Predicting Xerostomia induced by IMRT Treatments
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Abstract— Radiotherapy is one of the main treatments used
against cancer. Radiotherapy uses radiation to desty cancerous
cells trying, at the same time, to preserve healthyissues. The
planning of a radiotherapy treatment is patient degndent,
resulting in a lengthy trial and error procedure until a treatment
complying as most as possible with the medical presption is
found. Intensity Modulated Radiation Therapy (IMRT) is one
type of radiation treatment that allows the achievenent of a high
degree of conformity between the area to be treateghd the dose
absorbed by tissues. Nevertheless, it is still ngbossible to
eliminate completely the potential treatments’ sideeffects. In this
paper we use a database of already treated head-anéck cancer
patients in the Portuguese Institute of Oncology o€oimbra, and
explore the possibility of classifying new and ungated patients
according to the probability of presenting xerostona 12 months
after the beginning of IMRT treatments by using a Lgistic
Regression approach. The results obtained show thathe
classifier presents a high discriminative ability m predicting the
binary response “aptness to xerostomia at 12 months

Keywords— Radiotherapy; IMRT; logistic regression
predictors; ROC curves; AUC.
I. INTRODUCTION

Cancerous cells are characterized by having a fast

reproduction and, at the same time, being less biapaf
repairing themselves than healthy cells if damaded
radiation. This makes radiation therapy one of thain
treatments against cancer, being delivered to about of all
cancer patients sometime during the illness. Thim meal of
radiation therapy is to deliver enough radiationkiib target
cells, maintaining always the compromise between Itical

control of the tumor and the collateral effects,,iminimizing
the damages on the surrounding healthy organs iasdes.
The treatment of each patient is personalized dadnpd
based on computed tomography (CT) images, wher&athget
volume(s) (PTV) and organs at risk (OAR) are deltad [1].
With the patient immobilized on a coach, in the sgmsition
he was when the CT scans were performed, the i@ulis
delivered by a linear accelerator (LINAC), mounted a
gantry that can rotate along a central axis. Thatiom of the
coach combined with the rotation of the gantry wdothe
irradiation from almost any angle around the tumor.

In this paper we focus on a particular type of atidn
therapy: Intensity Modulated Radiation Therapy (IMR
IMRT allows the achievement of a high degree offaonity
between the delivered dose and the shape of the[P2Y In
fact, the head of the LINAC is composed by a numbler
movable leaves (multileaf collimator - MLC), whiclan block
part of the radiation beam during portions of tleliation
delivery time, controlling the intensity and inciae of
radiation. In IMRT treatments, these leaves aretseatpen a
desired aperture, during a specific period of tithultiple
Static Collimation), so that the radiation deliwkréas a
specific intensity profile.

To plan the treatment for a new patient, the plasheuld
make three decisions: (1) Determine the minimum bemof
incidence angle to satisfy the treatment aims —nBéagle
Optimization Problem ; (2) Determine the best istgnmap to
the set of determined angles — Fluence Map Optiiniza(3)
Define the efficient way to produce the definedeintity
profiles — Beam Segmentation Optimization [see,iristance,
3-6]. The treatment planning for a new patient isoaplex



task, being frequently done through a trial andbretime
consuming procedure until a treatment complyinghwitie
medical prescription is found. This process is knoas
forward planning, being a time consuming practice @aithout
guarantees of an optimal treatment. An inverse rfen is
preferable, consisting in the use of optimizationdels and
algorithms to automatically determine the besttineat, given
the medical prescribed doses. Nevertheless, inyaesming
technique is far from being a resolved problem ,[sfee
instance, 7].

Despite the fact that a treatment is planned tryiag
minimize the probability of induced complicatioris,is not
possible to eliminate completely all side effett#en treating
head-and-neck cancer patients, one of the mostidregside
effects is xerostomia, the medical term for dry thodue to
lack of saliva. Xerostomia reduces drasticallydhnality of life
of patients due to difficulties in swallowing andfeeding and
they usually lose weight. It is a side effect of #xposure of
salivary glands to radiation.

In this study we use an available database of hedeheck
cancer patients already treated in the Portuguestiute of
Oncology of Coimbra (IPOC-FG). Our aim is to beeabd
predict whether a given patient subject to a giVBIRT
treatment will or not experience xerostomia 12 rheratfter the

beginning of the treatments. The approach develomed

address this problem consists in applying LogiR&gression,
a well-known type of probabilistic statistical c#ication
model, to predict the binary response “xerostoniablem
after 12 months of IMRT treatments”. The alreadgated
patients stored in the database are used to traipredictor,
which is then used to classify new patients. TheeRer
Operating Characteristics (ROC) curve and the Aheder the
ROC Curve (AUC) are then used to visualize theqrerance
of the classifier and to measure the discriminagibviity of the
model in making the predictions for new patients.far as the
authors know, this is the first time that this nwetblogy is
applied with the aim of determining a potential kdemm of
xerostomia after 12 months of radiation treatments.

The paper is organized as follows: In the nextisaectve
describe the database. The classification model #red
performance measure that describes the discrimenatbility
of the model used are presented in section 3. dtiose4, we
describe the clinical examples of head-and-neckscased and
the computational results. The conclusions are diiawhe last
section.

Il. DATABASE

The existing database was provided by IPOC-FG,

consisting of a total of 458 head-and-neck anongthizancer
patients, including several patients’ features anddical

registers. For each patient we have a set of atérsdescribing
the patient's characteristics, another set chaiaittg the

tumor and also information regarding the treatmémas have
been or are being delivered to the patient. Theedso a set of
attributes related to follow-up medical consultaipincluding

information describing complications that were eigreced by

the patients.

The features registered by the medical oncologisefch

patient before the IMRT treatment starts include:

(1) the patient’s data: age and gender;

(2) description of the tumor: type, location, stage-(The
size and/or extent of the primary tumor, N — the
amount of spread to nearby lymph nodes, M — the
presence of metastasis or secondary tumors foryped b
the spread of cancer cells to other parts of thady bo
and AJCC - general lymphomas stage), histology;

(3) the treatments applied before or concomitantly with
radiotherapy: post-operative (namely, if the patieas
submitted to surgery or not before the radiation
treatment), type of quimiotherapy, type of
radiotherapy;

(4) attributes related to the radiation treatment: qibed
dose, the technical plan applied on the first plodigbe
treatment;

(5) target volumes: identification of the PTV and its
volume and the lymphatic nodes with disease (in the
present database, a maximum of 4 lymphatic nodes
were registered) and the corresponding volumes.

Regarding information registered after the begigrof the

radiation treatment, the following attributes aoasidered:

(1) the starting date of the radiation treatment aedddite
of the last follow-up consultation;

(2) the overall and interruption treatment time (more
precisely, the total number of days from the first
session of radiotherapy to the last one and tha tot
number of days that the patient did not attendhio t
treatment among the planned sessions);

(3) total delivered dose in Gy, total number of plans,
fractions, beams, segments and monitor units on
overall treatment, , mean dose on GTV — Grosséfarg
Volume, which is the known tumor — and PTV —
Planning Target Volume — which consist on the GTV
and a microscopic spread (a volume known as Clinica
Target Volume - CTV) plus a marginal volume around
CTV) [1], D98 (the dose received by 98% of the ltota
volume of the GTV), D2 (the dose received by 2% of
the total volume of the GTV) and standard deviatibn
the doses delivered on GTV as well as when
considering fractions of 2Gy on GTV);

(4) the response of the tumor to the treatment
(complete/partial/progression) and the response typ
(persistence or recidive);

(5) location of local and regional disease/recidive,
neoplasies, metastases (in particular on bonen,brai
liver and lung);

(6) in case of death, cause of death;

(7) complications severity on the OARs in each follog-u
(the complications considered in the present datba
were on the ears, pain, skin, larynx, pharynx,
esophagus, mucous membrane, salivary glands and the



weight loss), ranked from 0 to 5, where 0 means nalid not presented xerostomia after 12 months (lgéhonto

complication and 5 death;

(8)
identification of the treatment (in the presentathaise,
up to 4 alternative treatments for each patient);

(9)

new follow-up institution (if the patient was trdesed
from IPOCFG to another medical institution);

(10)for every follow-up consultation, the number of day
between the beginning of the radiation treatmert an

the corresponding register.

if there are other treatments being done concothitan

class “0"), and 6 presented xerostomia (belongingldss “1”).

On the following sections, we will use intercharggahe
words patient, sample, observation, element artdrios with
the exact same meaning.

Ill. METHODOLOGICAL APPROACH

The problem of predicting a target response forea n
patient based on a dataset of previously classffatnts can
be seen as a machine learning problem, namelgsaification
learning problem. In a classification problem, airting data

The aim of this work is to be able to predict wieeth set consisting ofn elements is available. Each element is

patients that begin their treatment today will aif wot have
xerostomia 12 months from now. This means thatdhly

information that we can use is the one that islall prior to
the beginning of the radiation therapy treatmentabrmost,
during the first weeks of treatment. If, at an gathge of their
treatment, we are able to detect patients thatprdlbably have
xerostomia later on, it will still be possible tdjast treatment
plans to try to avoid this complication.

If we look at all attributes that are available dvef the
beginning of the treatment, we can immediately olesé¢hat
some of them will be irrelevant considering ouredlive. This
is why we decided to consider only a subset oftalexisting
attributes. The attributes that were chosen weosettwith an
expected strong connection with the target respanserding
to the medical physicists. They are the followitige age of the
patient, the gender, a binary variable indicatihg tpost-
operative (namely, if the patient was submittedstogery or
not before the radiation treatment), the type damiptherapy
used, the type of radiotherapy used, the overdittnent time
planned, the technical plan applied on the firsagghof the
treatment, the interruption treatment time, the m#ase on the
GTV considering fractions of 2Gy, the severity @rastomia
problem on the first week of radiation treatmemtd the mean
dose on all salivary glands and in each of therparticular
(more precisely, the contralateral and ipsilatgalotids, the
oral cavity and the contralateral and ipsilatetddreandibular
glands). We ended up with a total of 16 attributes.

Although the database has 458 patients,
considering only a subset of 16 attributes, theeeséll many
missing values. Although there are many techniglessribed
in the literature that propose ways of dealing witissing
values, taking into account the type of attributiest we are
working with [8], we felt that it was better not wonsider
registers with missing values. This drastically idishes the
number of available patients to 16, mainly becaafskck of
information regarding xerostomia in the first we&his is, in
fact, one of the most important attributes to talkeo
consideration if we want to predict xerostomiatie tong run.
Xerostomia predominance will be highly dependent toha
radiosensitivity of the patients’ tissues. Theraasknown way
of measuring this radiosensitivity, and this atitéd can be a
good proxy for that.

We have thus worked with a set of 16 patients with,

complete registers for the 16 independent variadtesfor the
dependent variable “xerostomia problem 12 monthesr ahe
beginning of IMRT treatments”. Ten out of these d&ients

and eve

characterized by p-dimensional attribute vectot, belonging
to a suitable space, and a class label (also krasaesponse)
ye{0,1,...}. The objective is to construct a decisiorr o
classification rule that would accurately prediet tlass labels
of elements for which only the attribute vectooliserved.

We intend to apply supervised classification algpons to
classify new patients according to the possibilityhaving or
not xerostomia 12 months after the beginning ofrdwiation
treatment. The available database of existing pistis used as
training set to define the classification model,iahhis then
used to assign new patients to a given class, diocpto the
target response. Our approach consists in applgingell-
known technique, namely Logistic Regression. Tessgthe
suitability of the model, we use a cross-validatpocedure.
The cross-validation procedure involves the partitig of the
available data sample into complementary subsetfpnming
the analysis on one subset (called training sed)\atidating
the analysis on the other subset (called the wu#didaset or
testing set) [9]. We have chosen to use the leageenit cross-
validation (LOOCV), that uses a single observafimm the
original sample as the validation data, and theareimg
observations as the training data. So, all obsenatwith
exception of one are used to train the model. Tdiaed model
is then used to predict the class of the remaioiogervation.
This procedure is repeated such that each elem&me idataset
is used once as the validation data. The ROC caneethe
AUC are then used to assess the performance afldksifier
d to measure the discriminative ability of thededoin
aking the predictions for new patients. On théofeing, we
will briefly describe the methodologies used.

A. Logistic Regression Model

Logistic regression is a renowned probabilistidistiaal
classification model. However, the name is somewhat
misleading. Despite of, in the terminology of sadis, this
model is known as logistic regression, it reallyaisechnique
for classification rather than regression [10]. Tlogistic
regression classifier, also known as logit modglused to
predict a target response, which is a dependerdbley based
on a set with one or more independent attributesreM
precisely, the probabilities describing the possishlues that
the dependent variable could take are modeled farsction of
the explanatory variables, using a logistic functtbat gives
utputs between 0 and 1 [10,11]. Logistic regressi@asures
thus the relationship between a dependent varifdeone or



more independent variables by using probabilityesas the
predicted values of the dependent variable.

Regarding the possible values of the outcome, ldssitier
can be of two types, binomial or multinomial. Thestf type
deals with situations where the observed outconre heve
only two possible categories; the second type densicases
where the number of available classes is higher tiva. In the
present work, our interest is focused on the biabegpproach
since the dependent variable will only take one @iutwo
possible values: 1 if the patient presents xerostoamd O
otherwise. Therefore, the target response falts ame of two
categories, “0” or “1”".

Rather than modeling the response directly,
regression models the probability of belonging tpaaticular
category [11]. With this type of output, we canrttepply any
value as threshold to make the predictions. Thussidering a

lagisti

structure is a table with two rows and two colurtiveg reports
the number of:

» false positives (FP): number of positive instan¢&y)
classified as negatives (“0);

» false negatives (FN): number of negative instances

classified as positives;

e true positives (TP): number of positive instances

classified as positives;

» true negatives (TN): number of negative instances

classified as negatives.

Each column of the matrix represents the instamces
predicted class, while each row represents tharst in the
actual class. The sum of TP and FN is the total bamof
patients with the outcome (P), while the sum beitneB and

cutoff equal too, if the probability obtained by the logistic TN is the total number of patients without the oute (N).
classifier is higher tham, the class assigned should be “1”, The accuracy of the model could be estimated as

otherwise it should be “0”. In fact, the threshol@lue
represents a decision boundary in the feature sdme most
used threshold is the value 0.5.

We have used theR software for implementing our
approach, using thR commandglm. The construction of the
logistic classification model is presented in aition 1.

Algorithm 1: Logistic Regression model

INPUTS
L: the set of observations
L, vector(column) with the corresponding target resges

1: p < matrix(# observations,1)

2:foriinL:

3 Lirain < LAL[i,]

4: Liest<— LI[i)]

5: LogRegMode+—
glm(Ly~.,family="binomial"(link="logit"),data= Ly4,))

6: pli] < predict(LogRegModel,{s;type="response”)

OUTPUT

p: vector with the predicted probabilities for eaabservation

B. Receiver Operating Characteristic (ROC) Curve

A key question when interpreting the
classification model is “how well does the modeadiminate
between the observations with and without the cu&®'. For
a binary outcome, the ROC curve is the most comynoséd
performance measure to judge the discriminativditpluf a
model [12]. The logistic classifier yields a probip
consisting in a numerical value that representsdihgree to
which an observation is a member of a class. Scotesan be
used as a threshold to produce a discrete (birdagsifier
[13]: if the classifier output is above the cutaffie classifier
produces “1”, else it produces “0”". Then, and sinee are
working with a binary classification model, it iogsible to
build a specific table layout that allows visuatiaa of the
performance of the algorithm for the applied thedghnamely
the confusion matrix (also known as contingencyefabrhis

results of a

percentage of correct predictions for a taken tules (the
most usually chosen is 0.5). However, the simplemaing of
the accuracy cannot be a highly reliable metric tfa real
performance of a classifier, because it will yiehisleading
results if the data set is unbalanced. In our @aer case, for
instance, the accuracy of predicting always “0” {ddoe equal
to 62.5%, since 10 patients out of 16 will not prds
xerostomia, better than any random classifier.

The ROC curve is most welcome, allowing more dedhil
and reliable analyses. The ROC curve is a ploteoiiivity
(also known as recall and True Positive Rate (TRB®nst (1-
specificity) (also known as False Positive Rate RpjPfor
consecutive cutoffs for the probability of an outen The
sensitivity is the ratio between the TP classifarag and P; the
specificity is the fraction of TN classificationshang N and so,
the FPR is given by the ratio between FP classifina and N.
The confusion matrix can be constructed for thelainange of
cutoffs, from 0 to 1, and the sensitivity and sfieity can also
be examined over the whole range of thresholdstlnsl the
results can be plotted in a ROC curve. Each thidstalue
produces a different point in the ROC curve [13jrtlag by
decreasing order the probability values produced thy
classification model, an observation that is cfesbi as
positive for a given cutoff will be classified assitive for all
other lower cutoffs. Thus, moving down on the sbre@lues
and processing one observation at a time and uygd#ie TP
and FP accordingly, we can obtain the list of pothat create
the ROC curve. This process starts in the poirt) (@nd ends
at (1,1), taking a linear execution time (see Aitipon 2) [13].

C. Area Under the Curve

the

The ROC curve allows a clear visualization of the

performance of a classifier. However, when the amto
compare different classifiers or simply the evaamatof the
performance of a single classification model, timialization
mode is not the best approach. Therefore, we haveduce
the ROC performance to a single value that reptestéme
expected performance of the model. The most recomate
method for this purpose is the AUC [12,14], whiagbduces a
value belonging to the interval [0,1]. By definitiothe AUC



represents the probability that a randomly chosesitipe
observation is correctly ranked with a greater gimp than a
randomly chosen negative one [12-14]. Thus, in siudy, it
can be interpreted as the probability that a pateith the
outcome is given a higher probability of the outeoby the
model than a randomly chosen patient without theaue.

A random classifier generates a ROC curve equdhédo
diagonal line that links the points (0,0) and (1,4hd thus
produces an AUC of 0.5 [13]. Therefore, an uninfatike
model has an AUC lower than or equal to 0.5 andcégeno
realistic classifier will have an AUC smaller th@rb, whereas
a perfect discriminating model produces an AUC §fZ]. The
script behind the computation of the AUC is shown i
algorithm 2.

Algorithm 2: ROC and AUC (adapted from [13])

INPUTS

L: the set of test observations

pli]: probability of observation i is positive, ohined by the
classification model

1: Leoeq—— L sorted by decreasing order of probability values
2:FP«<0

3:TP«—0

4: R {}

5: FPpey— 0

6: TPyey<— 0

7:A<0

8: Pprev <= —©

9: for i in Lsorted

10: i pli] # Pprev

11: R— R + (FP/N,TP/P)
12: base— |FP — FRye
13: height— TP + TRy,
14: A<~ A + base height /2
15: Porev <— pli]

16: FPyev— FP

17: TRyey— TP

18: if i is a positive observation:
19: TP—TP+1

20: else:

21: FP—FP +1

22: R« R + (FP/IN,TP/P)
23: base— |1 — FRye|

24: height— 1 + TRyey
25: A— A/ (PN)

OUTPUTS
R: the list of points that create the ROC curve
A: the AUC

IV. RESULTS

In this section, we present the results of tedtireglogistic
regression model to predict the complications ia salivary
glands, 12 months after the beginning of IMRT treaits. Our
goal concerned the ability of making correct predits for
new and unclassified patients, given a trainingadagt
containing patients already classified. Summarizing steps
followed, and thoroughly described in the previsastion, we
started by constructing the logistic regression ehgaredicting
then the classes for new patients (“0” or “1") w@gsithe
LOOCV technique. Once all patients were classifiedtice

that in the present case the test set coincidésthit original
data set, due to the use of the LOOCV procedure)traced
the ROC curve and determined the AUC, to evalubte t
prediction ability of the model. This methodologgsvapplied
to different subsets of attributes, among the taihl16
variables described on the section 2, always cengigl a total
of 16 patients. The best results were attained weoasidering
the attributes: age, gender, post-operative, type o
quimiotherapy, type of radiotherapy, overall treatmntime,
technical plan applied on the first phase of theatment,
interruption treatment time, mean dose on the GoNsering
fractions of 2Gy, severity of xerostomia problem the first
week of radiation treatments and the mean dose hen t
contralateral and ipsilateral parotids and on thatralateral
and ipsilateral submandibular glands.

The ROC curve obtained for this dataset is illusttain
Figure 1.
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Fig. 1. ROC curve generated by Logistic Regression predigten applied
to our dataset by a LOOCV technique. The AUC predués 0.82. The
diagonal line that links the points (0,0) and (Jfdduces an AUC of 0.5.

Figure 1 shows a high performance of the logistic
regression model in making the predictions of exise of
xerostomia 12 months after the beginning of ragimti
treatments. In fact, the ROC curve traced corredpdn an
AUC equal to 0.82. This value evidences that thalehds
capable of making predictions highly consistentwitie true
classifications.

Table | depicts the results produced in each itarabf
algorithm 2. The logistic classifier yields a probigy
consisting in a numerical value that representsdihgree to
which a patient is a member of class “1”. Such phbility
score can be used as a threshold to produce afielassd,
consequently, a ROC point. The column identified as
“Thresholds” in table | stores these probabilitesrted by
decreasing order, to be then sequentially usedhiEstold
values in the construction of the ROC curve and als the
computation of the AUC. The TP and FP values reprethe



TP and FP classifications accomplished for eaclkstiold
value. Each line of table 1 leads to the generaifom point in
the ROC curve.

TABLE I. ROCCURVE PHASES

Thresholds

RPRrRRR

0.99998
0.70626

0.10669

0.00720
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2.22x10
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Table | suggests that logistic regression modelbie of
correctly predicting the classes for new patierfticiently.
Looking at the table, we are able to identify diffiet
compromises between the degree of specificity amgibility
of the classifier. Looking at the existing comprees, we can
define an adequate threshold value to improve thdigtions.
For instance, if we consider a cutoff equal to Dwé are able
of correctly predicting the outcome for 14 patieint® total of
16 (see the confusion matrix depicted on tableThis value
produces an accuracy of 0.875. In the case of dersg the
most commonly used threshold, 0.5, we correctlimede the
output for 13 samples among the total of 16, oimgiran
accuracy of 0.8125 (Table Ill). The threshold vaidentified
as the break down in the accuracy by ROC graphugest
better results than the most frequently used cutbfi.5. The
same occurs when comparing with a random classifibich
produces an accuracy of 0.5, since the probalufitg sample
belongs to class “1” is 0.375 and the number ahelgs in this
class is 6 from a total of 16 (see table IV). Intfahe random
classifier is that which produces poorer results.

TABLE Il. CONFUSION MATRIX FOR A THRESHOLD EQUAL T®.75.
Predicted Values
0 1
0 9 1
True Values 1 1 5
TABLE Il CONFUSION MATRIX FOR A THRESHOLD EQUAL T®.5
Predicted Values
0 1
0 8 2
True Values 1 1 5
TABLE IV. CONFUSION MATRIX FOR THERAMDOM CLASSIFIER
Predicted Values
0 1
0 6 4

True Values 1 7 >

In summary, the logistic regression model revealed
undoubtedly a high discriminative ability in the ntext of
predicting xerostomia problem 12 months after thgifning
of radiation therapy.

V. CONCLUSIONS AND FUTURE WORK

In the present article we describe a methodologglole of
accurately predicting the existence of xerostomiast well-
known as dry mouth sensation, for head-and-neclceran
patients, 12 months after starting the radiatiorerapy
treatment. The obtained results revealed a goddrpsaince of
the logistic regression classifier, showing that dipplication of
this predictive model to estimate the class for patients will
lead to robust results. The small size of the absl database
is the main weakness of this study. This probleithprbbably
fade in the future, since the database is contigiyobeing
updated and the medical professionals that hav@l fa the
information are increasingly awaken for the impoce& of
rigorous and systematic data registrations.

Being able to predict treatment induced compligatian
the long-run at early stages of radiation therapgtments has,
as major advantage, the possibility of adjusting titeatment
plan such that the probability of such complicagi@ame as low
as possible.

We are currently exploring this database furthsting to
apply data mining algorithms not only to the shierim and
long term predictions of treatment induced compiices but
also tumor response. The obtained results cahgirfiuture, be
integrated in treatment planning optimization prhges.
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