The removal of ocular artifactsfrom EEG signals: An adaptive modeling technique for portable applications | IEEE Conference Publication | IEEE Xplore

The removal of ocular artifactsfrom EEG signals: An adaptive modeling technique for portable applications


Abstract:

Modeling and prediction of Electroencephalogram (EEG) signals is very important for Portable applications; EEG signals are however widely regarded as being chaotic in nat...Show More

Abstract:

Modeling and prediction of Electroencephalogram (EEG) signals is very important for Portable applications; EEG signals are however widely regarded as being chaotic in nature. An adaptive modeling technique that combines Discrete Wavelet Transformation (DWT) to predict contaminated EEG signals for removal of ocular artifacts (OAs) from EEG records is proposed as an effective a data processing tool for Interventions in Mental Illness Based on Bio-feedback. The proposed method is well suited for use in portable environments where constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices. Using simulated and measured data the accuracy of the proposed model is compared to the accuracy of other pre-existing methods based on Wavelet Packet Transform (WPT) and independent component analysis (ICA) using DWT and adaptive noise cancellation (ANC) for Portable applications. The results show that the our new model not only demonstrates an improved performance with respect to the recovery of true EEG signals, achieves improved computational speed, and demonstrates better tracking performance.
Date of Conference: 18-21 December 2013
Date Added to IEEE Xplore: 06 February 2014
Electronic ISBN:978-1-4799-1309-1
Conference Location: Shanghai, China

Contact IEEE to Subscribe

References

References is not available for this document.