that are
extracted by TP_all, TP_chi, MPTP and A-MPTP under different minimum support
thresholds. Notice that the number of frequent temporal patterns (TP_all) exponentially
blows up when we decrease the minimum support. Also notice that TP_chi does not help
much in reducing the number of patterns even though it applies the FDR correction. For
example, for min-sup=5%, TP_chi outputs 1,842 temporal patterns that are statistically
significant! This clearly illustrates the spurious patterns problem that we discussed in
Section III-E.

On the other hand, the number of MPTPs is much lower than the other methods and it is less
sensitive to the minimum support. For example, when min-sup=5%, the number of MPTPs
is about two orders of magnitude less than the total number of frequent patterns.

Finally notice that the number of A-MPTPs may in some cases be higher than the number of
MPTPs. The reason for this is that A-MPTP performs less hypothesis testing during the
mining (due to its aggressive pruning), hence FDR is less aggressive with A-MPTPs than
with MPTPs.

Table II shows the top 5 MPTPs according to the p-value of the binomial statistical test,
measuring the improvement in the predictive power of the pattern with respect to the HIT
prior in the dataset. Rules R1, R2 and R3 describe the main patterns used to detect HIT and
are in agreement with the current HIT detection guidelines [21]. Rule R4 relates the risk of
HIT with high values of APTT (activated partial thromboplastin time). This relation is not
obvious from the HIT detection guidelines. However it has been recently discussed in the
literature [23]. Finally R5 suggests that the risk of HIT correlates with having high WBC
values. We currently do not know if it is a spurious or an important pattern. Hence this rule
requires further investigation.

D. Efficiency
In this section, we study the effect of the different techniques we proposed for improving the
efficiency of temporal pattern mining. We compare the running time of the following
methods:

1. TP_Apriori: Mine the frequent temporal patterns using the standard Apriori
algorithm.

2. TP_id-lists: Mine the frequent temporal patterns using the vertical id-list format
described in Section III-D2.

3. MPTP: Mine the MPTP set using the vertical format and the lossless pruning
described in Section III-F1

4. A-MPTP: Mine the approximated MPTP set using the vertical format, the lossless
pruning and the lossy pruning described in Section III-F2.
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The experiments were conducted on a Dell Precision T7500 machine with an Intel Xeon
3GHz CPU and 16GB of RAM. All algorithms are implemented in MATLAB.

Figure 5 shows the execution times (on a logarithmic scale) of the above methods using
different minimum support thresholds. We can see that using the vertical data format greatly
improves the efficiency of frequent temporal pattern mining as compared to the standard
Apriori algorithm. For example, for min-sup=10%, TP_id-lists is more than 6 times faster
than TP_Apriori.

Notice that the execution time of frequent temporal pattern mining (both TP_Apriori and
TP_id-lists) blows up when the minimum support is low. On the other hand, MPTP controls
the mining complexity and the execution time increases much slower than frequent pattern
mining when the minimum support decreases. Finally, notice that A-MPTP is the most
efficient method. For example, for min-sup=5%, A-MPTP is around 4 times faster than
MPTP, 20 times faster than TP_id-lists and 60 times faster than TP_Apriori.

V. Conclusion
The integration of classification and pattern mining has recently attracted a lot of interest in
data mining research and has been successfully applied on static data [24], [6], graph data
[25] and sequence data [26]. This work proposes a pattern-based classification framework
for multivariate time series data. Our approach relies on temporal abstractions and temporal
logic to construct the classification features. We also propose the minimal predictive
temporal patterns framework and present an efficient algorithm to directly mine these
patterns. An important benefit of our approach is that it can handle complex irregularly
spaced temporal data, such as electronic health records. This makes it a promising candidate
for many applications in the medical field, such as patient monitoring and decision support.
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Figure 1.
An example illustrating the trend and value abstractions. The dashed lines represent the 25th
and 75th percentiles and the solid lines represent the 5th and 95th percentiles.
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Figure 2.
A temporal pattern with states 〈A1, B2, C3, A2〉 and temporal relations R1,2 = c, R1,3 = b, R1,4
= b, R2,3 = c, R2,4 = b and R3,4 = c.
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Figure 3.
A high-level description of candidate generation. The algorithm takes as input the frequent
k-patterns (Fk) and returns the candidate (k+1)-patterns (Cand) together with their pid-lists.
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Figure 4.
The number of patterns return by TP_all, TP_chi, MPTP and A-MPTP for different
minimum supports.
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Figure 5.
The running time of TP_Apriori, TP_id-lists, MPTP and A-MPTP for different minimum
supports.
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Table I

The classification accuracy (%) and the area under the ROC curve (%) for different feature extraction
methods.

Method Accuracy AUC

Last_values 78.41 89.57

Last_abs 80.23 88.43

TP_all 80.68 91.47

TP_IG 82.50 92.11

TP_chi 81.36 90.99

MPTP 85.68 94.42

A-MPTP 85.45 95.03
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Table II

The top 5 MPTPS according to their p-values. Sup denotes the proportion of data that the patterns cover and
conf denotes the confidence of the rules.

Rule Sup Conf

R1: PLT=VL ⇒ HIT-risk 0.41 0.85

R2: Hep=ON co-occurs with PLT=D ⇒ HIT-risk 0.28 0.88

R3: Hep=ON before PLT=VL ⇒ HIT-risk 0.22 0.95

R4: Hep=ON co-occurs with APTT=H ⇒ HIT-risk 0.2 0.94

R5: PLT=D co-occurs with WBC=H ⇒ HIT-risk 0.25 0.87
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