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Abstract

MicroRNAs, a class of short non-coding RNAs, are able to regulate more than half of human 

genes and affect many fundamental biological processes. It has been long considered synthesized 

endogenously until very recent discoveries showing that human can absorb exogenous microRNAs 

from dietary resources. This finding has raised a challenge scientific question: which exogenous 

microRNAs can be integrated into human circulation and possibly exert functions in human? Here 

we present a well-designed ensemble manifold ranking model for identifying human absorbable 

exogenous miRNAs from 14 common dietary species. Specifically, we have analyzed 4,910 

dietary microRNAs with 1,120 features derived based on the microRNA sequence and structure. In 

total, 70 discriminative features were selected to characterize the circulating microRNAs in human 

and have been used to infer the possibility of a certain exogenous microRNA getting integrated 

into human circulation. Finally, 461 dietary microRNAs have been identified as transportable 

exogenous microRNAs. To assess the performance of our ensemble model, we have validated the 

top predictions through a milk-feeding study. In addition, 26 microRNAs from two virus species 

were predicted as transportable and have been validated in two external experiments. The results 

demonstrate the data-driven computational model is highly promising to study transportable 

microRNAs while bypassing the complex mechanistic details.
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I. Introduction

Mature microRNAs (miRNAs) are a class of short non-coding RNAs, which are typically 

21–25 nucleotides long. In the past decade, numerous studies have shown that this type of 

small molecules can negatively regulate gene expression post-transcriptionally [1–3]. In 

most cases, miRNAs can bind to the target messenger RNAs (mRNAs) and prevent the 

protein products of corresponding mRNA by either inhibiting the translation process or 

promoting the mRNA decay [1,2]. More than 60% of human genes, at a conservative 
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estimate, can be targeted by 2,588 known human miRNAs [3]. The regulation of miRNAs 

significantly affects a number of fundamental biological processes and pathogenesis of 

human disease[4].

It was generally considered that miRNAs are synthesized endogenously within the 

individual. However, the latest study shows that human is able to absorb exogenous miRNAs 

from bovine milk [5] where the authors have successfully measured meaningful amounts of 

two cow’s milk miRNAs, bta-miR-29b and −200c, in human blood. Moreover, the study also 

demonstrated the potential influences of two transferred cow miRNAs on human health 

through regulating human genes. Similarly, other experiments suggest that one rice’s 

miRNA, osa-miR-168a, could also be transferred into the circulation of mammals [6]. These 

observations have raised a challenge question: which exogenous miRNAs can be absorbed 

and integrated into human circulation, then potentially play regulatory roles in human.

The cross-species transportation of miRNAs is an emerging research topic where the 

mechanism is largely unknown. Nevertheless, several studies uncovered two main forms of 

detected circulating miRNAs in human: either associated with exosomes (vesicles or 

microparticles) or bounded to Argonaute (AGO) proteins in RNAi silencing complex [7–11]. 

Either way, it requires a distinct binding pattern between the miRNA and another molecule. 

Therefore, the binding affinity of miRNA-protein is very likely to affect the possibility of 

cross-species transportation. Based on several such assumptions, we applied a data mining 

strategy to identify discriminative molecular features that may have an impact on the 

transportation, such as: nucleotide compositions on seed region, %G+C content of mature 

miRNA sequences [1,12,13] and many features generated from the secondary structure of 

precursor miRNAs including minimum free energy of the secondary structure and stem 

length [14–20]. As a result, 1,120 sequential and structural features that possibly affect the 

miRNA binding and transportation have been considered.

In this article, we present an ensemble manifold ranking model for identifying potential 

human absorbable exogenous miRNAs. 360 validated human circulating miRNAs from 

pervious finding were used to train the model to infer the most likely transportable 

exogenous miRNAs from 14 common food species. To the best of our knowledge, this is 
the first study that aims to provide an efficient high-throughput computational 
screening for cross-species transportable miRNAs.

II. Materials and Method

In this section, we provide a detailed description of our computational model, which 

includes the following sections: miRNA datasets, feature extraction and the ensemble 

manifold ranking model for prediction.

A. Datasets

Among 14 most common dietary species, we collected the sequences of 4,910 mature 

miRNAs and 4,387 corresponding stem-loop precursor miRNAs from the Dietary 

microRNA Database (DMD) developed by our group [21]. An independent validation set 

also includes sequence data from two virus species at miRBase [3]: Epstein-Barr virus and 
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Rhesus lymphocrypto-virus. TABLE I illustrates the detailed statistics of the miRNA data 

we used in this study.

In order to identify the potential exogenous miRNAs that can be integrated into human 

circulation, we retrieved 360 plasma miRNAs from Weber’s study [22] and used them as a 

positive set to train the prediction model.

B. Feature extraction

As described above, we suspected that many sequential or structural features of miRNA 

likely differentiate the circulating miRNA against others. Therefore, we extracted 1,120 

features [23–25] to assess their discriminative powers on the circulating miRNA prediction. 

Specifically, for each mature miRNA, a total of 1,102 features were generated including:

1. 1,031 features calculated based on following sequences:

a. extend seed region sequence (first 8 nucleotides on 5’ end of mature 

miRNA sequence);

b. mature miRNA sequence;

c. corresponding precursor stem-loop sequence.

2. 71 structural features identified based on the predicted secondary structure of 

precursor stem-loop sequence.

The detailed feature information can be found in TABLE II.

C. The ensemble manifold ranking model

Unlike a typical binary classification problem, prediction of possible transferable exogenous 

miRNAs is only conducted based on the known circulating miRNAs (positive only). Since it 

is quite possible that there are many miRNAs might be transportable to human circulation 

but have not been detected yet, it fails to define a negative set in our study. Thus, manifold 

ranking is employed here, which has been proven to be a powerful tool in the unaiy 

classification cases [26, 27].

1) Manifold ranking: Manifold ranking is a graph-based ranking algorithm that has been 

widely used in information retrieval and has shown to perform very well on a variety of 

datasets. It originally proposed as a personalized version of the PageRank algorithm [28], 

and were successfully applied on image data, textual data, and biological datasets [29–31].

The algorithm for Manifold Ranking is as follows:

a. Sort each sample based on max pairwise distance of its feature vector, and 

connect each sample until a connected graph is formed;

b. Form a distance matrix using the RBF kernel, assign 1 if there is an edge linking 

two samples, 0 otherwise;

c. Normalize the distance matrix using symmetric Laplacian normalization;
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d. Spread a sample’s ranking score to their neighbors according to the weighted 

network. Repeat this step until a stable state is achieved. This step contains a 

parameter α that specifies the relative contributions to the ranking scores from a 

sample’s neighbors and the initial ranking scores;

e. Rank the nodes according to their ranking scores.

There are two parameters in the algorithm: σ for the RBF kernel setting and α for the 

weights of prior knowledge from the positive set. Some manifold ranking applications used 

the empirical parameters, σ as d
3  (d is average distance among all samples) and α as 0.99 

[31]. To avoid such arbitrary setting, our model conducts parameter search to ensure the best 

predictive performance is achieved.

One typical assessment of a ranking method is checking the percentage of the positive 

training data that is ranked among the top X% of all the training data. Generally the higher 

the percentage is for each fixed X, the better the trained ranking algorithm is.

1) Feature ranking generation: As mentioned above, we generated 1,120 features for 

each miRNA to characterize the human circulating miRNAs. However, it is very unlikely 

that every feature contributes on this recognition. Thus, we applied three different methods 

to evaluate the discriminative power of each feature:

a) F-score:

First, the F-Score Ranking was calculated as described by Chen and Lin [32]. It is a simple 

technique that measures the discrimination of two sets of real numbers. The F-score is 

defined as shown in the following equation, where x1, xi
( + ) and xi

( − ) are the average of the 

ith feature of the whole, positive, and negative (unlabeled samples, in our case.) datasets 

respectively. The larger the F-score is, the more likely that the ith feature is discriminative.

F(i) ≡
(xi

( + ) − xi)
2 + (xi

( − ) − xi)
2

1
n+ − 1 ∑

k = 1

n+
(xk, i

( + ) − xi
( + ))2 + 1

n− − 1 ∑
k = 1

n−
(xk, i

( − ) − xi
( − ))2

b) Fisher’s ratio

The second method is known as Fisher’s ratio also attempts to rank features by linear 

discriminative power. It is defined as the difference in means squared over the difference in 

variance:

FR =
(xi

( + ) − xi
( − ))2

vi
( + ) − vi

( − )

vi
(+)and vi

(−)are the variance of the ith feature of the whole, positive and negative datasets.
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c) Wilcoxon signed-rank test statistic W Wiloxon test statistic W is calculated as:

Wi = ∑
j = 1

N
[sgn(x j, i

( + ) − x j, i
( − )) ↺ R j]     sgn(t) =

−1
0
1

 
t < 0
t = 0
t > 0

Since each individual ranking presents a different evaluation of predictive power of each 

feature, we applied robust ranking aggregation method to integrate all the information into 

one final feature ranking for further feature selection. The aggregation is conducted by 

RankAggreg package in R [33]. It aggregates three independent rankings by using Cross-

Entropy Monte Carlo algorithm and Spearman distance measurement. It should be noted 

here that, since there is no any pre-determined preference among three feature ranking 

methods, we assigned the same weight on each ranking lists.

2) Feature selection—While the traditional manifold ranking requires the preselected 

features, the ensemble manifold ranking model enables the selection of the discriminative 

features among the initial feature set and optimized parameters. At the end, along with the 

selected features and parameters, the model conducts a final manifold ranking with all 

positive set to identify the potential human absorbable exogenous miRNAs among all dietary 

miRNAs.

The model adopt a modified recursive feature elimination strategy with the grid parameter 

search:

First, the model randomly samples 60% data from positive instances and unlabeled instances 

(eg. dietary miRNAs) to train to manifold ranking with all features. Then, it adds the rest of 

40% data as the unlabeled samples (includes the 40% positive data) to re-rank the entire 

dataset. As an evaluation, the model checks the final ranking list and count the number of 

true positive samples on the top of list. In this case, the model calculates the percentage of 

known circulating miRNAs that are ranked in the top 360 in the final ranking list. This 

process is conducted once for each parameter combination to infer the impacts of different 

parameter setting. Moreover, to avoid the probable bias from dataset, the model re-samples 

the training set for every run.

Secondly, according to the final feature ranking, which is aggregated from F-score, Fisher’s 

ratio and Wilcoxon statistic W, the model halve the number of features each iteration, while 

keeping track of the top-ranked positive percentages for each round of feature elimination. 

By conducting this algorithm, the model obtains the interaction between feature size (along 

with the parameters) and the accuracy to find the most discriminative feature set and 

optimized parameters that produce the best predictive power.

Finally, with the selected features and optimized parameters, the model carries out a final 

manifold ranking to predict human absorbable exogenous miRNAs.

This ensemble manifold ranking model carefully considers the effects of parameter setting 

and the power of most discriminative features. It efficiently optimizes the predictive 

capabilities of traditional manifold ranking algorithm.
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III. RESULTS

A. The features distinguish the transportable miRNAs from the rest

Consequently, the model selected 70 features to conduct the final manifold ranking. The 

selected features are categorized into five groups in TABLE III.

As expected, 63 selected features are related to the nucleotide composition of the sequences, 

such as single nucleotide C in the seed region, and tri-nucleotide AUA in the precursor 

sequence. As we mentioned above, the binding strength between miRNA and exosomes or 

AGO protein may plays a critical role on deciding if a miRNA can be transportable into 

human circulation or not, so those nucleotide compositions may reflects the impacts of this 

factor. Beside of the sequential features, some structural indicators are included into the final 

feature set as well. There are 5 frequencies of triplet nucleotide structures, such as C(((, A.

(..The minimum free energy (MFE) also plays an important role in differentiating the 

circulation miRNA against others.

B. Transferrable exogenous miRNAs prediction

The ensemble manifold ranking model finally predicts the human absorbable exogenous 

miRNAs based on 70 selected features. As an important assessment of the ranking 

algorithm, 350 (~97%) of 360 human circulating miRNAs are ranked among top 360 in the 

final ranking list, which indicates the ranking models are well trained. Theoretically, any 

exogenous miRNA, which is ranked above a known blood miRNA, should be categorized as 

a transferrable exogenous miRNA

However, in order to minimize the possible false positive cases, we applied a strict rale to 

only consider the dietary miRNA transportable only if it has been ranked above all human 

circulating miRNA. Finally, 461 dietary miRNAs are predicted as human absorbable 

exogenous miRNAs.1

The 74 top-ranked transportable dietary miRNAs from prediction are shown in TABLE IV. 

The complete ranking list can be downloaded at http://go.unl.edu/ormw.

Validation of predicted transferrable miRNAs

To further assess our prediction, we conducted a in-house cow’s milk consumption 

experiment. The blood samples were collected from five health adult participants at 4 time 

points (0, 3, 6, 9 hours) after they consumed 1-liter milk. The total RNA from the pooled 

blood samples for each time point is subject to a small RNA sequencing analysis by 

Illumina-HiSeq2000. For data analysis, CAP-miRSeq [34] was employed to calculate the 

microRNA expressions. The annotation from miRBase (version 21) [35] was used as the 

reference library when mapping the reads to known miRNA sequences. We have carefully 

filtered out the low quality reads and strictly aligned high quality reads to all known mature 

miRNA sequences, precursor sequences and the genomes of human and cow.

In total, we identified 22 cow’s milk miRNAs in the human blood samples, and three highly 

predicted bovine’s milk miRNAs (bta-mir-181b, −26b, −23a) are validated in this 
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experiment. This result confirms that predicted transferrable exogenous miRNAs could 

indeed be integrated into the human circulation.

It is also well documented that virus miRNAs have the capabilities of transporting into 

mammalian circulation and targeting genes in the host organism after the viral infection 

[36]. Thus, besides the dietary miRNAs, we also utilize the ensemble manifold ranking 

model to identify the transferrable miRNAs from two vims species: Epstein-Barr virus 

(EBV) and Rhesus lymphocrypto-virus (rLCV). 26 virus miRNAs (11 from EBV and 15 

from rLCV miRNAs) were predicted as transportable exogenous miRNAs by using our 

ensemble manifold ranking model.

In 2012, Riley et al. discovered that Epstein-Barr virus is able to regulate human gene 

expression and transforms human B cells to maintain its viral latency [36]. They identified 

44 EBV miRNAs and their human target genes in the EBV transformed B cells through the 

HITS-CLIP sequencing. As expected, all 11 predicted EBV miRNAs (ebv-mir-bartl4–3p, 

bart5–3p, bart5–5p, bart7–3p, bart7–5p, bartl4–5p, bart9–3p, bart8–3p, bart8–5p, bartl3–5p, 

bart19–3p) have been also identified in Riley’s study. Similarly, all 15 predicted miRNAs 

from Rhesus lymphocryptovirus (rLCV) (rlcv-mir-rll-l-3p, rll-7–5p, rll-17–3p, rll-17–5p, 

rll-16–3p, rll-19–3p, rll-16–5p, rll-33–3p, rll-24–3p, rll-7–3p, rll-24–5p, rll-10–3p, rll-l-5p, 

rll-2–5p, rll-33–5p) that are highly transportable in our prediction have been reported in [37] 

where Raily et al. have found these rLCV miRNAs detectable in B cells of infected 

mammilla samples by using deep sequencing.

Above validation results again confirm that the predictive power of our ensemble manifold 

ranking model is trustworthy.

IV. Conclusions

In this paper, we demonstrated a well-designed ensemble manifold ranking model to identify 

the human absorbable exogenous miRNAs from 14 common food species. Different from 

the traditional ranking algorithms, this model integrates the feature selection capability and 

parameter optimization to maximize the predictive power. 1,120 sequential and structural 

features were extracted to distinguish the human circulating miRNAs. The result shows that 

461 dietary miRNAs were predicted as human absorbable miRNAs based on 70 selected 

discriminative features. According to both internal and external validation experiments, 

evidences strongly support that the performance of our ensemble manifold ranking model is 

highly promising.
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TABLE I.

DETAILED STATISTICS OF MICRORNA DATASET

Category Species Mature
miRNAs

Precursor
miRNAs

Dietary
Speices

Apple 203 202

Banana 360 180

Corn 309 166

Grape 180 157

Orange 61 57

Rice 634 526

Soybean 620 554

Tomato 96 68

Wheat 111 108

Cow’s milk 243 245

Cow’s fat 205 229

Atlantic Salmon 498 371

Chicken 994 740

Pig 411 382

Virus
Speices

Epstein-Barr virus 44 25

Rhesus
lymphocrypto-virus 68 36
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TABLE II.

Detailed Feature Descriptions

Feature Details Counts

I
a

Single Nucleotide Frequency 12
b

Pairwise Nucleotide Frequency 48
b

Triplet Nucleotide Frequency 192
b

Quadruplet Nucleotide Frequency 768
b

A + U Frequency 3
b

G + C Frequency 3
b

G + U Frequency 3
b

Number of Palindromes in Sequence 3
b

Length 3
b

Pairs of A-U in Premature microRNA 1

Pairs of G-C in Premature microRNA 1

Pairs of G-U in Premature microRNA 1

II
a

Triplet nucleotide structures 32

Minimum Free Energy, Normalized Minimum Free Energy, etc. 3

Ensemble Free Energy, Normalized Ensemble Free Energy 2

Stem-loop Statistics (e.g.: Average Stem Length, Maximum Stem Length, etc.) 25

Minimum Free Energy Statistics (eg: mfe/unpaired nucleotides,etc.) 6

Percentage of sequence composing of pairs. 1

Frequency of Nucleotides that occur outside of UA, GU, GC pairs. 4

Predicted shape type probability base on
RNAshapes. 5

RNAshapes statistics (e.g.: Shannon Entropy) 4

a
I represents sequential features and II represents structural features;

b
the total number of corresponding features on three type of sequences, namely seed sequences, mature sequences, and precursor sequences.
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TABLE III.

SELECTED FEATURED DESCRIPTIONS

Feature groups Counts Feature lists

Nucleotide frequency
in seed sequence 22

C, A, GC, GG, UUC, GUG, GAG,
GAGA, AUUG, AUAG, UCUA, CGUG,
CUUC, GCGG, GGCC, CAAC, CAUG,
UGGC, UUGC, UAUA, CCGA, GCGC

Nucleotide frequency
in mature miRNA 16

UAG, CUC, GCG, ACC, AACU,
UUGU, AGCG, UGCC, AACG, UGAA,
UAUC, AUCC, GCUU, UUAA, GCUC,
ACGA

Nucleotide frequency
in precursor sequence 25

CC, GU, AUA, ACU, UGC, AGG,
GCAC, CCUA, CUCA, CGAU, UAGU,
ACGU, GCCG, GUGU, CCGU, CGAC,
AUAC, UUUG AUCC, GGUA, GGAA,
AUCU, CGAG, AUAU, UUGG

Frequency of triplet
nucleotide structures 5 C(((, A.(., U(.(, C(.(, U(..

Structure indicator 1 Minimum free energy (MFE)

Stems/Pairs 1 pairGU
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TABLE IV.

74 HIGHLY RANKED DIETARY MIRNAS

Species Transportable Dietary miRNAs

Apple mdm-mir3627b, mirl56i, mir7121f, mirl71j, mirl67c

Corn zma-mir395h, mir395j, mir395e, mir395h

Grape vvi-mir395d, mir395m, mir395j, mir395i, mirl67c, mir3951

Rice osa-mir395c

Soybean gma-mir394f, mir4412, mirl71e, mir395c, mirl520h

Cow’s milk
bta-mir-125b, mir-30b-5p, mir-22-5p, mir-184, mir-338, let-
7g, mir-99a-5p, mir-22-3p, mir-99a-3p, mir-16a, mir-224,
mir-409a, let-7e, mir-494, mir-181b

Cow’s fat bta-mir-124b, mir-654, mir-429, mir-34b,
mir-412

Chicken

gga-mir-144, mir-200a, mir-1555, mir-365, mir-200a, let-7g,
mir-124b, mir-1679, mir-1702, mir-133b, mir-3532, mir-
20b, mir-144, mir-1744, mir-219a, mir-1617, mir-365, mir-
1555, mir-23b, mir-19b, mir-103, mir-99a, mir-103, mir-455

Pig ssc-mir-455, mir-133b, mir-96, mir-184, let-7g, let-7a, mir-
708, mir-125b, mir-124a
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