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Abstract—The linear noise approximation is commonly used
to obtain intrinsic noise statistics for biochemical networks.
These estimates are accurate for networks with large numbers
of molecules. However it is well known that many biochemical
networks are characterized by at least one species with a
small number of molecules. We here describe version 0.3 of
the software intrinsic Noise Analyzer (iNA) which allows for
accurate computation of noise statistics over wide ranges of
molecule numbers. This is achieved by calculating the next
order corrections to the linear noise approximation’s estimates
of variance and covariance of concentration fluctuations. The
efficiency of the methods is significantly improved by auto-
mated just-in-time compilation using the LLVM framework
leading to a fluctuation analysis which typically outperforms
that obtained by means of exact stochastic simulations. iNAis
hence particularly well suited for the needs of the computa-
tional biology community.
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I. I NTRODUCTION

Experimental studies have shown that the protein abun-
dance varies from few tens to several thousands per protein
species per cell [1]. It is also known that the standard
deviation of the concentration fluctuations due to the random
timing of molecular events (intrinsic noise) roughly scales as
the square root of the mean number of molecules [2]. Hence
it is expected that intrinsic noise plays an important role in
the dynamics of those biochemical networks characterized
by at least one species with low molecule numbers.

The stochastic simulation algorithm (SSA) is the conven-
tional means of probing stochasticity in biochemical reaction
systems [3]. This method simulates every reaction event and
hence is typically slow for large reaction networks; this
is particularly true if one is interested in intrinsic noise
statistics which require considerable ensemble averagingof
the trajectories produced by the SSA. A different route of
inferring the required statistics involves finding an approxi-
mate solution of the chemical master equation (CME), a set
of differential equations for the probabilities of the states of
the system, which is mathematically equivalent to the SSA.
We recently developed intrinsic Noise Analyzer (iNA) [4],

the first software package enabling a fluctuation analysis of
biochemical networks via the Linear Noise Approximation
(LNA) and Effective Mesoscopic Rate Equation (EMRE)
approximations of the CME. The former gives the variance
and covariance of concentration fluctuations in the limit of
large molecule numbers while the latter gives the mean
concentrations for intermediate to large molecule numbers
and is more accurate than the conventional Rate Equations
(REs).

In this proceeding we develop and efficiently implement
in iNA, the Inverse Omega Square (IOS) method comple-
menting the EMRE method by providing estimates for the
variance of noise about them. These estimates are accurate
for systems whose molecule numbers vary over wide ranges
(few to thousands of molecules). The new method is tested
on a model of gene expression involving a bimolecular
reaction. Remarkably, the results of the fast IOS calculation
are found to agree very well with those from hour long
ensemble averaging over thousands of SSA trajectories.

II. RESULTS

In this section we describe the results of the novel IOS
method implemented inside iNA, compare with the results
of the RE, LNA and EMRE approximations of the CME and
with exact stochastic simulations using the SSA and finally
discuss the implementation and its performance. The three
methods (LNA, EMRE, IOS) are obtained from the system-
size expansion (SSE) of the CME [2] which is applicable
to monostable chemical systems. Technical details of the
various approximation methods are provided in the section
Methods.

A. Applications

We consider a two-stage model of gene expression with
an enzymatic degradation mechanism:

Gene
k0−→ Gene+ mRNA, mRNA

kdM−−→ ∅,

mRNA
ks−→ mRNA+ Protein,

Protein+ Enzyme
k1−−⇀↽−−
k
−1

Complex
k2−→ Enzyme+∅. (1)
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Figure 1: Gene expression model with fast transcription rate. In panels (a) and (b) we compare the RE predictions of mean
concentrations with those obtained from ensemble averaging 3, 000 SSA trajectories. The shaded areas denote the region of
one standard deviation around the average concentrations which in (a) has been computed using the LNA and in (b) using
the SSA. For comparison, in panel (c) we show the mean concentration prediction according to the EMRE and the variance
prediction according to IOS. The results in (a), (b) and (c) are in good agreement.

The scheme involves the transcription of mRNA, its trans-
lation to protein and subsequent degradation of both mRNA
and protein. Note that while mRNA is degraded via an un-
specific linear reaction, the degradation of protein occursvia
an enzyme catalyzed reaction. The latter may model proteol-
ysis, the consumption of protein by a metabolic pathway or
other post-translational modifications. A simplified version
of this model is one in which the protein degradation is
replaced by the linear reaction: Protein−→ ∅. Over the past
decade the latter model has been the subject of numerous
studies, principally because it can be solved exactly sincethe
scheme is composed of purely first-order reactions [5]–[7].
However, the former model as given by scheme (1), cannot
be solved exactly because of the bimolecular association
reaction between enzyme and protein. Hence in what follows
we demonstrate the power of approximation methods to infer
useful information regarding the mechanism’s intrinsic noise
properties.

We consider the model for two parameter sets (see Tab. I)
at fixed compartmental volume of one femtoliter (one micron
cubed). For both cases, the REs predict the same steady state
mRNA and protein concentrations:[mRNA] = 0.12µM
and [Protein] = 0.09µM . These correspond to72 and 54
molecule numbers, respectively.

We have used iNA to compute the mean concentrations
using the REs and the variance of fluctuations using the
LNA for parameter set (i) in which transcription is fast.
Comparing these with SSA estimates (see Fig. 1) we see
that the REs and LNA provide reasonably accurate results
for this parameter set. This analysis was within the scope
of the previous version of iNA [4]. However, the scenario
considered is not particularly realistic. This is since the
ratio of protein and mRNA lifetimes in this example is
approximately 100 (as estimated from the time taken for
the concentrations to reach90% of their steady state values)

while an evaluation of 1,962 genes in budding yeast showed
that the ratios have median and mode close to3 [7].

We now consider parameter set (ii), the case of moderate
transcription. In Fig. 2(a) and (b) we compare the RE and
LNA predictions of mean concentrations and variance of
fluctuations with that obtained from the SSA. Notice that
in this case, the two are in severe disagreement. The SSA
predicts that the mean concentration of protein is larger
than that of the mRNA while the REs predict the opposite.
This discreteness-induced inversion phenomenon has been
described in Ref. [8]. It is also the case that the variance
estimate of the LNA is considerably smaller than that of
the SSA. In Fig. 2(c) we show the mean concentrations
computed using the EMRE and the variance computed using
the IOS method. Note that the latter are in good agreement
with the SSA in Fig. 2(b). Note further that while the EMRE
was already implemented in the previous version of iNA, the
IOS was not. Hence the present version is the first to provide
estimates of the mean concentrations and of the size of the
noise which are more accurate than both the REs and the
LNA. The transient times for this case are given by37 min-

parameter set (i) set (ii)

k0[G] 2.4min−1µM 0.024min−1µM

kdM 20min−1 0.2min−1

ks 1.5min−1 1.5min−1

k
−1, k2 2min−1 2min−1

k1 400(µMmin)−1 400(µMmin)−1

Table I: Kinetic parameters used for the gene expression
model, scheme (1), as discussed in the main text. The
volume is fixed toΩ = 10−15l with an enzyme concentration
of 0.1µM corresponding to60 enzyme molecules. The
Michaelis-Menten constant is0.01µM in all cases.



Figure 2: Gene expression model with moderate transcription rate. In panels (a) and (b) we compare the RE and LNA
predictions of mean concentrations and variance of fluctuations with those obtained from ensemble averaging30, 000
stochastic realizations computed using the SSA. Note that the RE and LNA predictions are very different than the actual
values. In panel (c) we show the mean concentration prediction according to the EMRE and the variance prediction according
to IOS. These are in good agreement with those obtained from the SSA.

utes for protein and12 minutes for mRNA concentrations
with a ratio of approximately3 in agreement with the median
and mode of experimentally measured ratios. Hence this
example provides clear evidence of the need to go beyond
the RE and LNA level of approximation for physiologically
relevant parameters of the gene expression model.

B. Implementation

iNA’s framework consist of three layers of abstraction: the
SBML parser which sets up a mathematical representation
of the reaction network, a module which performs the
SSE analytically using the computer algebra system Ginac
[9] and a just-in-time (JIT) compiler based on the LLVM
[10] framework which compiles the mathematical model
into platform specific machine code at runtime yielding
high performance of SSE and SSA analyses implemented
in iNA. Generally, methods based on the SSE require
the numerical solution of a high dimensional system of
linear equations. In the present version 0.3 of iNA, time-
course analysis is efficiently performed by means of the all-
round ODE integrator LSODA which automatically switches
between explicit and implicit methods [11]. In particular,
the number of simultaneous equations to be solved for
the LNA, EMRE analysis is approximately proportional to
N2 whereN is the number of independent species after
conservation analysis [12] while for IOS, the number of
equations is approximately proportional toN3. Quadratic
and cubic dependencies represent a challenge for software
development. iNA’s previous version 0.2 addressed this need
for performance by providing a bytecode interpreter (BCI)
for efficient expression evaluation [4]. The latter concepthas
proven its performance for both SSE and SSA methods while
maintaining compatibility over many platforms. With the
present version we introduce a strategy for JIT compilation
based on the modern compiler framework LLVM that allows

to emit and execute platform specific machine code at
runtime [10]. The system size expansion ODEs are automat-
ically compiled as native machine code making it executable
directly on the CPU. Therefore iNA’s JIT feature enjoys
the speed of statically compiled code while maintaining
the flexibility common to interpreters. Moreover, the LLVM
framework allows optimizations on platform independent
and platform specific instruction levels which are beneficial
for computationally expensive calculations.

Compared to iNA’s previous implementation, using JIT
compilation, we have observed speedups for the SSE anal-
ysis by factors of10 − 20 and factors of1.5 − 2 for the
SSA.

III. M ETHODS

We consider a general reaction network confined in a
volume Ω under well-mixed conditions and involving the
interaction ofN distinct chemical species viaR chemical
reactions of the type

s1jX1 + . . .+ sNjXN
kj

−→ r1jX1 + . . .+ rNjXN , (2)

where j is the reaction index running from1 to R, Xi

denotes chemical speciesi, kj is the reaction rate of thejth

reaction andsij andrij are the stoichiometric coefficients.
Note that our general formulation does not require all
reactions to be necessarily elementary.

The CME gives the time-evolution equation for the prob-
ability P (~n, t) that the system is in a particular mesoscopic
state~n = (n1, ..., nN)T whereni is the number of molecules
of the ith species. It is given by:

∂P (~n, t)

∂t
=

R
∑

j=1

( N
∏

i=1

E
−Sij

i − 1

)

âj (~n,Ω)P (~n, t), (3)

whereSij = rij − sij , âj(~n, ~Ω) is the propensity function
such that the probability for thejth reaction to occur



in the time interval [t, t + dt) is given by âj(~n, ~Ω)dt

[3] and E
−Sij

i is the step operator defined by its ac-
tion on a general function of molecular populations as
E

−Sij

i g(n1, ..., ni, ..., nN ) = g(n1, ..., ni − Sij , ..., nN ) [2].
The CME is typically intractable for computational pur-

poses because of the inherently large state space. iNA
circumvents this problem by approximating the moments
of probability density solution of the CME systematically
using van Kampen’s SSE [2], [13]. The starting point of the
analysis is van Kampen’s ansatz

~n

Ω
= [ ~X] + Ω−1/2~ǫ, (4)

by which one separates the instantaneous concentration into
a deterministic part given by the solution[ ~X ] of the macro-
scopic REs for the reaction scheme (2) and the fluctuations
around it parametrized by~ǫ. The change of variable causes
the probability distribution of molecular populationsP (~n, t)
to be transformed into a new probability distribution of
fluctuationsΠ(~ǫ, t). The time derivative, the step operator
and the propensity functions are also transformed (see [4]
for details). In particular, using ansatz (4) together with
the explicit Ω-dependence of the propensities as given by
âj(~n,Ω) =

∑

∞

m=0 Ω
1−mf

(m)
j ( ~nΩ ), the propensities can be

expanded in powers ofΩ−1/2:

âj(~n,Ω)

Ω
=f

(0)
j ([ ~X ]) + Ω−1/2ǫα

∂f
(0)
j ([ ~X ])

∂[Xα]
+ Ω−1f

(1)
j ([ ~X])

+
1

2
Ω−1ǫαǫβ

∂f
(0)
j ([ ~X ])

∂[Xα]∂[Xβ]
+ Ω−3/2ǫα

∂f
(1)
j ([ ~X ])

∂[Xα]

+
1

2
Ω−3/2ǫαǫβǫγ

∂f
(0)
j ([ ~X ])

∂[Xα]∂[Xβ ]∂[Xγ ]
+O(Ω−2).

(5)

Note that ~f (0) is the macroscopic rate function. Here we
have used the convention that twice repeated Greek indices
are summed over 1 toN , which we use in what follows as
well. Consequently the CME up to orderΩ−1 can be written
as

∂Π(~ǫ, t)

∂t
− Ω1/2

(

∂[Xα]

∂t
−

R
∑

k=1

Sαkf
(0)
k ([ ~X ])

)

∂αΠ(~ǫ, t)

=
(

Ω0L(0) +Ω−1/2L(1) +Ω−1L(2)
)

Π(~ǫ, t)

+O(Ω−3/2), (6)

where the operators are defined as

L(0) = −∂αJ
β
αǫβ +

1

2
∂α∂βDαβ ,

L(1) = −∂αD
(1)
α −

1

2!
∂αJ

βγ
α ǫβǫγ +

1

2!
∂α∂βJ

γ
αβǫγ

−
1

3!
∂α∂β∂γDαβγ ,

L(2) = −∂αJ
(1)β
α ǫβ +

1

2!
∂α∂βD

(1)
αβ −

1

3!
∂αJ

βγδ
α ǫβǫγǫδ

+
1

2!

1

2!
∂α∂βJ

γδ
αβǫγǫδ −

1

3!
∂α∂β∂γJ

δ
αβγǫδ

+
1

4!
∂α∂β∂γ∂δDαβγδ, (7)

and the SSE coefficients are given by

D(n)
ij..r =

R
∑

k=1

SikSjk...Srk f
(n)
k ([ ~X ]),

J (n)st..z

ij..r =
∂

∂[Xs]

∂

∂[Xt]
...

∂

∂[Xz]
D(n)

ij..r. (8)

Note that the above expressions generalize the expansion
carried out in Ref. [14] to include also non-elementary
reactions as for instance trimolecular reactions or reactions
with propensities of the Michaelis-Menten type [15]. Note
also that theΩ1/2 term vanishes since the macroscopic REs
are given by∂t[Xα] =

∑R
k=1 Sαkf

(0)
k ([ ~X ]) leaving us with

a series expansion of the CME in powers of the inverse
square root of the volume. In Eqs. (7) we have omitted the
upper index in the bracket of the SSE coefficients in the case
of n = 0.

The method now proceeds by constructing equations for
the moments of the~ǫ variables. This is accomplished by
expanding the probability distribution of fluctuationsΠ(~ǫ, t)
in terms of the inverse square root of the volume asΠ(~ǫ, t) =
∑

∞

j=0 Πj(~ǫ, t)Ω
−j/2, which implies an equivalent expansion

of the moments

〈ǫkǫl...ǫm〉 =

∞
∑

j=0

[ǫkǫl...ǫm]jΩ
−j/2. (9)

In order to relate the above moments back to the moments
of the concentration variables we use Eqs. (4) and (9) to find
expressions for the mean concentrations and covariance of
fluctuations which are given by

〈ni

Ω

〉

= [Xi] + Ω−1 [ǫi]1 +O(Ω−2), (10a)

Σij =
〈(ni

Ω
−
〈ni

Ω

〉)(nj

Ω
−
〈nj

Ω

〉)〉

= Ω−1 [ǫiǫj ]0 +Ω−2
(

[ǫiǫj ]2 − [ǫi]1 [ǫj ]1
)

+O(Ω−3) (10b)

The orderΩ0 term of Eq. (10a) denotes the mean con-
centrations as given by the macroscopic REs while the
Ω−1 term in Eq. (10b) gives the LNA estimate for the
covariance. Including terms to orderΩ−1 in Eq. (10a)
gives the EMRE estimate of the mean concentrations which
corrects the estimate of the REs. Finally, considering also
the Ω−2 term in Eq. (10b) gives the IOS (Inverse Omega
Squared) estimate of the variance which is centered around
the EMRE concentrations and is of higher accuracy than
the LNA method. The general procedure together with the
equations determining the coefficients of Eq. (9) is presented



in Refs. [14] and [16]. In brief the result can be summarized
as follows: as mentioned above, truncating Eq. (6) to order
Ω1/2 yields the macroscopic REs, truncation after terms up
to orderΩ0 gives a Fokker-Planck equation with linear drift
and diffusion coefficients which is also called the Linear
Noise Approximation. Considering terms up toΩ−1/2 one
obtains the EMREs while the terms up toΩ−1 determine
the corrections beyond the LNA as given by the present IOS
method. Since the IOS method has been derived from van
Kampen’s ansatz, Eq. (4), which expands the CME around
the macroscopic concentrations it has the same limitation
as the LNA namely that it cannot account for systems
exhibiting bistability.

IV. D ISCUSSION

In this proceeding we have introduced and implemented
the IOS approximation in the software package iNA. This
allows the variances to be determined accurate to orderΩ−2,
an approximation which complements the EMRE method
(mean concentrations accurate to orderΩ−1) and is superior
to the previously implemented LNA method (variances accu-
rate to orderΩ0). As we have shown this increased accuracy
is desirable to accurately account for the effects of intrinsic
noise in biochemical reaction networks under low molecule
number conditions. In particular, we have demonstrated
the utility of the software by analyzing an example of
gene expression with a functional enzyme. We have also
extended iNA by a more efficient JIT compilation strategy
in combination with improved numerical algorithms which
offers high performance and enables computations feasible
even on desktop PCs. This feature is particularly important
when analyzing noise in reaction networks of intermediate
or large size with bimolecular reactions, conditions that have
been shown to amplify the deviations from the conventional
rate equation description [17].
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AVAILABILITY

The software iNA version 0.3 is freely available un-
der http://code.google.com/p/intrinsic-noise-analyzer/ as ex-
ecutable binaries for Linux, MacOSX and Microsoft Win-
dows, as well as the full source code under an open source
license.
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