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Abstract—This paper proposes a new method for automated
clustering of high dimensional datasets. The method is based
on a recursive binary division strategy that successively divides
an original dataset into distinct clusters. Each binary division is
carried out using a model-free expectation maximization scheme
that exploits the posterior probability computation capability
of the quasi-supervised learning algorithm. The divisions are
carried out until a division cost exceeds an adaptively determined
limit. Experiment results on synthetic as well as real multi-color
flow cytometry datasets showed that the proposed method can
accurately capture the prominent clusters without requiring any
knowledge on the number of clusters or their distribution models.

I. INTRODUCTION

Flow cytometry (FCM) is a powerful laser-based multi
parametric analysis technique for characterizing individual
cells within a heterogeneous population. It measures the phys-
ical, chemical and biological characteristics of each cell and
uses them for cell counting, sorting and biomarker detection.
FCM is used in research labs to distinguish different cell types
from each other as well as in clinical labs for disease diagnosis
and monitoring disease progression following therapy [1].
In FCM experiments, cells are incubated with fluorochrome-
conjugated antibodies. The characteristic of the emitted light
from the cells under laser excitation then allows assessing
the relative abundance of the targeted biomarkers in each
cell. Several biomarkers can be investigated simultaneously
in multi-color flow cytometry experiments by increasing the
number of fluorochromes. Currently, the FCM technology
allows investigating cells for the presence and abundance of
up to 20 biomarkers [2].

The increase on the number of parameters generates com-
plex high dimensional datasets. Analysing these high dimen-
sional datasets using standard gating methods that rely on
operator-drawn regions on two-dimensional scatter plots is la-
borious and time-consuming. Furthermore, there are concerns
over the reproducibility of the results even by the same group
on the same flow data [3]. Consequently, there is a considerable
demand for automated methods to address these challenges,
particularly for multi-color flow data analysis.

One of the primary objectives in computational analysis
of flow cytometry data is automated identification of cell
subsets. To this end, several methods have been proposed in

the literature to model cell population characteristics. Pyne
et al. developed a direct multivariate finite mixture mod-
elling approach that fits skew and heavy-tailed distributions to
cell subpopulations in high-dimensional FCM data [4], while
Aghaeepour et al. proposed an automated cell identification
method based on k-means clustering that can capture concave
cell populations using multiple clusters [1]. The FlowClust
algorithm proposed by Lo et al. fits a t-mixture model follow-
ing a Box-Cox transformation on multicolored FCM data [3].
Finak et al. modified the FlowClust algorithm by introducing
a merging step once all the subpopulations are identified
to check for unwarranted cluster divisions [5]. Most of the
clustering methods in FCM data analysis applications use one
of Bayesian information criteria (BIC), Akaike information
criteria (AIC) or entropy to determine the number of clusters.
This means that the clustering algorithm is run several times
for varying number of clusters and the clustering result that
achieve the optimal separation according to the criterion of
choice is presented as the final output.

In FCM data analysis across different flow datasets, the
identification of analogous cell groups is carried out also
through gating. There are several supervised and unsupervised
algorithms proposed in the literature for automated gating
of FCM data. Supervised algorithms [6], [7] are problematic
because they need a training dataset that must be created by
an expert for a specific system configuration, which is not
necessarily applicable for datasets collected under a different
configuration, due to variations in cell preparation and flow
instrument parameters. Unsupervised techniques include varia-
tions of the mixture modelling approach [8], [9], model-based
clustering [10], [11] and density-based clustering [4]. Com-
pared to the supervised methods, the unsupervised methods can
offer greater automation as they do not require a universally-
valid training dataset. On the other hand, their performance is
hindered when the assumed models fail to match the specifics
of the flow dataset at hand.

In this paper, we propose a model-free divisive procedure
for automated identification of cell subgroups in multicolor
flow datasets. The proposed method starts by dividing the
whole dataset into two groups using an expectation maximiza-
tion procedure that relies on a model-free calculation of the
group posterior probabilities. The method then continues to
divide the cell subgroups obtained by previous divisions until
a stopping condition that detects superfluous divisions is met
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expressed through a division cost. This allows cell subgroup
identification without making assumptions on the shape of
cell distributions, and deduces the number of prevalent cell
subgroups adaptively from the flow dataset.

This paper is organized as follows. The mathematical
description of the proposed method is presented in Section
2. The results of the proposed method on synthetic datasets
as well as a comparative benchmark performance evaluation
on real flow cytometry datasets are presented in Section 3.
Concluding remarks are presented in Section 4.

II. METHODS

In this section, we first describe the quasi-supervised learn-
ing algorithm that allows a model-free estimation of group
posterior probabilities at each sample [12]. We then review the
expectation maximization algorithm as described by Dempster
and Schafer [13], [14] followed by the proposed modification
that replaces model-based posterior probabilities with those
obtained using the quasi-supervised learning algorithm. The
section concludes with a detailed description of the proposed
model-free automated cell subpopulation identification method
for multi-color flow cytometry datasets.

A. Posterior Probability Estimation Using the Quasi-
supervised Learning Algorithm

The quasi-supervised learning algorithm exploits an
asymptotic property of nearest neighbor classification over
randomly chosen reference sets. Given a reference set R
containing labeled points representing the classes C0 and C1,
a nearest neighbour classifier F (x;R) for an unknown sample
x ∈ X is defined by

F (x;R) = y� (1)

with y� representing the class label of the point x� providing

d(x, x�) = min
x′∈R

d(x, x′) (2)

and d(., .) denoting the metric on X . Now, letting Rn denote
the random variable of such reference sets containing n points
from each class with a probability density function pRn(Rn),
it can be shown that for sufficiently large n, the posterior
probability P (C0|x) of the class C0 at x is approximately
equal to the expected value of F (x;Rn) over Rn,

P (C0|x) �
∫
Rn

1(F (x;Rn) = 0)pRn(Rn)dRn (3)

where the indicator function 1(·) returns 1 when its argument
holds, and zero otherwise [12]. In practice, the expectation
integral above cannot be carried out because the probability
density pR(R) is unknown. What is available, however, are
data points {xi, yi} with xi ∈ X and their respective class
labels yi ∈ {0, 1} for classes C0 and C1, respectively, for
i = 1, 2, . . . , �. Then, the expectation integral above can be
approximated by the average number of times x is assigned to
C0 using all distinct reference sets Rn that can be constructed
from the available samples, via

P (C0|x) � f0(x) =
1

M

∑
Rn⊂{xi,yi}

1(F (x|Rn) = 0) (4)

where M denotes the number of distinct reference sets that can
be constructed using the dataset {xi, yi} containing n points
of each class. The posterior probability P (C1|x) can also be
written in a similar fashion as

P (C1|x) � f1(x) =
1

M

∑
Rn⊂{xi,yi}

1(F (x|Rn) = 1) . (5)

The quasi-supervised learning algorithm computes the av-
erages above using a practical algorithm that avoids carrying
out M separate nearest neighbor classifications. Furthermore,
the ratio of f0(x) and f1(x) taken to the natural logarithm
approximates the log likelihood ratio of classes C0 and C1 at
x via

L(x) =
p(C0|x)
p(C1|x) �

f0(x)

f1(x)
(6)

since the class priors are set to be equal to 0.5 due to the
presence of an equal number of C0 and C1 points in the
reference sets Rn. Finally, the optimal number of points nopt

to be included in the reference sets for the best learning is
determined adaptively from the available data [12].

Posterior probability estimation using the quasi-supervised
learning algorithm is illustrated in Figure 1. The datasets
under consideration consist of points drawn randomly from
two Gaussian distributions (upper row). Results show that the
posterior probability estimates match the theoretical values
around the well populated regions for varying dataset sizes,
while the accuracy declines over the less populated regions,
due to the lack of adequate representations of the underlying
probability distributions with fewer points (lower row).

B. Expectation-Maximization Algorithm

In this work, we combine the expectation-maximization
(EM) algorithm with the posterior probability estimation
method described above and design a non-parametric model-
free expectation-maximization algorithm. The expectation
maximization algorithm aims to fit a distribution model to a
specified dataset following an iterative procedure [13], [14],
[15]. Briefly, given a set of observed data points xi, i =
1, 2, . . . , �, assumed to be drawn from a mixture model, such
as a mixture of k Gaussians, the EM algorithm estimates the
parameters of each component.

Let θj be the parameter for the j’th component, that can
be defined as

θj = (μj ,Σj)

if the Components are Gaussian, for j = 1, 2, . . . , k. The
objective, then, is to determine the distribution parameters θj .
The likelihood function for each θj over an observation space
can be expressed as

lx(θj ;x1, x2, . . . , xl) = f(x1, x2, . . . , x�|θj) =
�∏

i=1

f(xi|θj)
(7)

since the points are assumed to have been drawn indepen-
dently. The maximum-likelihood estimate of θj is then given
by θ that maximizes the likelihood function above,

θML
j = argmax

θ
lx(θ) (8)
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Fig. 1. True and Estimated Results of Log-likelihood Ratio for Different Sample Size .

or equivalently,

θML
j = argmax

θ
log lx(θ) (9)

as the natural logarithm function is monotonically increasing
and maximizing the likelihood is equivalent to maximizing the
log-likelihood.

At the expectation step, for each xi, the method calculates
a responsibility value ri,j defined by

ri,j =
p(xi, θj)∑k

m=1 p(xi|θm)
(10)

that expresses the likelihood of the i’th point to belong to
the j’th component. The parameters θj are then revised in
the subsequent maximization step using a maximum likelihood
procedure that takes the responsibility values into account. A
notable distinction between different expectation maximization
procedures arise from the use of the responsibility values in the
maximization step: In one alternative, the responsibility values
can be used to associate each xi with only one component
by seeking the component achieving the maximum among
{r(i, 1), r(i, 2), . . . , r(i, k)} for each i. In the other alternative,
the parameters θj are estimated in a way to make the estimation
uses all points simultaneously, but in a way to be influenced
more by the points xi for which r(i, j) are larger and less by
the others.

C. The Proposed Divisive Binary Clustering Method

The proposed method begins with an initial random as-
signment of points into two clusters C0 and C1, followed
by an expectation maximization cycle that first computes the
posterior probability of each of the two components at every
point, and re-assigns the points to the cluster whose posterior
is larger. This process is repeated until convergence.

First step : Expectation step
The posterior probabilities of each class C0 or C1

are computed at each point using the model-free
posterior probability estimation method.

Second step : Maximization step
The class labels of each point is updated according
to the maximum a posteriori classification rule via

C0 ← {x|f0(x) ≥ 0.5} (11)
C1 ← {x|f1(x) < 0.5}

Note that the procedure above produces two distinct clus-
ters starting with a single one, regardless of whether the
resulting clusters are distinct enough to merit separation. In
order to determine the distinctness of the resulting clusters,
we have defined a division cost c(C0, C1) to be calculated
using

c(C0, C1) =
1

N0

∑
xi∈C0

f1(xi) +
1

N1

∑
xi∈C1

f0(xi) (12)
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with N0 and N1 denoting number of samples assigned to
clusters C0 and C1 respectively. In this paper, we have treated
the division cost as the criterion for accepting or rejecting the
obtained clustering, with the rejection acting as the stopping
condition for any further division of the original cluster. To
this end, we have compared the division cost c(C0, C1) with
the division cost derived from the clustering that produced the
parent cluster C0

⋃
C1. The block diagram of the proposed

clustering method is shown in Figure 2.

Fig. 2. Block Diagram of the Proposed Method.

Once all the binary divisions are finalized, we have used a
post-processing step to check whether the union of any two of
the resulting clusters forms a single coherent cluster. To that
end, we have calculated the division cost between all resulting
cluster pairs, and merged the clusters for which the division
cost is larger than all previously accepted costs.

RESULTS

The proposed method was applied to synthetically gener-
ated datasets as well as datasets acquired from real multi-color
flow cytometry experiments. The synthetic dataset contained
three distinct clusters, each modeled using a two-dimensional
Gaussian distribution with unit covariances but with differ-
ent means, set at [4 8]T , [4 4]T and [8 4]T , respectively.
The experiments consisted of generating a dataset of points
drawn from this mixture with different priors and carrying out
automated clustering using the proposed method as well as
the conventional expectation maximization routine for Gaus-
sian mixture fitting within the same binary division scheme

for estimating the posterior probabilities from a model-based
perspective (Figure 3).

Fig. 3. Original and Estimated Clusters on Synthetic Gaussian Mixture
Model.

The accuracy of the resulting clustering was evaluated
using a confusion matrix-based approach. To this end, the
resulting clusters were matched to the original clusters in a
way to maximize the agreement between them, and a measure
of clustering performance was calculated by the fraction of the
points along the main diagonal to the total number of points.

The clustering performances for different sample sizes are
shown in Table I. Generally, the clustering results obtained by
the proposed algorithm matched the results obtained by the
original expectation maximization procedure that used Gaus-
sian models to characterize the clusters, without the benefit of
a model assumption that fit the data, especially in cases where
the second cluster is well populated. In cases where the second
cluster had significantly fewer points, the statistical evidence
in the dataset was too weak to warrant a separate cluster for
those points, causing the algorithm to miss the second cluster.

TABLE I. ALGORITHM PERFORMANCE ON SYNTHETIC DATASET FOR

DIFFERENT SAMPLE SIZES IN CLUSTERS

N1 N2 N3 accuracy using accuracy using
iterative QSL conventional EM

500 500 1000 0.9637 0.9640
500 1000 2000 0.9473 0.9526
1000 500 1000 0.9623 0.9537
1000 1000 1000 0.9592 0.9682
2000 500 2000 0.8889 0.9419

After testing our proposed algorithm on synthetic datasets,
we applied it to real multi-color flow cytometery (FCM)
datasets. The FCM datasets that were used in these exper-
iments were obtained from FlowCap-I Challange intended to
comparatively evaluate automated clustering methods for FCM
datasets. From this collection, we have used a human dataset
diffuse large B-cell lymphoma (DLBCL) (containing 12369
samples in three clusters) and a mouse hematopoietic stem cell
transplant dataset (HSCT) (containing 8914 samples in four
clusters) that were publicly available with corresponding labels
obtained via manual gating [16]. The manual gating procedure
used to label the cells involved creating two-dimensional
scatter plots of all possible parameter (fluorochrome) pairs
(FL1vs2, 1vs3, 1vs4, 2vs3, 2vs4, 3vs4) and choosing the one
in which the distinctions between the different clusters is
most conspicious for manual gating. In accordance with this
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approach, we have also used the same parameter pairs in the
datasets to carry out the clustering experiments.

The manual gating results on the diffuse large B-cell
lymphoma (DLBCL) dataset are presented in Figure 4. The
proposed method accurately identifies two of the three clusters
while missing the other one, due to its very small sample
size, containing only 25 samples. This results in a clustering
accuracy of 0.9045 (Figure 5). The conventional expectation
maximization algorithm produced a similar two-cluster divi-
sion with a similar accuracy at 0.9040 (Figure 6).
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Fig. 4. Manual Gating Results for The Diffuse Large B-cell Lymphoma
(DLBCL) Dataset
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Fig. 5. Automated Gating Results for The Diffuse Large B-cell Lymphoma
(DLBCL) Dataset Using Iterative Quasi-Supervised Learning

The manually gated clusters of the mouse hematopoietic
stem cell transplant (HSCT) dataset are shown in Figure 7.
As in the case of the earlier dataset, the proposed algorithm
accurately identified three of the four clusters while missing the
last one due again to its small sample size of 100, producing an
overall accuracy of 0.8106 (Figure 8). Iterative binary disivison
using the conventional expectation maximization algorithm
identified only two cell clusters at an accuracy 0.6904. The
estimated clusters are shown in Figure 9. Carrying out the
original expectation maximization algorithm outside of the
binary division framework assuming four clusters failed since
the algorithm couldn’t capture the smallest cluster. Thus,
assuming three distinct clusters produced a better clustering
with an accuracy of 0.9706.
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Fig. 6. Automated Gating Results for The Diffuse Large B-cell Lymphoma
(DLBCL) Dataset Using Conventional Expectation Maximization
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Fig. 7. Manual Gating Results for The Hematopoietic Stem Cell Transplant
(HSCT) Dataset
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Fig. 8. Automated Gating Results for Hematopoietic Stem Cell Transplant
(HSCT) Dataset using Iterative Quasi-Supervised Learning
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Fig. 9. Automated Gating Results for Hematopoietic Stem Cell Transplant
(HSCT)) Dataset Using Conventional Expectation Maximization

III. CONCLUSION

We have proposed a recursive binary division method
for data clustering without requiring the knowledge of the
number of clusters or the parametric models that govern the
individual components. The method divides each cluster into
two daughter clusters using a model-free expectation maxi-
mization routine until the cost of separating the initial cluster
into two daughter clusters exceeds the division cost acquired
when forming the parent cluster. The model-free expectation
maximization exploits the posterior probability estimation ca-
pability of the quasi-supervised learning algorithm, and avoids
making assumptions on the distributions of the unknown data
components.

In experiment results, the proposed method accurately
identified the clusters of interest both on synthetic datasets as
well as datasets derived from real multi-color flow cytometry
experiments. The results also showed that the ability to identify
the distinct clusters, however, depended on sample sizes as
well as the distinctness of the different clusters. Consequently,
clusters with too few samples were missed due to a lack of suf-
ficient statistical evidence as assessed by the proposed method
for their distinct presence. Work is currently in progress to
enhance the proposed method to accurately capture small
clusters.
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