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Abstract
Numerous methodologies, assays, and databases presently provide candidate targets of
transcription factors (TFs). However, TFs rarely regulate their targets universally. The context of
activation of a TF can change the transcriptional response of targets. Direct multiple regulation
typical to mammalian genes complicates direct inference of TF targets from gene expression data.
We present a novel statistic that infers context-specific TF regulation based upon the CoGAPS
algorithm, which infers overlapping gene expression patterns resulting from coregulation.
Numerical experiments with simulated data showed that this statistic correctly inferred targets that
are common to multiple TFs, except in cases where the signal from a TF is negligible relative to
noise level and signal from other TFs. The statistic is robust to moderate levels of error in the
simulated gene sets, identifying fewer false positives than false negatives. Significantly, the
regulatory statistic refines the number of TF targets relevant to cell signaling in gastrointestinal
stromal tumors (GIST) to genes consistent with the phosphorylation patterns of TFs identified in
previous studies. As formulated, the proposed regulatory statistic has wide applicability to
inferring set membership in integrated datasets. This statistic could be naturally extended to
account for prior probabilities of set membership or to add candidate gene targets.
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I. INTRODUCTION
Transcriptional regulators play a key role in developmental processes and normal cellular
homeostasis by controlling reprogramming of cells. Reprogramming of normal cells is
typically driven by internal and external signals (e.g., metabolic changes, growth factors)
with activation of transcription factors (TFs) leading to both repression and activation of
transcription of target genes. If such transcriptional changes are driven at inappropriate times
by aberrant activity, the system can switch to a diseased state. Therefore, identifying TF
activity can implicate underlying biochemical processes in a disease system, such as cell
signaling in tumorigenesis [1]. However, it is clear that TFs regulate different genes in
different contexts, and the effect of TF activation therefore is cell-type and cell-context
dependent. Determining TF targets activated in specific instances can help to refine
understanding of disease by identifying the specific genes aberrantly activated in cells
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showing the disease phenotype. As a result, these targets may provide insight into treatment
options or genomic biomarkers unidentifiable in single gene analyses or standard gene set
analyses.

Inference of TF gene targets is an active area of research that involves numerous
quantitative and experimental techniques. Chromatin Immuno-Precipitation on microarrays
(ChIP-chip) and or with sequencing (ChIP-seq) assays have been used widely to detect TF
targets (reviewed in [2]). The ENCODE project has performed extensive quantification of
numerous TF targets [3]. Although performed across numerous cell types, such studies are
unable to characterize the transcriptional landscape from cells undergoing dynamic
regulation by disease or developmental processes. Alternatively, the in silico techniques that
predict candidate targets from binding sites in DNA sequence often detect all candidate
targets regardless of actual gene transcription driven by TFs in the specific biological
background [4]. These limitations in measurement and prediction techniques make context-
specific target identification difficult even in curated databases of TF targets.

Ideally, prior knowledge of TF candidate targets can be refined by integrating global gene
expression measurements to infer context-specific TF targets from evidence of transcript
generation. For example, integrating ChIP candidate targets in an analysis of expression
response to Pou5f1, Sox2, and Nanog suppression refined context-specific knowledge of
targets of these TFs [5]. However, such direct inference methods are intractable for most in
vivo studies, in which TF activity can be neither directly manipulated nor measured.
Recently, numerous techniques to refine genes in gene sets or identify patient specific
pathways by integrating expression and other data have been developed [6], [7], extending
previous algorithms [8]. These methods are generally based upon inference of common
expression responses in candidate genes inferred with clustering, principal component
analysis (PCA), or network-based analyses. However, previous studies have found that the
techniques underlying these algorithms have difficulty accounting for the regulation of
individual genes by multiple TFs or secondary transcriptional effects due to feedback [9].

Sparse Markov chain Monte Carlo (MCMC) matrix factorization algorithms, such as
CoGAPS [10], have been shown to infer patterns across samples that relate to TF activity
and account for multiple regulation of individual genes [1]. While previous extensions
leveraged prior knowledge of targets to more accurately estimate TF activity [11], no
technique has been able to refine gene targets based on context. This paper extends our
approach to include a gene-regulatory statistic that predicts context-specific TF targets.
Analysis of simulations and time course data from gastrointestinal stromal tumor (GIST)
cell lines demonstrate that the algorithm successfully integrates gene expression data and
prior knowledge to accurately determine context-specific targets.

II. ALGORITHM TO IDENTIFY CONTEXT-SPECIFIC TRANSCRIPTION
FACTOR TARGETS

We sought a regulatory statistic that computes the probability that a gene g is a member of
gene set based upon prior knowledge of gene set membership, Pr(g ∈ ), and gene
expression data. We based the proposed regulatory statistic for membership of g in upon
comparisons of the expression profile of g to the expression pattern CoGAPS infers for
members of  In the formulation below, we assumed that the priors on Pr(g ∈ ) were
binary, but we note that the algorithm could be modified easily to include non-binary
probabilities, such as arise in ChIP-seq. Due to the binary prior, we set the symbol to
represent candidate set members, = {g|Pr (g ∈ ) = 1}, in addition to representing the gene
set itself.
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The CoGAPS algorithm was developed to infer expression patterns across samples that are
shared by multiple genes. The algorithm thus modeled gene expression by factoring the n
gene × m sample data matrix D into an n × p amplitude matrix A and a p × m pattern matrix
P, so that

(1)

where (µ, σ) is a normal distribution with mean µ and standard deviation σ, and Σij is a
standard deviation representing the uncertainty in Dij (Figure 1a). Using an atomic prior
[12], CoGAPS inferred A and P by Markov chain Monte Carlo (MCMC). CoGAPS then
calculated a Z-score statistic to infer the amplitude of the gene set in each of the patterns as

(2)

where G is the number of elements in and where 〈Agp〉 and sd (Agp) are respectively the
posterior mean and standard deviation of Agp estimated by MCMC. The probability that
members of are upregulated in each pattern (Pr ) is then inferred using a permutation test,
comparing Z  to the comparable Z-score statistic resulting from applying eq. 2 to random
sets drawn from the appropriate column of A containing G members (Figure 1b). This
statistic has been shown to link validated TF activation across samples from the inferred
underlying patterns in D [1], [13].

We hypothesized that in a single context, an active TF simultaneously regulates all active
targets. Therefore, a gene g would be assigned to in this context, if its expression profile
was similar to other members of  This hypothesis was quantified by comparing the activity
of gene g to that of across all patterns, using

(3)

The measure Sg,  will be large when g has amplitude in patterns that are upregulated in 
and zero otherwise. The probability of set membership was then computed by comparing the
value of Sg,  for each gene to the distribution of values of the statistic in eq. 3 for genes
outside of the set (namely, C = {g|Pr (g ∈ ) = 0}); i.e., Figure 1c. Using the logarithm in
eq. 3 insured that our statistic had greater sensitivity to patterns with small p-values of
upregulation than would result from scaling the Z-scores by 1 – Pr . Because eq. 3 did not
not include a penalty term for activity in sets outside of  Sg,  can have large values for
multiple gene sets with correspondingly low p-values inferred from the permutation test. It
is therefore likely that the statistic can further facilitate inference of multiple regulation of a
gene g within a CoGAPS analysis.

III. METHODS
A. Implementation

All analyses reported in this manuscript were performed using the Bioconductor package for
CoGAPS [10], and the set membership statistic of eq. 3 is implemented in the function
computeGeneGSProb. The inferred, normalized pattern for each gene set was computed as

(4)
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where Pp•, represents the pth row of the pattern matrix and P̃  is normalized to have a sum
of 1 for plotting.

B. Simulated data
The simulated dataset depicted in Figure 2a (the D matrix) consisted of four TFs, with
targets represented in Figure 2b (the true A matrix) and activity represented by patterns in
Figure 2c (the true P matrix). Genes were preselected as being regulated by one to four of
the TFs. The specific TFs that regulated each of these genes were then selected at random to
avoid biasing the analysis toward any subset of the four TFs. The maximum magnitude by
which a TF regulates each gene target when fully active (i.e., a value of 1 for the
corresponding element in the P matrix) were drawn from an exponential distribution with
parameter ⅓. Multiplicative noise of 10% was added to the simulated data, in accordance
with the mean of noise typically seen across array measurements [14].

Additional datasets were simulated to investigate the ability of the method to deduce
changes in transcriptional regulation due to different genetic contexts. For instance, it has
been shown that TFs regulate different targets in different cell types, potentially due to
epigenetic changes, and each cell type could be considered a different genetic context. In the
first collection of datasets, the magnitude of gene regulation was modified, so that

(5)

where i indexes genes for each TF, k indexes patterns associated with each TF, p sets the
relative magnitude of change in regulation of gene by a TF, and the absolute value is taken
to avoid negatives. The value p ∈ {0.05, 0.10, 0.15, 0.20, 0.25} provides five different
simulated levels of change in regulation in the alternative genetic context.

In the second collection of datasets, the targets for each TF were changed at random, with
the number changed varied from 5% to 25% in steps of 5% generating five data sets.
Specifically,

(6)

where Ni is the total number of targets of TF i, k′ indicates a random choice of a different
gene to be regulated in the new context and p ∈ {0.05,0.10,0.15,0.20,0.25} provides for 5%
to 25% of the genes to be chosen in the new context.

We refer to the original data set in each case as CO and the altered data set, with A modified
by eq. 5 or 6 representing a different genetic context, as CA.

C. GIST data and transcription factor targets
The GIST expression data and TF targets from TRANSFAC [15] were preprocessed [1] and
deposited as data files in the CoGAPS package [10]. Raw data is available in the Gene
Expression Omnibus (GEO; accession GSE17018). The matrix factorization and gene set
analyses are described in detail in the CoGAPS User’s Manual. Briefly, the data was
normalized and replicates combined to give gene level estimates and associated
uncertainties, Dij and Σij of eq. 1. The data set was reduced to include only genes with
known TF regulators in TRANSFAC, and CoGAPS was applied. The resulting A and P
matrices and associated standard deviations from MCMC sampling were used in the
analyses of eqs. 2 and 3.
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IV. SIMULATION RESULTS
In order to test the regulatory statistic resulting from the permutation test on the summary
statistic of eq. 3, we simulated a dataset containing four TFs as described in Methods (Figure
2a). Each of these TFs (tf1 through tf4) had unique targets and targets shared with the
remaining TFs (Figure 2b). The expression for the targets were set at a variety of levels
when the TF was active (activity indicated in the rows P, Figure 2c). The analyses described
in the following subsections assessed the accuracy of the gene-regulation statistic of eq. 3
when applied to the ground truth simulated TF target sets with varying degrees of error and
different genetic contexts.

A. CoGAPS analysis recovers simulated TF activity
We first applied the GAPS matrix factorization algorithm of eq. 1 to the simulated dataset.
Three simulations using the CoGAPS algorithm with four patterns successfully recovered
the true A and P matrices. Moreover, each simulation had χ2 fit values (1843.7, 1844.0, and
1843.5 respectively) comparable to the true χ2 value (2010.0). The CoGAPS gene set
statistic resulting from a permutation test on the Z-score statistic of eq. 2 likewise identified
the patterns in which the simulated TFs were upregulated.

B. The regulatory statistic inferred set membership when the signal was above noise
levels

We initially validated the proposed regulatory statistic of eq. 3 in the ideal scenario for
which the true members of the gene set were input as the elements of  The regulatory
statistic recovered most targets of each of the simulated TFs (Figure 3a). At a p-value
threshold of 0.1, the statistic identified 85% of the targets for tf1, 73% for tf2, 89% for tf3,
and 93% for tf4.

In most cases, the statistic also correctly assigned a gene to multiple TFs when that gene was
multiply regulated. The statistic only missed multiply regulated genes for TFs that weakly
regulated the gene, as shown in Figure 3b where weak regulation is toward the left. We
hypothesized that in these cases, the algorithm could not distinguish the weak signals
induced by activation of these TFs from noise in the simulated data. Further confirming this
hypothesis, the genes excluded by the statistic from a TF target set had significantly
different expression patterns than the pattern estimated by CoGAPS for that TF (Figure 4).
Here, the pattern from the weakly regulated TF was lost due to weak signal relative to noise
and to the regulation by the other TFs. In contrast genes assigned to the TF had expression
patterns that at least partially matched the estimated TF pattern. In this case, the regulatory
statistic inferred genes that were not purely correlated to one pattern, facilitating the
successful inference of multiple regulation.

C. The regulatory statistic is robust to moderate error in the prior for set membership
We also tested the regulatory statistic in the more realistic scenario in which the prior
estimate of membership in was error-prone. In this case, we performed simulations in
which a fixed number of genes from the true TF regulatory set were replaced with a random
set of genes that were not regulated by that TF. Fifty simulations were performed for errors
from 5 genes to 40 genes, representing a range of errors from 10% to 83% for tf1, 10% to
83% for tf2, 9% to 75% for tf3, and 12% to 93% for tf4. We compared the number of genes
correctly inferred to the number of genes incorrectly inferred summarized across all of the
TF sets (Figure 5). The statistic rapidly dropped genes from set membership (black line) as
the misassignment in increased. However, the statistic only rarely incorrectly assigned
genes to a set (red line) even for a significant error rate based on 15 genes (31% of the
targets of tf1 and tf2, 28% of tf3, and 35% of tf4). Once the prior on the gene sets was
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dominated by incorrect genes, the statistic inferred a larger number of false gene set
members than true gene set members. In contrast to the set of true genes, the number of false
gene set members inferred never reached the majority of set members. Similar results were
observed when analyzing the effects of gene set errors in individual TFs.

D. Increased signal distinguished targets inferred in two simulated genetic contexts
We applied CoGAPS to the simulated datasets with altered expression (eq. 5). In each case,
resulting factorizations had comparable χ2 fit values to those observed in the original
context. We then computed the probability of TF regulation of each gene for each of the four
TFs by applying eq. 3 independently to the factorization in the original genetic context CO
and the factorization of each altered context CA. In each case, the null was made context
independent by applying eq. 3 to each of the members of C for the matrix [ACO, ACA],
which was formed by concatenating the columns of the amplitude matrix in the
corresponding factorizations.

In each altered context, roughly 10% of the total 192 TF targets are filtered from the gene
set, shown in Figure 6a. The total number of genes removed from both datasets decreases as
the magnitude of transcription increases, supporting appropriate inference of gene regulation
in at least one of the two contexts. In most cases, the inference of gene regulation in a single
context was facilitated by increased signal in the inferred context, shown in Figure 6b.
Genes inferred in a single context due to the corresponding change in magnitude often had
p-values near the 0.1 significance threshold. Genes that did not have an increase in relative
magnitude were often regulated near the noise level, and were thus more associated with one
context or another due to the chance properties of the random noise added when simulating
their expression. This suggests that care is needed in interpretation of context-specific
regulation for genes with low overall expression.

E. The regulatory statistic infers set membership across datasets with distinct TF targets
To test the ability of the approach to identify changes in context-specific TF targets, we
applied CoGAPS and the statistic of eq. 3 to each of the datasets where CA was defined by
eq. 6. Here, the set of putative TF targets was context independent, defined as the union of
targets for each TF in the CO and CA contexts, which reflects the reporting in biological
databases, where we generally have evidence of regulation but unknown contexts. The
resulting inferred targets from eq. 3 had high sensitivity and specificity (Table I). Generally,
the statistic was more specific than sensitive, reflecting the tendency of the statistic to filter
TF targets with low overall expression relative to noise or extent of regulation by other TFs.
More rarely, the statistic falsely inferred transcriptional regulation of genes in the wrong
genetic context, summarized in Figure 7. Analysis of the expression profiles in these cases
suggested that these false positives could be attributed to chance resemblance of the random
noise added to the dataset to the profile of TF activation.

The lowest sensitivity was observed for TF targets that belonged in both CO and CA.
Although of comparable specificity to genes with TF targets in either CO or CA, roughly half
of the missed targets in the joint group were not assigned to either context, and half were
incorrectly called targets in only one of the contexts. Genes filtered from both contexts had a
magnitude of regulation at the noise level or below the magnitude of regulation for other
TFs regulating the same gene. On the other hand, genes assigned to a single context
typically were either more strongly regulated in that context due to context-specific loss of
signal from other regulatory TFs targeting that gene or had low expression relative to noise
or signal from other TFs regulating that gene.
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V. ANALYSIS OF GIST CELL LINE GENE EXPRESSION DATA
We applied the gene regulatory statistic from eq. 3 to the time course gene expression data
of GIST cell lines treated with imatinib (IM) and TF targets from TRANSFAC for TFs
downstream of the c-KIT activating mutation [1]. The CoGAPS algorithm recovered the
response of TFs to therapy previously validated [1]. The matrix factorization identified
patterns of gene expression that decreased in time with IM treatment, increased with IM
treatment, and had a transient increase with IM treatment. The CoGAPS gene set statistic
likewise inferred significant upregulation of Elk-1 in the rising pattern, upregulation of cJun,
cMyc, and Elk-1 in the falling pattern, and significant upregulation of cJun and p53 in the
transient pattern.

The gene regulatory statistic of eq. 3 decreased the number of targets of all TFs, regardless
of the patterns to which TFs were assigned (Table II), and decreased the number of genes
predicted to be multiply regulated (Table III). Due to the significant reduction, no genes
were inferred to be regulated by more than two TFs. Based upon the simulated data results,
we hypothesized that the reduction in genes inferred as multiply regulated arises from the
general, significant decrease in context-specific targets rather than an inability of the statistic
to account for multiple regulation.

To explore this hypothesis, we compared the CoGAPS inferred expression patterns for each
TF to the expression patterns of each of their target genes. In contrast to the simulated data,
genes assigned to the prior regulatory set closely follow the inferred expression pattern
(Figure 8; left panels), while genes removed were not correlated to the inferred patterns
(Figure 8; right panels). In all panels, blue lines show the inferred pattern (rows of the P
matrix) from CoGAPS, red lines are the mean of the individual genes, shown by black lines.
Often, the genes that were eliminated (right panel) tended to show little expression response
across the time course, suggesting that they were not regulated by these TFs in GIST cells.

We further explored the expression profile of genes for which the regulatory statistic of eq. 3
was below the 0.1 threshold in the TFs p53, STAT3, c-Myc, and Elk-1, whose activity was
validated in [1] (Figure 8; left panels). In the case of p53, the inferred expression pattern
reflects the transitory activity of the TF, decreasing at 9 hours, although the Western blots
showed the strongest p53 phosphorylation, indicative of p53 TF activity, at 9–18 hours [1].
While the timing in the CoGAPS inferred pattern (blue line) differed from the measured TF
activity, the genes that the regulatory statistic inferred to be regulated by these TFs (black
lines) tended to have increased expression at 9–18 hours. Similarly, the expression in
regulatory targets selected for both STAT3 and Elk-1 increased more strongly at 6 hours
than the CoGAPS inferred pattern, consistent with the Western phosphorylation patterns.
Unlike Elk-1, the regulatory statistic selected targets for c-Myc whose expression
consistently decreased in time, agreeing with a lack of recovery of c-Myc activity in later
time points. For each of these TFs, the expression profiles of excluded genes were either flat
or anti-correlated to dominant gene expression profiles of putative targets for each TF
(Figure 8; black lines in right panels).

VI. CONCLUSION
Context-specific transcriptional response plays an important role in biological systems, since
evolution has driven reuse of genes and proteins in multiple contexts [16]. One key point
where evolution plays this role is in the context-specific targets of transcription factors
(TFs). Here, we have introduced a novel statistic, eq. 3, and demonstrated the recovery of
context-specific TF targets in simulations and in imatinib-treated GIST cell lines. Although
the summary statistic in eq. 3 could be applied to inferences from any matrix factorization
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(e.g., [17]) or differential expression (e.g., [18]) algorithm, the sparse atomic prior encoded
in CoGAPS facilitates the removal of candidate genes. This is consistent with the fact that
the retained TF targets are more robustly tied to the CoGAPS patterns than the removed
targets and explains the observed tendency in the statistic to false negatives rather than false
positives. The statistic may allow similar improvement in the inference of set membership
when applied to a matrix factorization that uses candidate targets in the prior distribution
(e.g., [11]).

The CoGAPS patterns estimate the association of common transcriptional profiles to
samples, identifying patterns with significant strength (< Pi• > /sd(Pi•) > 0) in subtypes of
samples (e.g., experimental conditions [13]). By comparing the regulatory statistic computed
from independent decompositions for each context to a null distribution common across
both contexts, the statistic for set membership of eq. 3 was extended to infer targets that
were context-specific. Making the null distribution context independent facilitated the
inference of targets distinguished by more subtle relative changes between contexts.

While CoGAPS factorizations were performed independently for each context-specific data
set, the regulatory statistic could be modified for a factorization applied to both datasets
simultaneously with

(7)

where s indexes each of the samples in the dataset and C indicates the context. Thus context-
specific patterns provide more weight in the regulatory statistic than patterns common to
samples from all contexts. To compare targets across these contexts, the null can be
computed from targets of the complement to the gene set without the weights. This joint
factorization will more accurately infer transcriptional activity in cases where contexts have
common, overlapping samples.

If the contexts are distinct, care should be taken to insure that at least one of the patterns
robustly distinguishes samples between contexts, which will insure that the contexts have
been successfully distinguished in the joint factorization. Otherwise, independent
factorization of samples within individual contexts should be performed using a common
null computed from both factorizations. In any case, comparisons across contexts will be
impossible when samples from the independent contexts are rendered incomparable, due to
batch effects or measurements on distinct platforms. In these cases, the datasets should be
treated as independent, computing the factorization, regulatory statistic, and null only from
samples in a single context in order to avoid fitting technical artifacts as signals.

While formally similar to the mSD algorithm [19], Co-GAPS naturally accounts for the
error distribution of gene expression data, unlike the sparse component analysis. As
demonstrated previously [20], accounting for this uncertainty improves inference of
functional gene relationships. Similarly, several databases and binding assays, such as ChiP-
seq, commonly provide continuous prior probabilities for TF target membership, rather than
the binary membership assumed in eq. 3. The probability information can be incorporated in
our statistic by naïve assignment of genes to each of the sets according to a selected
threshold. However, a more robust estimate for the summary statistic would be obtained by
weights in eq. 3 based on prior probabilities.

Although this statistic was implemented on gene expression data measured with
microarrays, the algorithm can be extended naturally for expression measured by RNA-seq
or even to broader measures of common activity across samples. Computing the summary
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statistic resulting from permuting the prior probabilities would likely provide a robust null
distribution for a modified regulatory statistic. A similar extension of the gene set statistic
using small, but non-zero priors for genes that the database does not include in the target set
could likewise be used to add genes as candidate targets of the TF. In this case, it may also
be necessary to add a penalty term to eq. 3 to avoid overestimating candidate targets.
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Figure 1.
Overview of the algorithm for the identification of context specific TF targets. (a) CoGAPS
identifies global patterns (rows of P) from the gene expression data matrix (D). The
expression of each gene is then modeled as a linear combination of these patterns, with
coefficients stored in corresponding entries of the A matrix. (b) Gene set statistics are
computed by permutation tests comparing the relative Z-score associating genes with
patterns for genes annotated in gene set. These set statistics are computed for genes
annotated as putative set members (blue), and for null genes not annotated to the set (red)
and log transformed (bottom). Gene-specific statistics (Sg, ) are computed by averaging Z-
scores quantifying gene-association with a pattern weighted according to these set statistics
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using eq (3). (c) The p-values quantifying set membership are computed by comparing the
computed value of gene-specific statistics for genes in the set (blue) to similar statistics
computed for genes in the null distribution (i.e., genes not in the set, red).
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Figure 2.
Overview of simulated data. (a) Heatmap of the relative log2 expression of each gene,
colored according to the color key. The data have been row-scaled to gene-specific Z-scores
for visualization, however the analysis was done on the non-negative D matrix. (b) Gene
targets of each simulated TF in black shading in rows. (c) Simulated patterns across
samples. Patterns are numbered according to the TF to which they are assigned (e.g., 1 for
tf1).
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Figure 3.
Results of regulatory statistics for the simulated dataset. (a) Heatmap comparing the
maximum amount of activity in a gene resulting from TF activity (left) to the estimated
probability of set membership (right) for each TF. The true magnitude of gene regulation is
rescaled to 0.1 at minimum and 1 at maximum for each TF. Similarly, estimated p-values
are converted to probabilities of activity for plotting (1 − p). Color shading in rows and
columns estimate the number of gene targets inferred at a p-value threshold of 0.1, relative
to the total number of simulated genes in the case of column shading. (b) For each gene, for
the TF with the smallest regulation of expression, the p-value inferred with the regulatory-
statistic is plotted against the ratio between the amount that the selected TF regulates
expression and the maximum expression across all TFs. Colors indicate the number of TFs
that regulate each of the genes plotted, according to the color key

Fertig et al. Page 14

IEEE Trans Nanobioscience. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Comparison of the inferred gene set activity to the retained and excluded genes for the
simulated dataset. The normalized, de-noised expression profile inferred from the GAPS
approximation of the gene expression data (AP) for each gene with a p-value less than 0.1
from the regulatory statistic (black lines) is compared to the inferred, normalized pattern for
the gene set (blue line) in the figures on the left. Figures on the right plot similar profiles for
genes with a p-value greater than 0.1. In each case the black lines represent genes that prior
information declared to be regulated by the TF, which were confirmed by the algorithm
(left) or which the algorithm determined not to be regulated by the TF (right). Results are
plotted for each of the four TFs from top to bottom as labeled on the left.
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Figure 5.
Inference of set-membership with errors in each of the simulated TF sets. Mean fraction of
true gene set members inferred with a p-value threshold of 0.1 for the regulatory statistic
(black) and false gene set members (red) for fifty simulations with the number of genes
misassigned to the gene set on the x-axis. Error bars for both curves represent the
corresponding standard deviation estimated over each of the sets of fifty simulations. The
dashed black line represents the percentage of true genes recovered in simulations
containing no incorrect assignments in the gene set for reference.
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Figure 6.
The detection of context-specific gene regulation. (a) The number of genes filtered from
either genetic context is shown in black, assigned to the original context CO in blue, or
assigned to the alternate context CA in red, with the magnitude of alteration (p in eq. 5)
indicated on the x-axis. (b) The relative change in magnitude between the two contexts is
shown, where positive values indicate larger magnitudes in the original context CO. Colors
of the boxplots are as in (a).
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Figure 7.
The number of TF targets estimated as regulated by the TF in each context: (a) in only CO
(blue), (b) in only CA (red), and (c) in both (black). False negatives represent the assignment
of TF targets for genes misassigned to a different context, indicated by colors in the
corresponding figure legend. False positives represent TF targets from a different context
being falsely assigned to the indicated context.
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Figure 8.
Summary of inferred transcription factor patterns in GIST data. Normalized, de-noised
GAPS inferred expression patterns for each gene with a gene regulatory p-value less than
0.1 (black lines) and their average expression pattern (red), compared to the inferred,
normalized pattern for the gene set (blue line) are plotted on the left for inferred targets of
p53, STAT3, cMyc, and Elk-1 (from top to bottom). The panels on the right are similar plots
for genes excluded from the set (i.e., with gene set regulatory statistics above 0.1).
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Table I

Sensitivity and specificity of targets recalled from either CO,CA or both contexts. Here p represents the
percentage of altered TF targets in CA (eq. 6).

P Sensitivity Specificity

(%) CO CA both CO CA both

5 0.92 0.83 0.81 0.98 0.96 0.96

10 0.86 0.90 0.88 0.98 0.98 0.95

15 0.87 0.84 0.80 0.98 0.95 0.97

20 0.90 0.85 0.86 0.95 0.96 0.94

25 0.84 0.84 0.76 0.98 0.95 0.92
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Table II

Relative number of transcription factor targets retained from the regulatory statistic with a p-value threshold of
0.1 for the GIST cell line data.

TF # genes # significant genes

Ap1 99 10

cJun 71 0

cMyc 13 4

CREB 91 14

E2F-1 24 4

Elk-1 13 6

FOXO 9 4

NF-kappaB 51 6

p53 27 10

Smad4 19 2

Sp1 398 42

STAT3 22 5
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Table III

Summary of the statistics for candidate target genes that the TRANSFAC database notes as regulated by 1– 6
of the TFs considered in Table II (rows). Columns indicate the number of candidate targets from TRANSFAC
number of genes not regulated with a p-value threshold of 0.1, and number of genes regulated by 1 or 2 of the
TFs with a p-value threshold of 0.1.

# TFs # genes 0 1 2

1 438 380 58 0

2 115 91 16 8

3 33 26 3 4

4 9 7 0 2

5 2 1 0 1

6 4 4 0 0
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