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Abstract—With the advances in dual medical imaging, the
requirements for multimodal and multifield volume visualization
begin to emerge. One of the challenges in multimodal visualization
is how to simplify the process of generating informative pictures
from complementary data. In this paper we present an automatic
technique that makes use of dual modality information, such as
CT and PET, to produce effective focus+context volume visual-
ization. With volume ray casting, per-ray visibility histograms
summarize the contribution of samples along each ray to the
final image. By quantifying visibility for the region of interest,
indicated by the PET data, occluding tissues can be made just
transparent enough to give a clear view of the features in
that region while preserving some context. Unlike most previous
methods relying on costly-preprocessing and tedious manual
tuning, our technique achieves comparable and better results
based on on-the-fly processing that still enables interactive visual-
ization. Our work thus offers a powerful visualization technique
for examining multimodal volume data. We demonstrate the
technique with scenarios for the detection and diagnosis of cancer
and other pathologies.

I. INTRODUCTION

In interpreting volume data for medical diagnosis or sur-
gical planning, the information which can be visualized from
a single modality, e.g, Computed Tomography (CT), may be
insufficient. A number of factors influence this, including
limited resolution, sensitivity to tissue properties, noise, etc.
For this reason, radiologists often make use of additional
modalities that provide complementary or supplementary in-
formation. In this way, radiologists are able to extract more
clearly the structures of interest and the spatial relationships
among them. For example, CT provides the most detailed
anatomical information from the human body, usually at high
resolution. It helps depict high dense structures such as bone,
as well as the shape of internal organs. On the other hand, the
acquisition of metabolic activity must rely on a modality like
Positron Emission Tomography (PET). In general, metabolic
activity is important to detect cancer, since cancer tumors and
other malignancies are usually located in regions with high rate
of metabolic activity, such as regions with high blood flow.
To obtain the best of the two modalities, recent visualization
systems attempt at fusing both types of information in a single
meaningful image.

With hardware acceleration, volume rendering has become
very attractive to many applications. To be more widely
adopated, however, its usability remains to be enhanced. In
particular, the task of classifying volume data before rendering
as well as the task of manipulating potentially a large number
of rendering and viewing parameters to achieve desired visual-
ization are often time-consuming and tedious. Recent research
results show some good progress on visualizing individual

volume data, but multimodal volume rendering presents ad-
ditional challenges, from the problems of superimposing dual
modality data and highlighting objects of interest, to the desire
to suppress occluding materials while maintaining the context
and to enhance structural and spatial clarity of the objects.

Until now, the most common way in multimodal visualiza-
tion is rendering the multiple volumes into one visualization
by fusing them based on their weighted intensity values.
CT is usually used as the contextual volume to show the
anatomical relationships between the pathological tissue and
other non-affected regions. However, these visualizations are
only effective when the non-pathology tissues have sufficiently
different intensities from that of the pathological ones. If the
intensity of a target tissue is similar to that of the nearby
tissues, then the user has to manually segment out that part and
proceed to define a separate transfer function for highlighting
the target issue. Such tedious, manual tasks are exactly the
reasons 3D visualization is not widely used in medicine. An
ideal visualization tool should do most of the work for the
users to allow them concentrate on examing the data and the
revealed structures.

We introduce a technique that can automatically generate
focus+context visualization of multimodal volume data in a
view-dependent fashion. In our study, we used PET and CT
datasets. The PET data was used to mark the region of interest
(ROI) and also modulate the opacity values for rendering the
CT data. Rendering the affected organs in the ROI does not
require the user to specify a special modulation function or
a secondary transfer function for surrounding tissues. Instead,
a local visibility histogram is computed for the target tissue
and used to adjust the transfer function for rendering the oc-
cluding tissues. The adjustment is automatically and iteratively
made to reach a balance between ROI visibility and context
disambiguation. Immediate visual feedback enables the user to
determine if the iteration should stop.

In this paper, we describe how we incorporate visibility
information to fuse multimodal data sets for focus+context
visualization. Using multiple-pass visibility calculations, we
can tradeoff between visibility and spatial clarity. We demon-
strate this new technique using four CT and PET data sets and
discuss some of the initial feedback we have obtained from
our collaborating radiologists and surgeons.

II. RELATED WORK

With the popularity of medical imaging technology in the
recent years, it has been possible to extract different images
from the human body under multiple modalities, including
CT, MRI and PET. Dual modality medical scanners would
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Fig. 1. A breast cancer tumor. As we increase the PET signal threshold (left
to right), we can get a more precise view of the tumor in CT. Depending on
the threshold we set, we can obtain different types of images

likely become the norm for diagnosing and detecting malig-
nancies. For visualization, the existence of multiple sources
for imaging a structure implies handling complementary and
supplementary information in a single image. This can be quite
challenging.

Previous work in multimodal visualization has addressed
this issue as a fusion problem, where the final image is the
result of combining different modalities at the data, accumula-
tion, illumination or pixel levels [1]-[3]. Recent approaches
combine different visual analysis to fuse information from
perfusion data [4]. As GPUs become more widely available,
the fusion of multiple volume data sets has become a com-
modity. Obtaining good images that convey the information
in complementary modalities remains a challenge. Although
registration and segmentation remain a challenge [5], [6], from
the point of view of visualization, there are challenges in
transfer function design and focus+context rendering. First,
transfer functions are often limited by the particular dimension
they classify, such as intensity, gradient magnitude [7], [8],
curvature [9] or local structure [10]. Features in a volume data
coexist in different regions of these spaces that often overlap,
making the separability of structures of interest difficult [11].

On the other hand, the issue can be posed as a fo-
cus+context problem, where a data, geometric or optical trans-
formation is applied to a region of interest, called the focus,
and a different transformation to the remaining data, called
the context. Focus+context techniques include interactive cuts
[12], [13], ghosted views [14]-[16], opacity peeling [17], dis-
torted views [18], or deformations [19]. Our approach also fits
into the notion of focus+context techniques, especially tailored
for multi-modality volumes. Some existing techniques can be
extended for multi-modal visualization. Two-level volume ren-
dering, for instance, uses different rendering styles to display
segmented structures [20]. Importance-driven techniques can
help visualizing hidden structures [16], but require a prior
definition of the context regions. This notion was extended for
the visualization of multimodal medical images [21]. Instead
of requiring segmentation, users simply define importance
as an extra dimension of the transfer function. While more
interactive, it suffers from the separability issues known for
intensity-based transfer functions.

Unlike previous approaches, we present a method that does
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Fig. 2. Process of obtaining multimodal visualization using our visibility
based pattern.

not require detail object segmentation, but rather uses the
complementary information from another modality, e.g., PET,
to provide an image of the other modality, e.g. CT, or their
combination, in a way that ensures visibility of the region
of interest. To this end, we exploit the notion of visibility
histograms [22], which summarize the distribution of visibility
of structure of interest from a given viewpoint. Techniques
such as context-preserving volume rendering [14] use accu-
mulated opacity to provide focus+context visualizations. We
believe that visibility histograms encode more concisely the
information required to measure the efficacy of a transfer
function. Different from the approach by Correa and Ma [22],
[23] which requires to calculate the visibility of all voxels in
the volume, we employ local histograms to ensure that features
of interest, automatically obtained from other modalities, e.g.
PET, are sufficiently visible in the final image.

The idea of guiding the rendering of CT images from
PET information was proposed by Kim et al. [24], [25].
These techniques, however, require a fuzzy segmentation of
the PET data. Beyer et al. [26] combine segmentation with
cuts, while Ropinski et al. [27] take a different approach and
use closeups that decouple the multimodality rendering into
several informative images.

III. TECHNICAL APPROACH

Figure 2 illustrates our technical approach and the cor-
responding processing. A ray-casting volume renderer is en-
hanced to render a multimodal volume data set, in this case
including a CT and a PET. The PET data is used to mark
the ROI and modulate opacity for the CT data (Section
4). The CT data is used to show anatomical structures and
compute the visibility histograms (Section 5.2). Depending on
the users requirements, after visibility histograms have been
obtained through several passes of computation (Section 5.3),
opacity attenuation of the influenced rays is accumulated to
get the final rendering result (Section 5.4). Users are able to
manipulate the area of ROI, control the visibility of this area,
and vary view direction during the entire visualization process.
When the view direction changes, the visibility histograms
are recalculated and composition is redone to generate a new
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Fig. 3. Global visibility histograms. We obtain a single visibility histogram
for the volume in front of the ROIL. A single histogram has the advantage
that we can capture aggregated visibility information and is usually coherent
across viewpoints and small TF changes.

image. A quantitative analysis about the cost of our technique
is presented in Section 6.

A. PET-guided ROI

Radiologists diagnose a considerable number of patient
cases every day. Therefore, the entire process of diagnosis and
detection using multimodal data sets should be as simple and
intuitive as possible. Currently, analysis of multimodal data
sets requires a preprocessing stage that includes registration
and segmentation for different data sets. This stage can be quite
time-consuming. However, thanks to the increasing availability
of multimodal medical scanners, this stage is likely to be
done much faster and transparently to the user. Therefore, it is
expected that the creation of meaningful images will remain
a challenge. One technical challenge lies in ROI definition.
One way to solve this problem is to set up the ROI around
a tumor manually by identifying some key boundary points.
However, if the user wants to set up a complex shape, he/she
has to define a large number of boundary points around the
ROI, which becomes time-consuming and error-prone. This
process becomes more tedious when there are multiple tumors
of interest. One way to alleviate this task is to set up spheres
covering the ROI. This approach, however, may be difficult
to adapt when the situation merits a more complex shape of
the pathological tissue, or when the PET signal is noisy and
scattered. For this reason, we would like to use the PET data
set directly as a guide to define the ROI automatically.

If we only have the CT data set, getting a clear view
of a region of interest requires segmentation. In the case
of multimodal visualization, we have a functional data set,
PET, which produces a 3-dimensional image of the metabolic
process in the body. With the PET signal, radiologists can find
where important pathological changes occur.

Until now, in most cases, PET serves as a data set that
visually defines where is the interesting part. Radiologists vi-
sualize these using semi-transparent rendering and try to form
an idea of the ROI shape and location. However, PET can be
used also to supply us the spatial information. The higher the
metabolic activity is in this area, the larger the corresponding
intensity is. They provide the possibility to differentiate the
interesting parts in the corresponding anatomical data set. The
operation to define the PET-guided opacity is quite intuitive.
The basic idea is to range the PET data set for obtaining a
3D mask that defines the contribution of the ROI into another
modality, such as CT. We do this by evaluating the following
equation at each sample s in the volume rendering process:

MASK,41ue (S) = g(PET(S)), (1)

Fig. 4. Our per-ray visibility histogram dependent method. Top: original
rendering without regards of visibility for different transfer functions and
views. Without visibility, the PET could be visible but semi-transparent (left),
totally (middle) or partially occluded (right). Bottom: our method provides
visibility of the ROI without destroying the context. In left and middle images,
the contours of ribs are retained automatically to emphasize the spatial relation.
This effect is more subtle in the right image where the contour of pelvis bone
is also preserved.

where PET (s) is the intensity value at sample point s in PET
data set, and g(+) is a windowing function for the local intensity
value. This function can be a trapezoid, which causes a blurred
boundary, or a box filter, which produces a clear-cut shape.

A breast cancer example is shown in the Figure 1. In this
case there are several tumors clustered together. With manipu-
lation of the range of PET data set, we are able to show these
tumors separately since their intensities (activeness) in PET
are different. In Figure 1(b), we are able to isolate one of the
tumors. However, this method suffers from some limitations.
It largely depends on the nature of the corresponding PET
data set. There may be a scattered collection of automatically
generated ROIs, some of which may not carry important
information. For this reason, we turn to our main contribution,
the visibility-guided fusion of dual modalities. By analyzing
the visibility histogram of the ROIs, we can determine the best
way to show the surrounding occluding tissue. Small isolated
ROIs, possibly due to metabolic activities of healthy tissues,
can be discarded with a single threshold based on the visibility
histogram, alleviating the issues of automatic ROI definition.

IV. VISIBILITY-GUIDED FUSION

In this paper, we exploit the notion of visibility histograms
to automatically find the best way to render multiple modal-
ities, by maximizing the visibility of an ROI, in our case the
PET signal, while restricting the visibility of the context, in
our case the CT signal.

The visibility T of a point refers to the optical contribution
of that point to the final image. For a given point p:

T(p) = e Jortd 2)



where 7(¢) is the attenuation coefficient of a sample and s is
the parametrized value of p along a viewing ray. We define
attenuation in terms of an opacity mapping A : R — R, such that
A(I(p)) defines the opacity of p as a function of the intensity
I of p.

In this work, we are interested in the visibility of PET
structures, as a function of the attenuation introduced by the
CT signal. The PET-visibility for a signal strength ¢ of a given
pixel in the image is determined by:

TPET (q) =e (;Pé't T(l)d! (3)

where g = 7tpe,, and . is the parameter along the view
direction where PET (¢) > ¢. Note that in the above equation,
7(¢) is the attenuation of a point parameterized by ¢, according
to the CT intensity of the point. Therefore, the PET-visibility
of a pixel depends on the opacity of CT samples in front of
the first hit on the PET signal. To quantify this visibility we
turn to the visibility histogram.

Correa and Ma [22] introduced the visibility histogram of
a rendered image, which bins the visibility of each rendered
voxel according to their intensity values, and can be computed
with front-to-back compositing, as follows:

VH[x] =VH[x]|+T(p)A(x) ()]
T(p+Ap)=T(p)A(x)+(1-T(p))

where x = round(V (p)) € [1,...,N] are quantized intensity val-
ues in N bins, and VH denotes the visibility histogram. Unlike
the original approach, we are not interested in measuring the
full visibility of an image, but we restrict ourselves to local
visibility histograms around the ROI. We show two ways for
doing this: first, as a single visibility histogram for the ROI,
and second, as a set of per-ray visibility histograms. While the
former is more robust to view changes, the latter can adapt to
different types of occluding tissues more easily. In this paper
we highlight the benefits of each of these approaches.

A. ROI Visibility Histogram

In this case, we compute the visibility histogram only for
the rays in the ROI defined by the PET signal. We restrict
the histogram to only 16 bins, which allows us to compute
the histogram in a single pass and keep it available in GPU
memory at all times using the available color channels. This
capability enables real-time analysis of the visibility with very
little impact on performance, if perceivable at all. Since the
purpose is to adjust the opacity of occluding tissues to get
a clear view of the PET signal, it is sufficient to use 16
bins here. Because this method aggregates the visibility into a
single histogram, it is not sensitive to small sparse structures,
like small vessels. Those structures will appear in the final
image, providing context, but the PET signal will still have a
clear view. In contrast, highly occluding tissue, such as muscle
or fatty tissue, will affect considerably the overall visibility
distribution, and therefore are likely candidates to be made
transparent. Figure 3 illustrates this process. Once the visibility
histogram is known, we adjust the opacity of samples in the
ROI with the following formula:

A'(x) =A(x)(1 - VH(x))* ©)

where A(x) and A’(x) are the old and new opacity mappings
for an intensity x, VH(x) is the visibility associated with that
intensity in the visibility histogram, and e is an exponent that
defines the strength of such a mapping.

According to this formula, points that dominate the visibil-
ity, i.e., VH(x) is high, are likely to be made more transparent,
while samples that do not occlude much — VH (x)islow, are
kept to provide context. The use of an aggregated mapping for
each intensity bin, instead of an individual opacity mapping
for each sample point results in a coherent opacity mapping
from pixel to pixel and across view changes.

B. Per-Ray Visibility Histograms

One of the issues with an ROI-wide visibility histogram
is that we treat all samples under the same intensity, e.g.,
bone, with the same opacity adjustment. This may be counter-
productive to provide contextual information. For example,
for bone, the middle solid part may be more occluding than
the contours. By keeping the contours and remove the middle
solid part, we can still retain the shape without much impact
on visibility. Thus, we want to automate this decision using
visibility histograms.

The process is essentially the same as described above,
except we keep a visibility histogram for each ray hitting the
ROI. Because the opacity transformation in eq. 5 is applied
per ray, different parts of a tissue with the same intensity value
end up with different transparencies, providing the best trade
off between visibility and context. An example is shown in
Figure III-A. We see a traditional rendering on top, where
the visibility of the ROI (green and orange) is affected by
occluding tissue, to the point that it becomes totally (middle)
or partially occluded (right). At the bottom, we show the
automatic adjustment based on PET. We see that the most
of the occluding tissue is removed, namely the muscle, fatty
tissue and the liver. Tissues that do not affect much visibility,
such as the ribs and skin are retained. The per-ray visibility
histograms let us automatically emphasize the contours, as
seen more clearly in the middle figure. The use of contours is
essential for disambiguating depth relationships.

C. Visibility Refinement

One may notice that, once we apply opacity adjustment,
the visibility of the PET signal changes. Therefore, we can
refine the opacity based on the new visibility histogram in the
search for better visibility. We can do this for any number
of iterations, but, in the long run, this process converges to
the occluding tissue being completely transparent. For this
reason, we let the user explore up to 3 iterations of visibility
refinement, each of which represents and different combination
of the ROI and context. An example is shown in Figure 5.
We can see that, for the first iteration, fatty tissue and muscle
dominate visibility. On the second iteration, these tissues are
removed, and now bone tissue dominates visibility and are
made more transparent. Note that the opacity transformation
for the bone is not homogeneous: near the contours, where
the view ray is tangential, the contribution of bone tissue to
visibility is small and does not need to be transformed. Near
the center, however, the ray has to go through more samples
and contribute more to the visibility histogram, and thus are
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Fig. 5. Effect of several iterations in visibility-weighted adjustment. (a) For one iteration, the ribs, which are originally very opaque, are not entirely removed,
since they do not affect visibility as much as other tissue. (b) In a second iteration, we see that ribs can be made more transparent, while still retaining the
contours. (¢) By the time we reach a third iteration, the bones can be even made more transparent, giving a clear view of the ROI. (d) For a different transfer
function, which produces an opaque rendering and highly occluding tissue, our approach still provides a good visibility of the tumor while retaining the skin

and ribs contours for context
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Fig. 6. Figure (a) shows a mouse with tumor in its left lung. Figure (b) shows with only one-pass, the skin and part of the muscle are removed, the bone of
the arm and ribs become visible. In Figure (c), with two-passes, only contours of the arm bone and ribs are left. In Figure (d) we can see only faint signal of
the ribs.

made more transparent. This explains why the contours are
likely to be preserved. On a third and final iteration, almost
all occluding tissues are removed. For this particular case, a
user may find the second iteration suitable planning a surgical
intervention.

Another example is shown in Figure 5(d), where we
show the result of applying our approach when the original
mapping depicts tissues as very opaque. Our approach is able
to remove all unimportant tissues in the third iterations, while
still providing context information. Notice the shape of skin
and ribs as depicted in their contours.

The main advantage of this approach compared to existing
approaches is that we no longer need to specify separate mea-
surements for the focus and context regions. A naive reduction
of the opacity of all occluding samples would penalize the
regions that do not affect visibility but that otherwise could
provide contextual information. Figure 7 compares the result
of separate focus+context region (left) with our automatic
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approach (right). We notice that our method can provide equiv-
alent or even better results without the time-consuming task of
finding suitable transfer function for the context regions.

D. ROI Visibility Guarantee

One problem with the approach is providing visibility
guarantees of the ROI. So far, we let the user explore up to 3
iterations and let them decide which visibility configuration is
best. Automating this process proves more challenging. One
simple approach is to make the occluding tissue completely
transparent, but it completely loses all the context information.
An alternative, common in existing approaches is to adjust the
context region with an independent transfer function. While
a manual design of such a transfer function may work, at
the expense of time, automatic construction cannot guarantee
visibility of the ROI as the mapping is computed per intensity
value. What we propose is an approach that automates this
process, given an ROI and its desired visibility.
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Fig. 7. Comparison between manual generation of separate focus and context
transfer functions (left) and our automatic visibility-based opacity adjustment
(right), for an abdomen lymphoma. Our automatic approach offers equivalent
visual results without the need for user intervention to highlight the focus
region.

First, we let the user specify a desired visibility of the
ROI. A high value indicates that the ROI should be as visible
as possible, maybe at the cost of losing context information.
A low value indicates that the ROI should be visible, but
can be occluded to some extent. Our approach then iterates
over the visibility computation up to a maximum number
of times. After each iteration finishes, we accumulate the
visibility of the points in the ROI. If the result is larger than
the visibility threshold, the process is stopped and the final
image is rendered. This mechanism applies both for the ROI-
and per ray- visibility histograms. This automated approach
alleviates the need for manually tweaking a transfer function
and relying on anatomical knowledge. Instead, our approach
makes decisions based on spatial relationships alone and can
be applied to a variety of cases and visibility configurations.
We expect that people with limited training in medical images
will benefit from our approach.

V. RESULTS AND EVALUATION
We now discuss the results and evaluation of our approach.

Lymphoma: Figure 5 shows an abdominal lymphoma.
Initially, the area contains the lymphoma is surrounded by fat.
A transfer function that highlights only the tumor is difficult
to obtain, since its intensity is close to that of the fat/muscle
tissue boundary and the liver. If we remove the fatty tissue in
a transfer function, we lose the CT signal for the lymphoma.
Therefore, we isolate the lymphoma using the PET signal and
set up the ROI with an ellipsoidal 3D mask. Our visibility-
guided method provides views of the tumor under different
transfer functions and viewpoints. With a careful study of the
isolated signal in the CT image, we see that the PET-signal
follows the overall shape of the tumor in the CT signal.

Mouse: Figure 6 shows a mouse cancer. The cancer is
surrounded by lung and ribs. This time, it is the pathological
part of the lung which shares the same intensity value of
surrounding tissue, making it hard to isolate using transfer
functions. Again, we turn to the PET signal to visualize the
tumor. We show the result of our approach for a number of
visibility modulation iterations.

Brain: Figure 8 shows a brain tumor using a combination
of CT and multiplanar reformat (MPR) modalities. In the

(a) Original (single TF) (b) MPR-defined ROI

Fig. 8. Automatic visibility-guided rendering of ROI on a brain dataset. (a)
Original visualization of CT and MPR. (b) Multimodal visualization of CT
and MPR highlighting a brain tumor. We define the ROI as a sphere, but the
opacities are adjusted automatically based on visibility. We clearly visualize
the tumor but also retain some of the important vessels for context.

absence of a smooth PET signal, we instead define the ROI
as a sphere containing the tumor. Our approach automatically
makes the bone tissue fully transparent, so that the interior can
be visible, but also retains nearby vessels for context.

Breast: Figure 9 shows a fused PET-CT scan of a female
breast. Here, we see two kinds of tumors. One is DCIS (ductal
carcinoma in situ) and the other is benign. The ability to
isolate ROIs using PET signal becomes crucial, since only
the DCIS is captured in the PET signal. Existing visualization
systems typically remove the vessels surrounding a tumor
due to occlusion and noise. However, for a radiologist it
is important to consider the neighboring vessels, since the
PET signal indicates a high rate of metabolic activity. In our
example, we use a transfer function that can highlight glandular
tissue, skin and vessels. Without any visibility provision, these
tissues occlude each other and it is not possible to obtain
any meaningful information, as shown in Fig.9(a). With our
approach, we can now clearly see the tumor and surrounding
vessels, as shown in Figure 9(c), which gives a more complete
view of the affected area.

A. Informal Evaluation

We validated our results with radiologists who provided
us the data sets. Radiologists often need to see the actual
CT signal associated with strong PET signal. Our approach
makes a better job at showing the CT signal associated with
an ROI than current technologies. Radiologists also found
attractive the ability to preserve contextual information around
the space-occupying lesions. When treating cancer, it is im-
portant to distinguish four kinds of space-occupying lesions:
hamartoma, inflammation, benign tumor and malignancy. The
benign tumor usually shows expansive growth and pushes
away the surrounding tissues, while the malignant tumor is
always associated with invasive growth and infiltrates the
surrounding tissues. Besides the invasive growth, another bi-
ological behavior of malignancy is metastasis. This is often
manifested in lymphatic and blood vessels, often seen as small,
sparse features in the CT signal. Our approach, unlike existing
technologies, is able to retain these as part of the CT context.
Surgeons also expressed the need for the CT context to be
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(a) Original Visualization (single TF)
Fig. 9.

(b) with 2 TFs

(c) PET-defined ROI after 1 iteration

Automatic visibility-guided rendering of ROI on a breast PET-CT data set. (a) With a roughly-defined transfer function that highlights tumor and

vessels, it is not possible to see the tumor. Obtaining a better depiction is time-consuming and may required multi-dimensional TFs. (b) 2 transfer functions help
visualize the tumor inside. (c) Automatic PET-guided ROI and visibility-guided rendering provides a better view of the tumor and still provides the surrounding

vessels for context

able to plan a treatment procedure, such as a virtual biopsy or
a puncture. Although the images we provided contain a fair
balance between focus and context, we found that interactive
exploration was most useful.

VI. IMPLEMENTATION

We have implemented our approach entirely on the GPU
through fragment shaders. In general, our approach follows
a traditional volume rendering approach, to make it easy to
deploy in current visualization systems. We use multiple-
passes, in order to obtain the maximum possible number of
bins for the visibility histogram and the flexibility of multiple
iterations. The first pass records a 2D mask in screen space
for the ROI, while subsequent passes compute the visibility
histogram. A final pass finally composites the result image
using visibility-guided opacity modulation. The shader is es-
sentially a raycasting cycle, where we gather the contribution
of visibility of each sample as we traverse them. For speed,
we can gather up to 16 bins in a histogram in a single pass
shader and gather them in four textures, each using four color
channels. For an ROI visibility histogram, we simply gather
and sum the information from the four targets. We combine
the automatic ROI from the PET as a mask to define the region
in the view which require visibility histogram computation.

This implementation is much faster than previous ap-
proaches for computing the histogram [22] since it keeps
everything on the GPU memory and only requires a small
number of bins. In our experiments, we did not notice a
particular disadvantage on using a small-sized histogram. In
practice, the result with eight bins histogram is also sufficient
for our needs. An important consideration of our approach is
that we made sure to keep the bins close to the intensities of
interest and avoid using bins for the entire intensity range,
where some intensities have no contribution at all in the
original data set.

A. Performance

Our approach is not asymptotically more expensive than
typical volume rendering with multiple modalities, except that
now it depends on: (1) the number of visibility modulation

iterations, and (2) the number of passes required to compute
a visibility histogram. However, this cost in practice increases
much slower than that of multiple rendering passes. First, the
number of visibility modulation iterations is usually constant,
and in most cases fewer than three iterations are required.
Second, the visibility histogram is not computed for the entire
viewport, but just for the pixels occupied by the ROI projection
onto the view plane. Finally, the number of passes required to
compute a visibility histogram is exactly one, since we can
write up to 16 bins simultaneously, using four texture targets
with four channels each.

We tested our approach on a standard PC with a 2.40
GHz Intel Core(TM)2 Quad CPU with 3GB of memory and
a NVIDIA GTX280 graphics card with 1GB of graphics
memory. We tested three multimodal datasets and compare
the performance for different opacity modulation iterations and
sampling rates.

TABLE 1. PERFORMANCE COMPARISON FOR LYMPHOMA

Method frame rate with | frame rate with
0.01 stepsize 0.002 stepsize

normal way 26.7 fps 8.9 fps

1 iteration 17.0 fps 6.1 fps

2 iterations 14.0 fps 5.1 fps

3 iterations 13.0 fps 4.8 fps

TABLE II. PERFORMANCE COMPARISON FOR MOUSE

Method frame rate with | frame rate with
0.01 stepsize 0.002 stepsize

normal way 25.0 fps 10.3 fps

1 iteration 17.8 fps 7.0 fps

2 iterations 17.4 fps 6.3 fps

3 iterations 16.8 fps 5.8 fps

TABLE III. PERFORMANCE COMPARISON FOR BREAST

Method frame rate with | frame rate with
0.01 stepsize 0.002 stepsize

normal way 24.3 fps 8.5 fps

1 iteration 18.1 fps 7.6 fps

2 iterations 14.2 fps 5.9 fps

3 iterations 13.3 fps 4.9 fps

The first test data set depicts an abdominal lymphoma, and
consists of a 256 x 256 x 292 x 4 bytes CT data set and a




168 x 168 x 344 x 2 bytes PET data set. The frame size is
400 x 600 pixels while the ROI covers about 120 x 180 pixels.
At first, we test the performance with typical volume rendering.
Table I summarizes the rendering rate for multiple visibility
modulation iterations compared to single-pass volume ren-
dering. Even with the extra cost, our approach runs at 4.8
frames per second at the finest step size, which is acceptable
in interactive visualization. The second dataset contains a
cancer tumor inside a mouse lung with a 272 x 216 x 480 x 2
bytes CT data set and a 128 x 128 x 133 x 4 bytes PET
data set, an a ROI of 70 x 50 pixels. Results are shown in
Table II. The third data set is a PET-CT breast data set,
composed of a 256 x 256 x 256 x 2 bytes CT data set and a
256 x 256 x 256 x 4 bytes PET dataset. In this case, the frame
size is 512 x 512 pixels. The ROI is about 130 x 130 pixels.
Results are shown in Table III.

VII. CONCLUSION

We have introduced an effective approach to multimodal
volume rendering with a focus on presenting complementary
information such that regions of interest, e.g., cancer tumors,
can be examined in context. Our results show that visibility his-
tograms are useful aids to quantifying the information derived
from structures of interest in one modality as suggested by the
other modality. Previous attempts require manual intervention
to obtain desirable images, mainly due to the lack of interactive
tools for quantifying key properties such as visibility. Our
design and implementation enable interactive visualization,
and represent a step forward in a direction towards automatic
view-dependent classification of complex volume data sets.
Future generations of medical visualization systems should
incorporate visibility measures, along with others, such as
automatic contrast and smoothness control, which are high-
level, perceptual-based metrics that alleviate the tedious task
of manipulating individual lighting parameters or transfer
functions. The initial feedback obtained from the surgeons
and radiologists whom we have worked with encourages
us to further our study towards more intuitive and efficient
multimodal volume data visualization.
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