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Abstract—The linear noise approximation is commonly used the first software package enabling a fluctuation analysis of
to obtain intrinsic noise statistics for biochemical netwaks. biochemical networks via the Linear Noise Approximation
These estimates are accurate for networks with large number (LNA) and Effective Mesoscopic Rate Equation (EMRE)
of molecules. However it is well known that many biochemical - . . .
networks are characterized by at least one species with a approxmqnons of the CME. The former.glves_, the vque_\nce
small number of molecules. We here describe version 0.3 of and covariance of concentration fluctuations in the limit of
the software intrinsic Noise Analyzer (iNA) which allows fa large molecule numbers while the latter gives the mean
accurate computation of noise statistics over wide rangesfo concentrations for intermediate to large molecule numbers

molecule numbers. This is achieved by calculating the next an4 js more accurate than the conventional Rate Equations
order corrections to the linear noise apprOXImatlon S estmates

of variance and covariance of concentration fluctuations. e (REs). . . - .
efficiency of the methods is significantly improved by auto- |.n this proceeding we develop and efficiently implement
mated just-in-time compilation using the LLVM framework in iINA, the Inverse Omega Square (I0S) method comple-

leading to a fluctuation analysis which typically outperfoms  menting the EMRE method by providing estimates for the
that obtained by means of exact stochastic simulations. INA yariance of noise about them. These estimates are accurate
henclebpa}rtlcularly well suited for the needs of the computa- for systems whose molecule numbers vary over wide ranges
tional biology community. ,
o ) Y ) ) . o (few to thousands of molecules). The new method is tested

waords’lsto‘:has.“c modeling; Linear Noise Approximation; 4y 3 model of gene expression involving a bimolecular
genetic regulatory circuits reaction. Remarkably, the results of the fast IOS calcutati
are found to agree very well with those from hour long
ensemble averaging over thousands of SSA trajectories.
Experimental studies have shown that the protein abun-

. . [l. RESULTS
dance varies from few tens to several thousands per protein ] ] ]
species per cell[J1]. It is also known that the standard In this section we describe the results of the novel 10S

deviation of the concentration fluctuations due to the ramdo Method implemented inside iNA, compare with the results

timing of molecular events (intrinsic noise) roughly seages  ©f the RE, LNA and EMRE approximations of the CME and

the square root of the mean number of molecules [2]. Henc@{'th exact st_ochastlc S|m_ulat|0ns.usmg the SSA and finally

it is expected that intrinsic noise plays an important role i discuss the implementation and its p_erformance. The three

the dynamics of those biochemical networks characterize@'€thods (LNA, EMRE, IOS) are obtained from the system-

by at least one species with low molecule numbers. size expansion (SSE) of the CME! [2] which is applicable
The stochastic simulation algorithm (SSA) is the convenl© Monostable chemical systems. Technical details of the

tional means of probing stochasticity in biochemical rigact  Various approximation methods are provided in the section

systemsI[B]. This method simulates every reaction event anlfl€thods.

hence is typically slow for large reaction networks; this A, Applications

is particularly true if one is interested in intrinsic noise We consider a two-stage model of gene expression with

statistics which require considerable ensemble averagfing an enzymatic degradation mechanism:

the trajectories produced by the SSA. A different route of

inferring the required statistics involves finding an apo Gene™ Gener MRNA, mRNA LR ,

mate solution of the chemical master equation (CME), a set ks .

of differential equations for the probabilities of the s&bf MRNA = mRNA + Protein

the system, which is mathematically equivalent to the SSA. protein+ Enzymek:l Complexk—2> Enzyme+ @. (1)

We recently developed intrinsic Noise Analyzer (iNA) [4], k1

I. INTRODUCTION
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Figure 1: Gene expression model with fast transcriptioa.rat panels (a) and (b) we compare the RE predictions of mean
concentrations with those obtained from ensemble avega®)it00 SSA trajectories. The shaded areas denote the region of
one standard deviation around the average concentratibizhwn (a) has been computed using the LNA and in (b) using
the SSA. For comparison, in panel (c) we show the mean corat&mt prediction according to the EMRE and the variance
prediction according to 10S. The results in (a), (b) and f€) ia good agreement.

The scheme involves the transcription of mRNA, its trans-while an evaluation of 1,962 genes in budding yeast showed
lation to protein and subsequent degradation of both mRNAhat the ratios have median and mode clos8 {@].
and protein. Note that while mRNA is degraded via an un- We now consider parameter set (ii), the case of moderate
specific linear reaction, the degradation of protein oceigs transcription. In Fig[2(a) and (b) we compare the RE and
an enzyme catalyzed reaction. The latter may model proteol-NA predictions of mean concentrations and variance of
ysis, the consumption of protein by a metabolic pathway offluctuations with that obtained from the SSA. Notice that
other post-translational modifications. A simplified versi in this case, the two are in severe disagreement. The SSA
of this model is one in which the protein degradation ispredicts that the mean concentration of protein is larger
replaced by the linear reaction: Protein@. Over the past than that of the mRNA while the REs predict the opposite.
decade the latter model has been the subject of numeroTshis discreteness-induced inversion phenomenon has been
studies, principally because it can be solved exactly dinee described in Ref.[]8]. It is also the case that the variance
scheme is composed of purely first-order reactions [5]-[7]estimate of the LNA is considerably smaller than that of
However, the former model as given by schefie (1), cannahe SSA. In Fig[R2(c) we show the mean concentrations
be solved exactly because of the bimolecular associationbomputed using the EMRE and the variance computed using
reaction between enzyme and protein. Hence in what followshe I0S method. Note that the latter are in good agreement
we demonstrate the power of approximation methods to infewith the SSA in Fig[2(b). Note further that while the EMRE
useful information regarding the mechanism’s intrinsiéseo ~ was already implemented in the previous version of iNA, the
properties. I0S was not. Hence the present version is the first to provide
We consider the model for two parameter sets (see[Trab. §stimates of the mean concentrations and of the size of the
at fixed compartmental volume of one femtoliter (one micronnoise which are more accurate than both the REs and the
cubed). For both cases, the REs predict the same steady sta®dA. The transient times for this case are givendiymin-
mMRNA and protein concentration$mRNA|] = 0.12uM
and [Proteij = 0.09xM. These correspond t82 and 54

molecule numbers, respectively. parameter| set (i) set (i)

We have used iNA to compute the mean concentrations kolG] 24min~tuM | 0.024min”t M
using the REs and the variance of fluctuations using the Kam 20min—! 0.2min~"
LNA for parameter set (i) in which transcription is fast. ks 1.5min~! 1.5min~1
Comparing these with SSA estimates (see Elg. 1) we see k_1, ko 2min—1 2min—1!
that the REs and LNA provide reasonably accurate results k1 400(pMmin)~1 | 400(uMmin)~!

for this parameter set. This analysis was within the scope o )
of the previous version of iINAJ4]. However, the scenario 1aPle I: Kinetic parameters used for the gene expression
considered is not particularly realistic. This is since theModel, schemell1), as_lg|scpssed in the main text. The
ratio of protein and mRNA lifetimes in this example is Volume s fixed td2 = 10~/ with an enzyme concentration
approximately 100 (as estimated from the time taken fof 0-1uM corresponding to60 enzyme molecules. The
the concentrations to rea®% of their steady state values) Michaelis-Menten constant 801,M in all cases.
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Figure 2: Gene expression model with moderate transcriptide. In panels (a) and (b) we compare the RE and LNA
predictions of mean concentrations and variance of fluictnatwith those obtained from ensemble averagitg000
stochastic realizations computed using the SSA. Note ti@tRE and LNA predictions are very different than the actual
values. In panel (c) we show the mean concentration prediettcording to the EMRE and the variance prediction acogrdi
to 10S. These are in good agreement with those obtained fnensSSA.

utes for protein and2 minutes for mRNA concentrations to emit and execute platform specific machine code at
with a ratio of approximatel$ in agreement with the median runtime [10]. The system size expansion ODEs are automat-
and mode of experimentally measured ratios. Hence thigally compiled as native machine code making it executable
example provides clear evidence of the need to go beyondirectly on the CPU. Therefore iNAs JIT feature enjoys
the RE and LNA level of approximation for physiologically the speed of statically compiled code while maintaining

relevant parameters of the gene expression model. the flexibility common to interpreters. Moreover, the LLVM
_ framework allows optimizations on platform independent
B. Implementation and platform specific instruction levels which are benefficia

iNA's framework consist of three layers of abstraction: thefor computationally expensive calculations. _
SBML parser which sets up a mathematical representation Compared to iNAs previous implementation, using JIT
of the reaction network, a module which performs theCOmPpilation, we have observed speedups for the SSE anal-
SSE analytically using the computer algebra system Gina¥Sis by factors ofl0 — 20 and factors ofl.5 — 2 for the
[9] and a just-in-time (JIT) compiler based on the LLVM SSA.
[10] framework which compiles the mathematical model [1l. METHODS

into platform specific machine code at runtime yielding \ye consider a general reaction network confined in a
high performance of SSE and SSA analyses implementegl,,me  under well-mixed conditions and involving the

in iNA. Generally, methods based on the SSE requirgneraction of N' distinct chemical species Vvi& chemical
the numerical solution of a high dimensional system of.o,ctions of the type

linear equations. In the present version 0.3 of iNA, time- .

course analysis is efficiently performed by means of the all- s1; X1 + ...+ sn; Xy — ;X1 + ...+ 78 XN, (2)

round ODE in'ge.grator LSODA which au}omatically SW.itCheswherej is the reaction index running from to R, X;

e Pl o Pl melhots LA, PETICAY denoteschemica species s h reactonrat of

the LNA, EMRE analysis is approximately proportional to reaction ands;; andr;; are the stplch|ometr|c coefﬂmgnts.
5 ' _ . : Note that our general formulation does not require all

N* where N is the number of independent species after

i lvsi< T121 while for 10S. th b freactions to be necessarily elementary.
conservation analysis L ] while or g € number ol 1he cME gives the time-evolution equation for the prob-
equations is approximately proportional f6°. Quadratic

. : ability P(7,t) that the system is in a particular mesoscopic
and cubic dependencies represent a challenge for softwa y P(.1) Y P P

Yateii = T wheren; is the number of molecules
development. iNA's previous version 0.2 addressed thisinee th (n1, -’nN) TETE .
- ) of the i*" species. It is given by:
for performance by providing a bytecode interpreter (BCI)
for efficient expression evaluation [4]. The latter condege OP(m,t) u
proven its performance for both SSE and SSA methods while ot Z
maintaining compatibility over many platforms. With the .
present version we introduce a strategy for JIT compilatiorwhere S;; = r;; — s;5, 4;(7,2) is the propensity function

based on the modern compiler framework LLVM that allowssuch that the probability for thg®" reaction to occur

<ﬂ BT - 1)a, (09 P, @)

=1 Ni=1



. . . . . LR 1 1
in the time interval[t,t + dt) is given by a; (7, Q)dt L£® = —9,0MBes 4+ iaaaﬁp(lg - gaajgrwsEﬁE,yeg

[B] and Ei_s” is the step operator defined by its ac- 11 1
tionSin a general function of molecular populations as +§58a63Jggeveg— 58(!8[387@5765
E; "Yg(ni,...ni...,nn) = g(ni,...,n; — Sij, ...,nn) [2]. 1 '
The CME is typically intractable for computational pur- + 41020980,95 Dags, )

poses because of the inherently large state space. iNA d the SSE ficient . b
circumvents this problem by approximating the moment 9 1€ coetlicients are given by

of probability density solution of the CME systematically R ~
using van Kampen’s SSEI[2], [13]. The starting point of the D™ =" SikSjk-- S F(X]),
analysis is van Kampen’s ansatz k=1
st..z 0 0 0
i g =L p (8
o =X @ v = oo o ©

. . L ?Iote that the above expressions generalize the expansion
by which one separates the instantaneous concentratimn int _ . . i
carried out in Ref.[[14] to include also non-elementary

a deterministic part given by the soluti¢® ] of the macro- : ) : . :
. . .__reactions as for instance trimolecular reactions or reasti
scopic REs for the reaction schenié (2) and the fluctuations. s . .
. . - . with propensities of the Michaelis-Menten type [15]. Note
around it parametrized b§ The change of variable causes 1/2 . . .
ce : - also that the'/= term vanishes since the macroscopic REs
the probability distribution of molecular populatiofX7, t)

: _ R O . :
to be transformed into a new probability distribution of are given by0,[Xa] = 34—y Sarfy, ([X]) leaving us with
fluctuationsII(€,¢). The time derivative, the step operator

a series expansion of the CME in powers of the inverse

. . quare root of the volume. In Eg§] (7) we have omitted the
and the_propensny _funct|ons_are also transformed (see_ [ pper index in the bracket of the SSE coefficients in the case
for details). In particular, using ansatZz] (4) together WlthOf "0
the explicit >-dependence of the propensities as given by The m'ethod now proceeds by constructing equations for
a; (i, Q) = Y. =™ (%) the propensities can be proce y cons g ed
JAD  m=0 9,87 the moments of the variables. This is accomplished by
expanded in powers dR—1/2:

expanding the probability distribution of fluctuatiofige; ¢)

o, (7, Q) . 3f(0) ([)g]) B in terms of the inyerse square root of the volumelés t) =
AN A :f;O)([X]) + QM2 L Qflf;”([X]) 3252 o 1;(& t)Q~9/2, which implies an equivalent expansion
Q O[Xa] of the moments
Lo, OFXD s 007(X) s |
2 PHIX.]0[X ] X (Ererbm) = > _[en€rem]; Q2772 9)
or" (X =

1
+ 5973/26046567 XX ];X ] +O0(27%).  In order to relate the above moments back to the moments
dJPLEBITLE (5)  Of the concentration variables we use Ef5. (4) &hd (9) to find
expressions for the mean concentrations and covariance of
Note that f(©) is the macroscopic rate function. Here we fluctuations which are given by
have used the convention that twice repeated Greek indices n; . L
are summed over 1 t&/, which we use in what follows as <ﬁ> = [X]+ Q7 el +0(Q77), (10a)
well. Consequently the CME up to ord@r ! can be written j

as m =6 (2) (5 -(3))

=0t leies]o + Q= ([Eiej]z — leily [ejh)

R
Oll(€ t 0 X > . Z
AED _que (% -y sakf,i(”([X])) 0uTI(E, 1) +o@?) (10)
k=1
The orderQ’ term of Eq. [I0a) denotes the mean con-
— (Qor© -1/2p(1) —-1,(2) z . . . :
- (Q L7 +9 Lo+ L 1(€ 1) centrations as given by the macroscopic REs while the
+OQ3?), 6 term in Eq. [(10b) gives the LNA estimate for the
covariance. Including terms to ordé2—! in Eq. (104)
where the operators are defined as gives the EMRE estimate of the mean concentrations which
1 corrects the estimate of the REs. Finally, considering also
LO = —9,JP¢s + §<9a8/3Da5, the Q=2 term in Eq. [I0b) gives the 10S (Inverse Omega
. o1 1 Squared) estimate of the variance which is centered around
LW =-9,D — Eaajfwéﬂ% + Eaaa,@Jggev the EMRE concentrations and is of higher accuracy than

1 the LNA method. The general procedure together with the
- gaaaﬁavDaﬁw equations determining the coefficients of Ed. (9) is presént



in Refs. [14] and([16]. In brief the result can be summarized [3] D.T. Gillespie. Stochastic simulation of chemical Kiics.

as follows: as mentioned above, truncating E¢. (6) to order
1/2 yields the macroscopic REs, truncation after terms up
to orderQ® gives a Fokker-Planck equation with linear drift
and diffusion coefficients which is also called the Linear

Noise Approximation. Considering terms up &'/ one
obtains the EMREs while the terms up fo-! determine

the corrections beyond the LNA as given by the present 1os[®l
method. Since the 10S method has been derived from van
Kampen’s ansatz, Eq.](4), which expands the CME around

Annu. Rev. Phys. Cheng8:35-55, 2007.

P. Thomas, H. Matuschek, and R. Grima. Intrinsic noise
analyzer: A software package for the exploration of stotihas
biochemical kinetics using the system size expansiehnS
ong 7(6):e38518, 2012.

E.M. Ozbudak, M. Thattai, |. Kurtser, A.D. Grossman, and
A. van Oudenaarden. Regulation of noise in the expression
of a single geneNature genetics31(1):69-73, 2002.

the macroscopic concentrations it has the same limitation[6] J. Paulsson. Models of stochastic gene expressiimysics

as the LNA namely that it cannot account for systems

exhibiting bistability.

IV. DISCUSSION

In this proceeding we have introduced and implemented
the I0S approximation in the software package iNA. This [

allows the variances to be determined accurate to dedér

an approximation which complements the EMRE method

(mean concentrations accurate to orfler') and is superior

of life reviews 2(2):157-175, 2005.

[7] V. Shahrezaei and P.S. Swain. Analytical distributidos

stochastic gene expressionProceedings of the National
Academy of Science&05(45):17256, 2008.

8] R. Ramaswamy, N. Gonzalez-Segredo, |.F. Sbalzarind a

R. Grima. Discreteness-induced concentration inversion i
mesoscopic chemical systems.Nature Communications
3:779, 2012.

to the previously implemented LNA method (variances accu- [9] C. Bauer, A. Frink, and R. Kreckel. Introduction to the

rate to ordef)?). As we have shown this increased accuracy

is desirable to accurately account for the effects of istdn
noise in biochemical reaction networks under low molecule
number conditions. In particular, we have demonstrated10]
the utility of the software by analyzing an example of
gene expression with a functional enzyme. We have also
extended iNA by a more efficient JIT compilation strategy

in combination with improved numerical algorithms which [11]
offers high performance and enables computations feasible
even on desktop PCs. This feature is particularly important
when analyzing noise in reaction networks of intermediate

or large size with bimolecular reactions, conditions theateh

been shown to amplify the deviations from the conventiona

rate equation description [117].
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AVAILABILITY

The software iNA version 0.3 is freely available un-

der| http://code.google.com/plintrinsic-noise-anatas ex-

ecutable binaries for Linux, MacOSX and Microsoft Win-
dows, as well as the full source code under an open source

license.
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