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Abstract—Hierarchical clustering is used in computational
biology as a method of comparing sequenced bacterial strain
DNA and determining bacterial isolates that belong to the
same strain. However, the results of the hierarchical clustering
are, at times, difficult to read and interpret. This paper is a
case study for the use of a modified hierarchical clustering
algorithm, which takes into account the underlying structure
of the bacterial DNA isolate collection to which it is applied.
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I. INTRODUCTION

Escherichia coli (E. coli) are commensal inhabitants of

the human gut[1][2] and also thrive in the intestinal tracts

of most other mammals and some birds[1][3]. E. coli

is frequently used as an indicator for fecal contamina-

tion in watersheds, lakes, beaches, and recreational water

[4][5][6][7]. Because dangerous interspecific pathogens can

be transferred through contaminated water, it is necessary

for health and environmental protection agencies to be able

to track a source of fecal contamination at the species level

[5][6][7]. The general process linking microbes (in this case

E. coli) to a host source is called Microbial Source Tracking

(MST) [5][6][7].

Our research group is currently developing a cost-effective

and efficient library-dependent MST method to create DNA

fingerprints for different strains of E. coli using pyrose-

quencing; which we refer to as pyroprinting. In a pilot

study, pyroprinting was used to investigate the variation in E.

coli. Characterizing E. coli populations and their variation in

humans is important not only to build an MST library but

also to further understand the human interaction with this

commensal organism.

In this paper, we compare the use of two clustering algo-

rithms for E.coli strain detection in the context of a short-

term single-host case study. The first algorithm, Primer5[8],

is an implementation of the traditional hierachical clustering

method, widely used in biology. To address the shortcom-

ings of this method, we developed a hierarchical clustering

algorithm that is sensitive to the internal organization of our

collection of data. The rest of this paper is organized as

follows. Section II provides a brief overview of the single-

host study and the experimental data. Section III discusses

related work and in section IV we introduce our chronology-

sensitive hierarchical clustering algorithm. Finally, section V

discusses the results of the case study.

II. EXPERIMENTAL SETUP

Fecal samples from a single human subject were collected

once a day for 14 days in September 2010. Samples were

manually homogenized, and a sterile swab was inserted into

the sample. An anal swab immediately after defecation and

an anal swab a few hours later were also collected. All

swabs were used to streak the samples onto MacConkey

agar. Samples were not collected on day 7 due to the absence

of defecation on that day. Figure 1 shows how many isolates

were collected on each day.

All bacterial cultures were grown at 37◦ C overnight.

Up to four pink isolates from each MacConkey plate were

selected for biochemical E. coli confirmation. Isolates from

the fecal sample were tagged group F, immediate swabs as

group I, and late swabs as group L1. Each selected isolate

was re-streaked onto MacConkey. Half of a pink isolated

colony from the second MacConkey plate was patched on

LB agar; the other half was patched on EMB agar. If a

green, metallic sheen was observed on EMB, the isolate from

LB was tested in tryptone broth for indole production and

on citrate agar. E. coli were confirmed when isolates were

positive for indole and negative for citric aid utilization.

Colony polymerase chain reaction2 was performed on

each confirmed E. coli isolate. Primers (listed below) de-

signed to amplify the 23S rRNA - 5S rRNA Intergenic

Transcribed Spacer (ITS) region were placed in consensus

1Isolate labelling further denotes the day the isolate was collected on,
followed by an identifying number, i.e. F1-1 corresponds to an isolate from
a fecal sample on day 1, and is identified as the first of that group

2PCR parameters were: (1) 95◦C, 2 minutes; (2) 95◦C, 30 seconds; (3)
56

◦C, 30 seconds; (4) 68
◦C, 1 minute; (5) repeated steps (2)-(4) another

44 times; (6) 68◦C, 5 minutes; (7) 4◦C hold.



Figure 1. Isolates Per Day

regions of both rRNA genes. PCR products were used for

pyrosequencing analysis (sequencing primer, S, is also listed

below).
Primers

F: 5
′- ATG AAC CGT GAG GCT TAA CCT T -3′

R: 5
′-biotin- CTA CGG CGT TTC ACT TCT GAG T -3′

S: 5
′- CGT GAG GCT TAA CCT T -3′

A. Pyroprinting method

Pyrosequencing is a DNA sequencing process where a

new strand of DNA is built incrementally. Nucleotides A, T,

C, or G are introduced to the DNA strand being sequenced

in an order determined by a dispensation sequence. If

the introduced nucleotide complements the next unbound

nucleotide in the target DNA strand then the two nucleotides

bind to each other, extending the new DNA strand and

emitting light. This light is measured and used to construct

a pyrogram of the DNA strand. [9] describes the pyrose-

quencing process in more detail.

In our case study we pyrosequenced the 23S rRNA -

5S rRNA ITS region of the E. coli genome. Because this

region is non-coding, it accumulates more mutations than

regions of DNA that code for important proteins or RNAs.

This ITS region is present in seven locations in the E. coli

genome. In this study, all seven copies of this ITS region

were sequenced together to create a pyroprint3. Under the

assumption that ITS sequences vary for different strains of

E. coli, a pyroprint acts as a DNA fingerprint for each strain.

This process is depicted in Figure 2.

B. Data Description

For each isolate, a mix of the 23S rRNA - 5S rRNA was

extracted and amplified using PCR. The intragenic region

was then pyrosequenced and the obtained pyroprints were

compared to each other.

Given an isolate X , its pyroprint is a sequence X̄ =
(x1, . . . xN ) of real numbers4 reported by the pyrosequenc-

ing equipment for each of the dispensations. In our ex-

periments, pyroprints of length N = 104 were generated

3A vector of light emission values based on combinations of all seven
ITS region sequences for the pyrosequenced E. coli isolate

4representing light intensities

AA...GATC....GATCGATCGG

104

23S 5S
S

sequence:dispensation
Pyroprint

Figure 2. Pyroprinting process: light intensities (black bars at the bottom)
are reported for each nucleotide in the dispensation sequence. Open boxes
represent conserved DNA sequences in the 23S and 5S rRNA genes and
S indicates the point at which the sequencing primer binds to the DNA,
beginning the sequencing process.

following the same dispensation sequence of nucleotides for

each bacterial isolate. Pyroprint similarity was calculated

using pearson correlation coefficient:

sim(X̄, Ȳ ) =

∑N

i=1
(xi − E(X̄))(yi − E(Ȳ ))

√

∑N

i=1
(xi − E(X̄)

√

∑N

i=1
(yi − E(Ȳ )

,

where E(X̄) and E(Ȳ ) are means of the respective se-

quences. The goal of the study was to determine which

bacterial isolates belong to the same strain. If sim(X̄, Ȳ )
is sufficiently close to 1, we assume X and Y come from

the same strain. If this assumption is too strong — it is

possible X and Y belong to different strains, yet appear to

match. However, if X̄ and Ȳ are sufficiently different, then

X and Y definitely come from different strains.

A set of pyroprints is considered strongly connected if

each pyroprint in the set is sufficiently similar (i.e. con-

nected) to every other pyroprint in the set. We discuss the

notions of sufficient similarity and sufficient dissimilarity

more formally in Section IV.

III. RELATED WORK

Traditional clustering focuses on direct relationships be-

tween data. Distance functions are defined and the process

of clustering is as simple as grouping data with the highest

similarity measures, then applying thresholds to maximal

dissimilarity measures in a cluster.

Temporal clustering, as described by Kamath and Caver-

lee [10], is a variation of clustering applied to a communica-



tion network. Nodes represent members in the communica-

tion network while edge weights represent communication

between said nodes. The edge weights in the network are

based on when the messages are exchanged.

PoClustering (partially ordered clustering) clusters data

into PoSets (partially ordered sets) by finding all clique clus-

ters for all possible diameters W(D) where D is the maximal

dissimilarity in a dissimilarity matrix[11]. PoClustering is a

generalization of both heierarchical and pyramidal clustering

that allows overlaps between clusters such that a PoCluster P

is defined as P = {cliqueset δ (d) | ∀ d ∈ W(D)}[12]. PoClus-

ters can be represented as a directed acyclic graph, with

each node representing a clique cluster and its diameter, and

each edge representing subset relationships between nodes.

PoClusters are able to successfully preserve the majority

of relationships present in the data whereas hierarchical

clustering is unable to do so.

Temporal clustering modifies similarity measures in con-

text of the temporal locality of particular events of interest.

This is slightly different from the method we propose in this

paper, as we do not modify similarity measures of E. coli

isolates based on chronological distance. Instead, we simply

enforce a particular ordering on cluster candidates. Similarly,

PoClustering enforces a particular ordering on the clustering

process without modifying similarity measures. Although

PoClustering is not time-sensitive, it is important related

work for our method regarding connectivity constraints

between E. coli isolates.

Primer5 [8] is a hierarchical clustering tool commonly

used by biologists. Hierarchical clustering works by it-

eratively combining clusters until there is one cluster

remaining[13]. We use Primer5 as a benchmark to compare

our algorithm against. Section V-A contains our analysis.

IV. CHRONOLOGY-SENSITIVE CLUSTERING

During pyrosequencing, individual light intensities are

subject to fluctuation which arises from the difference in

the experimental conditions under which individual isolates

are sequenced. Our data contains a large number of pairs

of isolates, whose pyrosequences have similarity between

0.995 and 1. In such situations, knowing that two pyroprints

from the same day have a high similarity is sufficient to

put them into a single cluster right away, even though a

pyroprint from another day may have a higher similarity with

one of them. Our approach leverages chronology-related

information from the dataset to change the order in which

hierarchical clustering combines clusters. In our algorithm,

clusters are first formed out of isolates collected on the same

day (further subdivided by collection method), then grown

in chronological order across days.

The second modification in the algorithm is the transfor-

mation of the similarity scores. Our algorithm takes as input

two parameters α > β representing similarity thresholds. A

Pearson correlation score above α is replaced with the score

of 1, indicating the two pyroprints are the same. Similarity

scores below β indicate the respective pyroprints are defi-

nitely dissimilar and are replaced with 0. Scores between α

and β are left intact. This transformation is performed any

time when intercluster distances are computed.

A. Algorithm

For each pyroprint we use two additional attributes: the

day it was collected on and the group it was collected in.

Different collection groups may be considered closer or

further away from each other: e.g., in our study, isolates

from groups F and I are closer to each other than to the

isolates from group L. We provide a distance relationship

between the collection groups as one of the inputs to the

algorithm. The algorithm proceeds as follows.

• Input: Matrix M of pairwise Pearson correlations be-

tween isolate pyroprints; thresholds α ∈ [0, 1], β ∈
[0, 1]; distance relationship between collection groups.

• Output: a dendrogram of isolates.

• Step 1. Matrix transformation. Each similarity score

M [i, j] > α is replaced with 1; each similarity score

M [i, j] < β is replaced with 0;

• Step 2. Clustering within days. For each day:

– Step 2.1. Cluster within collection group. For each

collection group cluster all the isolates with simi-

larity scores of 1.

– Step 2.2. For each pair of collection groups in order

of the distance relationship: combine clusters from

individual groups with similarity scores of 1.

Each time two clusters are combined, recompute

the similarity matrix; apply the Step 1 procedure

to it.

At the end of this step, all isolates within each day will

be partitioned into strongly connected clusters.

• Step 3. Chronological clustering. Starting from days 1

and 2, adding one day at a time combine clusters from

different days for clusters with similarity scores of 1.

Each time two clusters are combined, recompute the

similarity matrix; apply the Step 1 procedure to it.

Continue until no two clusters have similarity of 1.

• Step 4. Hierarchical clustering. Perform hierarchical

clustering on the clusters constructed on Steps 2-3.

Our algorithm can be used with different inter-cluster

distance measures. We implemented average link, complete

link, single link, and Ward’s method. For this study we

used average-link distance. Average link cluster distance

was calculated by averaging across all possible pairwise

similarities between the isolates from the two clusters whose

similarity is being calculated.



Figure 3. Cluster 1

Figure 4. Cluster 2

Cluster A Cluster B Cluster C No
Cluster

Cluster 1 58 1 0 0

Cluster 2 0 42 0 1

Cluster 3 0 3 4 0

Cluster 4 1 0 0 1

No Cluster 0 1 0 16

Table I
PYROPRINT CLUSTER CONFUSION MATRIX: CHRONOLOGY-SENSITIVE

RESULTS (Y-AXIS) VS PRIMER5 RESULTS (X-AXIS)

V. RESULTS

Our results are shown in Figures 3, 4 and 5. Threshold

values of α = 0.997 and β = 0.955 were used for pyroprint

similarity and a threshold value of r = .9977 was used

for cluster integration. Our results show two large clusters,

each spanning multiple days, and an additional small cluster.

Additionally, a significant number of individual isolates on

various days appeared to represent completely separate E.

coli strains. The largest cluster, Cluster 1, pictured in Figure

3 exists on days 1 - 9. On day 10, another cluster, Cluster 2,

pictured in Figure 4, became prevalent, lasting the remainder

of the experiment. A possible third strain appeared on days

12, 13, and 14 in Cluster 3 (Figure 5).

5These threshold values were supplied by the Biology co-authors. The
values were established empirically following an experiment in which bio-
logical material drawn from the same isolate was pyrosequenced separately
multiple times.

Figure 5. Cluster 3

A. Primer5

On our dataset, Primer5 produced the output shown in

Figure 6. Hierarchical clustering discounts the chronology-

related information from the dataset. Consequently, the out-

put of Primer5 in such situations is hard to read and organize.

Using r ≈ .997 as a threshold in Figure 6 yields two clusters,

A and B, each containing ≈ 40% of the pyroprints. The

remaining 20% of pyroprints contain a tiny cluster of four

pyroprints (cluster C) and 18 unclustered pyroprints. The

first cluster, A, appears to reside in the human host from

day 1 until day 9, then dies out on day 10. At the same

time when cluster A disappears the second cluster, B, starts

to appear. Cluster B becomes established on day 10 and

persists until the end of the study.

B. Comparison of results

Both methods capture two large clusters and one smaller

cluster, presumably representing different E. coli strains

residing in the human host. Our results also show a cluster

of two pyroprints. Table I compares the results of the two

methods. Each cell of the table shows how many pyroprints

belong to it: e.g., there were 58 pyroprints which our method

put in Cluster 1 and Primer5 put in Cluster A. Both methods

almost agree on one cluster (Cluster 1/Cluster A), with only

two mismatches; they also have a good agreement on the

second large cluster, although our algorithm puts three more

pyroprints from Cluster B into Cluster 3.

To better understand the cause for discrepancies, consider

the pyroprint F10-1. According to Figure 6, F10-1 is first

clustered together with pyroprint L9-3. Our algorithm first

clusters F10-1 with F10-2, F10-3, and F10-4. F10-1 is most

similar to L9-3, however the similarity between F10-1 and

F10-2, F10-3, and F10-4 is above our threshold α. Thus,

the eventual position of F10-1 in the cluster hierarchy will

differ in the two algorithms.

During this pilot study the human subject was experienc-

ing uneasiness in the stomach area, peaking around days 9 –

11. This event serves as some validation for initial analysis

of the pyroprint clusters. The timing of the human subject’s

ailment coincides with the second dominant strain present

in each clustering method’s results.



Figure 6. Primer5 Clustering Results

VI. CONCLUSION

This paper describes our pilot case study for a clustering

algorithm applied to pyrosequenced ITS regions of E. coli.

This algorithm produces a hierarchical cluster organization

for biological data collections which possess a distinct

internal structure. Using this algorithm we have successfully

produced clusters that portray similar relationships in the

data as Primer5’s implementation of hierarchical clustering.

However, without more data we cannot determine if the

structure imposed by our algorithm yields better clusters.

VII. FUTURE WORK

Large quantities of real data is being made available for

us to analyze which will obviate strengths and flaws in

our algorithm not yet identified. Software for simulating

our lab’s pyroprinting method is being developed by the

computer scientists and statisticians in our group. When this

is completed, it will be possible to use real data to generate

simulated data for further analysis.

Our algorithm does not directly address the problem of

pyroprints that are weakly connected. PoClustering[12][11]

will be important when addressing this problem. Cliquesets

in the E. coli data may obviate obscure relationships between

weakly connected pyroprints.

This clustering algorithm, as conceived, is applicable to

any data collection with internal structure, but our imple-

mentation is specific to the described pilot study. Work is

underway to formalize the algorithm to be applicable to any

type of implicit data structure.
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