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Abstract

In this work, we focus on the problem of learning a classification model that performs inference 

on patient Electronic Health Records (EHRs). Often, a large amount of costly expert supervision is 

required to learn such a model. To reduce this cost, we obtain confidence labels that indicate how 

sure an expert is in the class labels she provides. If meaningful confidence information can be 

incorporated into a learning method, fewer patient instances may need to be labeled to learn an 

accurate model. In addition, while accuracy of predictions is important for any inference model, a 

model of patients must be interpretable so that clinicians can understand how the model is making 

decisions. To these ends, we develop a novel metric learning method called Confidence bAsed 

MEtric Learning (CAMEL) that supports inclusion of confidence labels, but also emphasizes 

interpretability in three ways. First, our method induces sparsity, thus producing simple models 

that use only a few features from patient EHRs. Second, CAMEL naturally produces confidence 

scores that can be taken into consideration when clinicians make treatment decisions. Third, the 

metrics learned by CAMEL induce multidimensional spaces where each dimension represents a 

different “factor” that clinicians can use to assess patients. In our experimental evaluation, we 

show on a real-world clinical data set that our CAMEL methods are able to learn models that are 

as or more accurate as other methods that use the same supervision. Furthermore, we show that 

when CAMEL uses confidence scores it is able to learn models as or more accurate as others we 

tested while using only 10% of the training instances. Finally, we perform qualitative assessments 

on the metrics learned by CAMEL and show that they identify and clearly articulate important 

factors in how the model performs inference.

I. Introduction

As recent technological advancements become more integrated into the practice of clinical 

medicine, more opportunities arise to support clinicians when they make important decisions 

in patient care. This has lead to the advent of Clinical Decision Support Systems (CDSSs), 

which are computer systems that use data to aid clinicians in making clinical decisions. 

CDSSs can simply act as a portal for clinicians to access relevant information, but can 

perform much more sophisticated tasks such as providing suggested treatment options or 

warning of dangerous drug interactions. For a CDSS to accomplish such inference tasks, it 

requires a meaningful model of how previously observed patients relate to new patients. To 

build such a model, data regarding previous patients and task-specific supervision on those 

patients is required. Fortunately, Electronic Health Records (EHRs) are being adopted by 

more and more health care providers [1], [2]. EHRs provide data that uniquely characterizes 
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different patients in an easily accessible form. For supervision, clinicians themselves can 

provide quality feedback if explicitly prompted for it. By combining these two sources of 

information, an insightful inference model of patients can be built using supervised learning 

techniques.

Much of the previous work in creating patient models from supervision leverage standard 

classification methods [3], [4], [5], [6]. Here, supervision appears in the form of class labels 

(e.g. the patient is at risk for a condition or not), and the learned inference models output a 

predicted class label when given an unseen patient. For CDSSs, these predictions can be 

used to alert clinicians of important information that supports decision making. However, 

there are practical issues with standard classification models for use in CDSSs. First, it is 

vital that a clinician is able to understand how a CDSS comes to conclusions [7]. Otherwise, 

the clinician may not trust the model due to lack of clear reasoning. Many standard 

classification methods focus solely on maximizing some measure of classification accuracy 

without any focus on learning a model that can be easily interpreted by humans. 

Consequently, clinicians may not be able to understand why they are being alerted, even the 

classifier is accurate.

Another practical concern lies in the cost of obtaining sufficient clinical supervision to learn 

an accurate classification model. Because the expertise of a clinician is valuable, the cost of 

obtaining clinical supervision is substantially more than obtaining feedback from the 

layman. Compounding this cost is that clinicians must spend a substantial amount of time to 

consider multiple, interacting factors before providing feedback. If standard classification 

methods are to be used, clinicians would be prompted for a class label after considering a 

patient. However, class labels convey only a simple notion of how patients relate, despite the 

fact that clinicians have more in-depth knowledge about the patient that they could provide. 

Thus, often a large amount of labeled instances needed to learn accurate classifiers for more 

complex inference tasks. All of these factors together make the cost of learning an accurate 

classification model from class labels alone an expensive endeavor.

In consideration of these issues, this work proposes a novel metric learning method called 

Confidence-bAsed MEtric Learning (CAMEL). CAMEL was designed with a specific 

emphasis on learning human-interpretable models of patients. Our method produces sparse 

models that use only the relevant patient information when modeling disease. As a result, 

clinicians can easily identify which features are used when making inferences. Also, metrics 

produced by CAMEL naturally induce confidence scores that indicate how confident the 

model is when making inferences. Clinicians can take these scores into consideration when 

making important treatment decisions. Finally, our method learns a parametric metric that 

projects patients into multidimensional space of disease where each dimension in the learned 

metric space is as a separate “factor” in how the model reasons about patients. This contrasts 

with many standard classification methods that project data objects to a single dimension. 

Clinicians can view what features influence these factors and interpret how the model is 

making inferences.

To reduce the cost of obtaining expert supervision, we formulate a version of CAMEL that 

can leverage confidence labels that indicate how sure a labeler is in a given class label. Our 
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use of confidence labels is motivated by the fact that when tasked with providing 

supervision, clinicians spend their time mostly on considering the patient EHRs themselves. 

Once they learn what is needed to produce a class label for a patient, providing a confidence 

label requires a relatively short amount of additional time and effort. If this confidence 

information provides additional, useful insight into how patients relate to classes, then our 

method that utilizes confidence labels, CAMEL-CL, is able to learn more accurate 

classification models with fewer labeled patients. In doing so, CAMEL-CL can be used to 

reduce the effort required from the labeler, and in turn, decrease the cost of obtaining expert 

supervision.

The remainder of this paper is organized as follows. In Sec. II we review pertinent 

background information in metric learning and then formally define our two CAMEL 

methods. In Sec. III we briefly review previous, related work. In Sec. IV we perform an 

experimental evaluation of CAMEL and CAMEL-CL, assessing the models they learn first 

quantitatively by comparing their accuracy to models learned by other methods, then 

qualitatively in terms of their interpretability. Finally, in Sec. V we conclude and note 

directions of future work.

II. Methodology

Before defining our proposed methods, we begin this section by reviewing basic concepts in 

Mahalanobis distance metric learning and comparing the models they learn to those 

produced by traditional linear models. With this background, we introduce our method, 

CAMEL, and discuss how it can utilize both class and confidence labels to learn a model of 

patients.

A. Mahalanobis Distance Metric Learning

A metric is a function d :  ×  → ℝ that defines a measure of distance between pairs of 

objects. More specifically, in order to be a metric, d must satisfy four conditions 

(nonnegativity, distinguishability, symmetry, and triangle inequality) that embody intuitive 

properties that traditional notions of distance have. In metric learning [8], [9], [10], the goal 

is to learn a metric from data. Most commonly, supervision is used to guide this process. For 

example, supervision can indicate which objects are in some sense “similar” and which ones 

are “different”. With this feedback, a metric learning method could learn d such that similar 

objects are closer to each other than different objects. One of the most popular classes of 

metric learning methods are those that learn a squared Generalized Mahalanobis Distance 

Metric (GMDM) of the form:

(1)

Here,  = ℝm. The metric defined in (1) is parameterized by M ∈ ℝm × m. If M is positive 

semidefinite (PSD) (i.e has no negative eigenvalues), then (1) is a pseudometric, which 

satisfies all the properties of a metric except distinguishability.

Intuition into GMDMs can be gained by factoring the square matrix parameter M = LTL, 

where L ∈ ℝm′ × m. One can then rewrite (1) as a function of L:
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(2)

The last line of (2) shows that a GMDM is equivalent to the standard Euclidean distance 

metric squared after the m-dimensional objects are transformed into an m′-dimensional 

metric space. GMDM learning (henceforth, metric learning) methods use M, or equivalently 

L, as a parameter to be learned. In doing so, they create a linear transformation of objects 

from a given feature space to a metric space in a data-driven way.

One of the tasks metric learning methods are used for is classification. For this, metrics are 

learned that can be used to determine what class an unobserved data object belongs to by 

comparing it to observed, labeled instances. Many standard classification methods (SVM, 

logistic regression, etc.) learn a linear transformation into a single dimension. Learning such 

a simple model can often have practical limitations. First, for some domains, objects of 

different classes cannot be separated by a single-dimensional linear transformation, making 

many standard methods inappropriate. Linear classifiers often compensate for this by 

including a manually chosen feature mapping (or a kernel) to first map the objects into a 

space that can be separated by the single-dimensional transformation. However, which 

feature mapping is suited for a problem is often unclear, and choosing an appropriate 

mapping can be time consuming. Even if an appropriate feature mapping is chosen, the 

resulting model may be difficult to interpret. Because the features are being weighed along 

one dimension, it is impossible to tell if certain features are important on their own, or in 

tandem with others, and sometimes whether some features are important at all. Our method, 

CAMEL, not only implicitly learns an appropriate feature mapping by transforming data 

objects into a metric space, but does so by combining features in different combinations, 

each of which can be interpreted independently to understand how the model is making 

inferences. In the remainder of this section, we outline our method and highlight certain 

design decisions that enhance interpretability.

B. Confidence-Based Metric Learning from Class Labels

We begin by more formally defining our problem setting. Let  = {(x1, y1, c1), …, (xn, yn, 

cn) ∈ ( , , )n} be a set of observed data. Let  = {x1, …, xn ∈ ℝm} be a collection of n 

data objects represented by m-dimensional real vectors. Let  = {y1, …, yn ∈ {0, 1}} and 

= {c1, …, cn ∈ [0, 1]} be binary and confidence labels, respectively, that correspond to data 

objects. In our problem setting, each xi is a patient instance represented by features drawn 

from EHR data. The corresponding yi is a class label gathered from a clinician (e.g. a 

positive or negative diagnosis), and ci is a confidence label indicating how confident she is 

in yi. In this work, we consider binary class labels and confidences in [0, 1], though much of 

the subsequent can easily be extended to other settings.

We wish to learn a metric parameter L from observed patient data that can be used to 

accurately predict the class labels of unobserved patient instances. To this end, we begin by 

defining a measure of similarity between objects, given L:
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(3)

Equation (3) is an application of the Gaussian kernel function (also known as the radial basis 

function) [11] that measures how similar two objects are. If the distance between xi and xj is 

zero, then (3) assigns the pair a similarity of one. As objects become farther apart, their 

similarity quickly goes to zero. The Gaussian kernel function is a popular choice in 

kernelized learning algorithms because it can model a large class of functions. However, it is 

normally parameterized by a bandwidth that influences how quickly similarities decay 

towards zero. This parameter greatly affects the performance of the methods in which the 

Gaussian kernel is used, and needs to be validated for use in traditional classification 

methods. In (3), the bandwidth parameter is absorbed into the learned parameter L. As a 

result, our method not only learns a transformation, but also the bandwidth of a Gaussian 

kernel.

With this measure of similarity, we can define the relationship a patient instance has with 

others. Most importantly, we can define how similar an patient is to those with class label y:

(4)

Here, . In essence, (4) is the mean similarity xi has with all 

observed objects with label y, excluding itself. This similarity score measures how similar a 

patient is to observed patient instances of a single class. However, this score is independent 

of a object’s relationship to other classes. For this, we formulate a confidence score:

(5)

In the binary class case, ỹ is zero if y is one, and one if y is zero (the complement of y). In 

the multi-class case, ỹ is all class labels other than y. Equation (5) can be interpreted as a 

class conditional probability that an object is a member of a class given a metric parameter 

L. As such, confidence scores define both a criteria for learning an L that fits to observed 

data, and a way to predict class labels on unobserved patient instances once L is learned. 

Like other classifiers that define conditional probability functions, inference can be done by 

putting a threshold on the confidence score of an unobserved instance (e.g. if , 

then the predicted label ŷi is one, otherwise, it is zero). In addition, area under the Receiver 

Operating Characteristic curve (AUROC) can be found using confidence scores on patient 

instances.

In order to find a metric that models class membership of observed patient instances well, 

one could maximize  directly for all observed patients. However, doing so leads to a 

difficult non-convex optimization problem. To avoid this source of nonconvexity, we 

maximize an approximation of the confidence scores for the observed data:
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(6)

In (6) we maximize the similarity each observed data object has with its observed class 

label, while minimizing the the similarity it has with the opposite class. The objective 

“pulls” all observed objects of the same class towards each other, and “pushes” all objects of 

different classes away. In doing so, (6) increases the numerator of (5), while decreasing a 

term the denominator, and by doing so, approximates learning a metric where the confidence 

scores of the observed data is high.

Unfortunately, (6) can result in solutions where observed objects of the same class are 

projected to nearly the same point in the metric space, while observed objects of different 

classes are infinitely far apart. This leads to models that can drastically over-fit to the 

observed data. To combat this, we include l−1 norm regularization into the objective:

(7)

Note that (7) is a minimization problem, where (6) is a maximization problem. We simply 

multiplied the objective in (6) by −1 to turn it into an equivalent minimization problem 

before adding the regularization term. Here, the l−1 norm is taken element-wise on L, that is 

. Higher settings for the hyperparameter λ force elements of L to 

exactly zero, preferring sparse solutions to more dense ones. More sparse solutions may then 

be found that fit less to the observed data, thus reducing the risk of over-fitting. This also has 

a more practical benefit. Tens, hundreds, even thousands of features can be extracted from 

EHR data. It can be difficult to tell, a apriori, which are useful to model patient 

relationships. If many features are used to represent patients (m is large) and the learned 

model is dense, then a clinician has to consider many, potentially irrelevant, features to 

understand how the model is making decisions. If L consists of a large number of zeros, 

then the learned metric only utilizes a few features, giving the clinician a concise model to 

interpret. We call our gradient descent method to solve (7) CAMEL.

C. Incorporating Confidence Labels

CAMEL attempts to maximize the correct class confidence score for each training patient 

using only class labels. As stated previously, we wish to also use confidence labels provided 

by clinicians to reduce the overall cost of obtaining expert supervision. The most obvious 

way of incorporating confidence labels would be to ensure that the confidence score for an 

observed patient matches the confidence label the clinician provides. However, in practice, 

confidence labels tend to contain a great deal of noise. It has been shown that humans tend 

to find it difficult to accurately produce exact numerical assessments on objects and are 

much better suited to provide simpler forms of feedback such as class labels or relative 

comparisons [12], [13]. Because of this, bolstering CAMEL with the exact values of the 

confidence labels can introduce unwanted noise.
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Instead, we choose to simplify the labels by assuming that, while the exact value of a 

confidence label is noisy, its value compared to others of the same class is not (or at least 

reasonably less noisy). For instance, if a clinician gives labels ca = 0.65 and cb = 0.95 we 

only take that to mean that the labeler is more confident in yb than ya with no consideration 

into by how much. By this assumption, we create a ranking ℛ  of patients such that (xa, xb) 

∈ ℛ  if and only if ca > cb and ya = yb. From ℛ  we can induce a set of constraints to be 

imposed on (7) that allows us to incorporate the information contained in the confidence 

labels:

(8)

The added constraints ensure that the approximated confidence score for xa is greater than 

xb for all (xa, xb) ∈ ℛ . In other words, it tries to ensure the confidence scores adhere to 

ℛ . In practice, it is unlikely that all of the constraints can be satisfied, so we opt to solve a 

similar, unconstrained optimization:

(9)

Here [·]+ is the hinge-loss function (equivalent to max (0, ·)). The last term in (9) is zero 

when the corresponding constraint in (8) is satisfied and positive when it is not. In short, if 

an observed object should have a higher confidence score than others because the labeler is 

more confident in its class label, that object’s contribution to the objective is increased by a 

factor of λ2 for each observed object its confidence score should be higher than. If an 

observed object’s confidence score is too high, its contribution is similarly decreased by a 

factor of λ2.

By introducing the ranking term into the objective, we also introduce an additional 

hyperparameter λ2. Much like higher values of λ1 increase the influence of regularization in 

the objective, higher values of λ2 put a heavier emphasis on ordering the confidence scores 

according to ℛ . As such, care must be taken to properly set the hyperparameters to balance 

fit to the class labels, fit to the confidence labels, and sparsity. We call our gradient descent 

method for solving (9) CAMEL-CL.

III. Related Work

Over the previous two decades, numerous metric learning methods have been developed, the 

two most similar to CAMEL being Large-Margin Nearest Neighbors (LMNN) [14], and 

Metric Learning for Kernel Regression (MLKR) [15]. LMNN learns a metric from class 

labels to be used in a nearest neighbor classifier. To do so, the authors formulate an 

optimization that “pulls” objects close to each other that are of the same class, and “pushes” 

objects of different classes away to ensure that the k nearest neighbors to all observed 
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instances are of the same class. CAMEL uses similar notions of push and pull energies, but 

does so over all points, not just k neighbors. Also, LMNN directly optimizes their metric 

using notions of distance between objects, while CAMEL leverages a Gaussian kernel as a 

similarity measure that naturally induces confidence scores. Learning such a similarity 

measure is similar to what is done for MLKR. However, MLKR, as the name implies, learns 

a kernel to be used for regression. If MLKR is applied to the problem setting considered in 

this work, it would fit directly to the confidence labels without consideration of the inherent 

noise within. In Sec. IV we compare CAMEL and CAMEL-CL to both LMNN and MLKR 

in our experimental evaluation.

Two previous works have considered auxiliary labels similar to the confidence labeled 

considered in our problem setting. Both use probabilistic labels that indicate how likely an 

object belongs to a class. The first work [16], [17] introduced the problem of learning from 

probabilistic auxiliary labels and formulates a method that uses the popular Support Vector 

Machine (SVM) framework. Their method learns linear classifier by solving an optimization 

problem that balances two energies: standard SVM classification hinge loss and a function 

that encourages the model to rank the objects by their probabilistic labels. By including the 

ranking energy, their method can produce an SVM in which objects with high probabilistic 

labels are farther from the decision hyperplane than those with low probabilistic labels. 

While our method uses a similar ranking energy, it is based on an intuitive, explicitly 

defined confidence score. In addition, their learned model is a linear transformation into a 

single dimension, and our model is a more expressive multidimensional metric. Finally, our 

method induces sparsity in order to improve accuracy and enhance interpretability, while 

their method learns a dense model. Both [16] and [17] contain experimental evaluation on 

clinical data sets. However, they provide no analysis into what can be interpreted from their 

model, opting only to show results pertaining to accuracy of inference. Another work uses 

Gaussian Process Regression [18] to learn a classifier from the probabilistic labels, but 

because the SVM-based method is most similar to our work in both methodology and 

application, we compare CAMEL and CAMEL-CL to SVM-Combo from [17] in Sec. IV.

IV. Experimental Evaluation

To evaluate CAMEL and CAMEL-CL, we performed experiments on real-world clinical 

data, the results of which we discuss in this section. We begin by first describing the data set 

used. Then, we outline how the experiments were performed. Next, we present and discuss 

quantitative results comparing both CAMEL methods to related, current methods. Finally, 

we qualitatively analyze the models learned by CAMEL by looking at how it uses patient 

data to make inferences.

A. Data Set Description

Our experiments were performed on data extracted from the Post-Surgical Cardiac Patient 

(PCP) Database in combination with supervision provided by clinicians indicating whether a 

patient is at risk for Heparin-Induced Thrombocytopenia (HIT). A lengthy description of this 

data can be found in [17] and further specifics can be found in [21], [22], [23]. Here, we 

provide a shorter summary of our view of the data. From the PCP Database 4,486 unique 

EHRs were chosen. From these over 51,000 patient-state instances were extracted using 24-
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hour segmentation. Uniformly random sampling from the pool of patient instances would 

result in an overwhelmingly disproportionate number of negative labels for HIT. Because 

there was a finite budget in obtaining supervision, a stratification procedure was used to bias 

sampling towards patients that could be at risk for HIT. Using this procedure, patient 

instances were chosen to be labeled by three experts in clinical pharmacology.

The experts were asked two questions for each patient instance: “How strongly does the 

clinical evidence indicate that the patient is at risk of HIT?” and “Assume you have received 

an HIT alert for this patient. To what extent you agree/disagree with the alert?”. For the first 

question, the experts were prompted for a number between 0 and 100, which we normalize 

to [0, 1] and use as confidence labels. For the second question, the experts were prompted to 

for one of four ordinal categories ranging from “strongly agree” to “strongly disagree” from 

which we derive binary class labels between the “agree” and “disagree” categories. Both our 

experiments and the results reported in [17] indicate that the confidence labels provided by 

the third expert are prohibitively noisy. To more properly showcase the potential utility of 

confidence labeling, we omit lengthy discussion of results from experiments using the third 

expert’s supervision, and note that all methods that utilize the third expert’s confidence 

labels alone perform poorly. Furthermore, the two methods that utilize both class labels and 

confidence labels gain no benefit from the confidence labels. Statistics summarizing the two 

other experts’ feedback used in our evaluations (number of positively labeled patients, mean 

confidence labels, etc.) can be found in Table I.

From the EHRs of the selected patient instances, 50 features were extracted to form feature 

vectors characterizing each patient. These features measure both trends and static 

measurements in one of five attributes: Heparin administration record (features 1–4), 

hemoglobin count (5–18), white blood cell count (19–31), platelet count (32–45), and major 

heart surgeries (46–49). For example, platelet count features include: “latest platelet value 

taken”, “difference between last two platelet values taken”, and “overall trend in platelet 

values”.

B. Experimental Methodology

The methods used in this evaluation are listed in Table II. These methods were chosen as a 

sample of current techniques that learn linear models or metrics from one or both forms of 

supervision considered in this work. The “Orig” method uses no supervision and provides us 

with a rudimentary baseline in our evaluation. All methods can produce confidence scores: 

The classification models can be interpreted to have uncertainty measures in class 

predictions, and the real-valued predictions from the regression models can be taken as 

confidences. Thus, we evaluate the accuracy of each method using the AUROC of 

predictions on a held-out test set.

We performed separate but identical experiments on each experts’ supervision. From the 

pool of selected patient instances we randomly selected 100 patients to be the train set, and 

split the remaining patients randomly into evenly-sized test and validation sets. This was 

done 20 times to form 20 trials. For each trial, an increasing number of the 100 training 

points were used to train the models in the evaluation (10, 20,…100). We did this to assess 

each method as a function of the amount of obtained supervision. For each training partition, 
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hyperparameter settings for each method were chosen to be those that maximized AUROC 

on the validation set.

C. Discussion

Figure 1 shows plots of the AUROC values on the test set as function of the number of 

training points for all methods used in our experiments. The error bars represent a 95% 

confidence interval. The top two plots are for Expert 1’s supervision, and the bottom two are 

for Expert 2’s. The left plots show results for methods that do not use confidence labels and 

the right plots are methods that do (with CAMEL in both for comparison between the plots). 

Overall, the results were similar for both clinicians. All methods achieved better results 

using Expert 1’s labels when given few training points. Although, as more training points 

were added, all methods were able to improve more using Expert 2’s supervision.

In terms of classification accuracy, CAMEL and CAMEL-CL performed as well or better 

than many of the competing methods, especially as more training instances were used. 

LMNN and MLKR learn metrics like CAMEL, but do not include regularization in their 

optimizations. Because of this, they are prone to over-fit to train sets, resulting in poor 

generalization, especially when there are few training instances. LASSO includes sparsity-

inducing regularization, but learns a simple single-dimensional, linear model. Also, like 

MLKR, LASSO fits directly to the confidence labels. Because the exact values of the 

confidence labels contain a great deal of noise, LASSO and MLKR are unable to learn 

models that produce accurate confidence values on the test instances.

The most competitive models to CAMEL and CAMEL-CL, using the same supervision, 

were SVM and SVM-Combo, respectively. The SVM methods learn dense, single-

dimensional models, so they provide a meaningful basis of comparison to our methods. 

CAMEL performed at least as well and sometimes significantly better than SVM. The same 

is true for CAMEL-CL and SVM-Combo, though SVM-Combo outperformed CAMEL-CL 

for 10 and 20 training instances using Expert 2’s supervision. With only this exception, 

CAMEL and CAMEL-CL were able to achieve AUROCs as high or higher than the SVM 

methods, given the same supervision. These results indicate that to our sparse, 

multidimensional models are able to more accurately predict whether a patient was at risk 

for HIT, than methods that learn dense and/or single-dimensional models.

This evaluation not only allowed us to compare our CAMEL methods to competing 

methods, but also enabled us to see the effect the confidence labels had on CAMEL. The 

inclusion of confidence labels only improved the AUROC of CAMEL for both experts, 

never hindered it. Using Expert 1’s supervision, CAMEL-CL was able to achieve an 

AUROC with 10 training instances that could not be matched by CAMEL until it received 

60. Furthermore, the AUROC of the CAMEL-CL model trained on 10 instances was 

statistically as high as any model trained on any number of instances with a 95% confidence. 

This indicates that to learn an accurate predictive model, CAMEL-CL requires substantially 

fewer labeled instances.

While prediction accuracy is important for a patient model, for it to be useful in a CDSS it 

must also be interpretable. In the remainder of this section, we assess the metrics produced 
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by CAMEL and CAMEL-CL in terms of human-interpretability. In our experiments L is a 

49 by 49 matrix that transforms the patient instances from their original space to a 

multidimensional metric space by linearly combining their features. Each row is a 

transformation to a different dimension in the metric space, and each column represents an 

individual feature’s contribution to the model. In essence, each element of L corresponds to 

one of 49 weights on one of the features (e.g. the 49 values in column 1 weigh Heparin on 

feature). If not sufficiently sparse, L could be difficult to interpret, as the model would use 

many of the features, multiple times, in numerous different combinations. A sparse L that 

produces accurate inferences would use only a subset of the features in few, useful 

combinations, which could be easier to interpret than many, complex combinations.

Table III shows the mean “sparsity” of the metric parameter L produced by CAMEL and 

CAMEL-CL for all experiments. We define our sparsity statistic as the number of zero-

valued elements of L divided by the total number of elements. A higher value means that the 

fewer features are being used fewer times in the model. We can see that models learned by 

CAMEL contain a very large number of zero-valued elements, but CAMEL-CL is able to be 

even more selective in choosing features by leveraging the confidence labels. Also in Tab. 

III, we include the mean row rank of the L matrices. The row rank of a matrix is the number 

of linearly independent rows. In our models, a lower rank indicates there is a more simple, 

lower-dimensional space that describes how the CAMEL models are making inferences. The 

table shows that our methods are able to project the 49 dimensional patient instances into a 

lower-dimensional metric space in which accurate inferences can be made. The low-rank 

property of L can be attributed to the fact that strict l−1 norm regularization often made 

many of the rows contain all zeros. For some trials, our methods produced an L with as 

many as 45 rows that contained solely zeros.

While sparsity indicates the models are simple, it does not reveal how the features are being 

used. More specifically, for a model to be interpretable, a clinician should be able to tell 

which features are being used, how much, and whether they are important on their own, or 

in tandem with others. Figure 2 shows the mean and maximum absolute weight put on the 

top 30 features in the models produced by CAMEL-CL, averaged over all experiments done 

using Expert 2’s supervision. In short, Fig. 2 displays the relative importance CAMEL-CL 

put on each feature. The clear top two features chosen by CAMEL-CL were “last platelet 

value taken” (32) and “Heparin on” (1). Clearly, whether a patient was given Heparin should 

influence whether they are at risk for HIT. Thrombocytopenia is indeed the deficiency of 

platelets in blood [24], thus the most recent value of platelet count intuitively should indicate 

risk of HIT. Other top features include “difference between the last and first hemoglobin 

level taken” (17), and “time since last major heart procedure” (46). A downward trend in 

hemoglobin level could indicate bleeding, leading to low platelet counts, making feature 17 

a potential indicator of HIT. The time from last heart procedure could also be important as it 

indirectly measures how long the patient was on heparin. Note that the top four features all 

come from different attributes/lab values. This indicates that CAMEL-CL chooses which 

feature in a group is most informative and emphasizes it the most, as to not include 

redundant information. Also note that no feature measuring white blood cell count was 
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featured prominently in the model. This model choice is supported by the convention that 

white blood cell count is not commonly-used to indicate HIT.

Figure 3 displays two heat maps using the normalized absolute values of L. Deep blue 

indicates a zero value, while deep red indicates the highest absolute value. The two maps 

depict L for CAMEL (left) and CAMEL-CL (right) in one trial using the same 100 training 

instances. Each row is a projection (weighing of the features) into a single dimension in the 

metric space. Thus, each row defines a different “factor” in which the metrics compare 

patients. The left heat map shows that the model produced by CAMEL is very sparse; it has 

mostly zero-valued elements (deep blue), a small number of small-valued elements (light 

blue), and an even smaller number of larger-valued elements (green, yellow, and red). In 

total, this matrix has 25 rows composed entirely of zeros (i.e. the induced metric space is L 
is 24 dimensional). However, many of the non-zero rows contribute very little to the overall 

model, as they contain only few, low-valued weights. Most likely, these rows simply add 

noise, and detract from the interpretability of the model by unnecessarily increasing the 

complexity. The heat map displaying the metric learned by CAMEL-CL, on the other hand, 

has many more zero-valued elements. Most of the small-valued elements in the CAMEL 

model were pushed to exactly zero in the CAMEL-CL model. In fact, every element of L 
learned by CAMEL-CL after the tenth row contains a zero, resulting a simpler, rank ten 

matrix. Because CAMEL-CL metric was given confidence labels in addition to the class 

labels, it was able to more accurately determine the few feature combinations that modeled 

patients well.

V. Conclusion and Future Work

In this work, we developed a method called CAMEL that produces sparse, 

multidimensional, classification models that can perform inference on patient Electronic 

Health Records (EHRs) for use in Clinical Decision Support Systems (CDSSs). For an 

inference model to be used in a CDSS, it must be both accurate and able to be interpreted by 

a clinician. CAMEL was designed specifically with these qualities in mind. In order to 

combat the necessarily high cost of obtaining expert clinical supervision needed to learn an 

accurate model, we formulated a version CAMEL that can incorporate auxiliary confidence 

labels. In our experiments, we showed that CAMEL can produce models at least as accurate 

as others we tested, and CAMEL bolstered with confidence labels can produce models as 

accurate as any tested with using as few as 10% of the training instances as the other 

models. The qualitative analysis that followed highlighted the fact that CAMEL produces 

models that include few important “factors” composed of small subsets of the EHR features. 

Because CAMEL induces sparsity, it is able produce simple, concise patient models, 

potentially enabling clinicians to more clearly interpret how it makes decisions.

There are multiple avenues of future work we will explore. First, CAMEL-CL uses simple 

pair-wise constraints to enforce a ranking of patients. Current methods in learning to rank 

[25] have evolved to use more intricate and effective means to ensure a ranking of objects. 

We will investigate some of the ideas from these methods for inclusion into CAMEL. 

Second, the features we extracted from the EHRs contained numerous binary features that 

were deemed important by CAMEL and CAMEL-CL. This indicates that our methods 
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determined that dividing the patients into certain subpopulations produced better results. It is 

likely that patients within these subpopulations should be modeled in different ways. We 

will investigate learning different metrics defined on separate subspaces of the data to model 

the different dynamics of each subpopulation. Finally, we performed our experiments using 

each expert’s supervision separately. We will investigate pooling supervision from all 

experts to learn a combined model, potentially allowing it to represent a more universal view 

of how clinicians view patients.

Acknowledgments

The collection of the data set used in this work was supported by National Institutes of Health (NIH) grants R01-
LM010019 and R01-GM088224.

References

1. Jha AK, Burke MF, DesRoches C, Joshi MS, Kralovec PD, Campbell EG, Buntin MB. Progress 
toward meaningful use: hospitals’ adoption of electronic health records. The American journal of 
managed care. 2011; 17

2. Charles, D. Adoption of electronic health record systems among US non-federal acute care 
hospitals: 2008–2012. Office of the National Coordinator for Health Information Technology; 2013. 

3. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support 
vector machines. Machine learning. 2002; 46(1–3):389–422.

4. El-Naqa I, Yang Y, Wernick MN, Galatsanos NP, Nishikawa RM. A support vector machine 
approach for detection of microcalcifications. Medical Imaging, IEEE Transactions on. 2002; 
21(12):1552–1563.

5. Eom J-H, Kim S-C, Zhang B-T. Aptacdss-e: A classifier ensemble-based clinical decision support 
system for cardiovascular disease level prediction. Expert Systems with Applications. 2008; 34(4):
2465–2479.

6. Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support 
vector machines for microarray-based cancer classification. BMC bioinformatics. 2008; 9(1):319. 
[PubMed: 18647401] 

7. Berner, ES. Clinical decision support systems: theory and practice. Springer Science & Business 
Media; 2007. 

8. Yang L, Jin R. Distance metric learning: A comprehensive survey. Michigan State Universiy. 2006; 
2

9. Kulis B. Metric learning: A survey. Foundations and Trends in Machine Learning. 2012; 5(4):287–
364.

10. Bellet A, Habrard A, Sebban M. A survey on metric learning for feature vectors and structured 
data. arXiv preprint 1306.6709. 2013

11. Schölkopf, B.; Smola, AJ. Learning with kernels: Support vector machines, regularization, 
optimization, and beyond. MIT press; 2002. 

12. Kendall MG, Gibbons JD. Rank correlation methods. 1990

13. Stewart N, Brown GD, Chater N. Absolute identification by relative judgment. Psychological 
review. 2005; 112(4):881. [PubMed: 16262472] 

14. Weinberger KQ, Saul LK. Distance metric learning for large margin nearest neighbor 
classification. JMLR. 2009; 10:207–244.

15. Weinberger, KQ.; Tesauro, G. Metric learning for kernel regression; International Conference on 
Artificial Intelligence and Statistics; 2007. p. 612-619.

16. Nguyen, Q.; Valizadegan, H.; Hauskrecht, M. Data Mining (ICDM), 2011 IEEE 11th International 
Conference on. IEEE; 2011. Learning classification with auxiliary probabilistic information; p. 
477-486.

Heim and Hauskrecht Page 13

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2016 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Nguyen Q, Valizadegan H, Hauskrecht M. Learning classification models with soft-label 
information. Journal of the American Medical Informatics Association. 2014; 21(3):501–508. 
[PubMed: 24259520] 

18. Peng P, Wong RC-W, Yu PS. Learning on Probabilistic Labels. ch. 35:307–315.

19. Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. Liblinear: A library for large linear 
classification. The Journal of Machine Learning Research. 2008; 9:1871–1874.

20. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 
Society. Series B (Methodological). 1996:267–288.

21. Hauskrecht, M.; Valko, M.; Batal, I.; Clermont, G.; Visweswaran, S.; Cooper, GF. AMIA annual 
symposium proceedings. Vol. 2010. American Medical Informatics Association; 2010. 
Conditional outlier detection for clinical alerting; p. 286

22. Valko M, Hauskrecht M. Feature importance analysis for patient management decisions. Studies in 
health technology and informatics. 2010; 160(Pt 2):861. [PubMed: 20841808] 

23. Hauskrecht M, Batal I, Valko M, Visweswaran S, Cooper GF, Clermont G. Outlier detection for 
patient monitoring and alerting. Journal of Biomedical Informatics. 2013; 46(1):47–55. [PubMed: 
22944172] 

24. Warkentin TE, Sheppard J-AI, Horsewood P, Simpson PJ, Moore JC, Kelton JG. Impact of the 
patient population on the risk for heparin-induced thrombocytopenia. Blood. 2000; 96(5):1703–
1708. [PubMed: 10961867] 

25. Liu T-Y. Learning to rank for information retrieval. Foundations and Trends in Information 
Retrieval. 2009; 3(3):225–331.

Heim and Hauskrecht Page 14

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2016 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Number of Training Points vs. AUROC on Test Set (Row 1 = Expert 1, Row 2 = Expert 2)
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Fig. 2. 
Feature weight statistics (CAMEL-CL, Clinician 2)
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Fig. 3. 
Normalized absolute weights of CAMEL (left) and CAMEL-CL (right) L parameter
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TABLE I

Summary Statistics for Expert-Labeled Data

Expert # Pos # Neg Mean CL Pos (STD) Mean CL Neg (STD)

1 76 473 0.583 (0.151) 0.294 (0.089)

2 143 428 0.656 (0.377) 0.114 (0.202)
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TABLE II

Methods used in experimental evaluation

Name Supervision Hyperparameters Implementation Used Brief Description

Orig None None Our own Gaussian kernel (bandwidth = 1) 
applied to original feature space

SVM Class Labels Weight on hinge-loss LIBLINEAR [19] Standard linear SVM classification

LMNN Class Labels Number of nearest 
neighbors

From author’s website Metric learning method for nearest 
neighbor classification

CAMEL Class Labels λ Our own Our algorithm for solving (7)

LASSO [20] Confidence Labels Weight on l−1 norm MATLAB Stats & ML l−1 norm regularized linear regression

MLKR Confidence Labels Dimension of metric 
projection

From author’s website Metric learning for kernel regression

SVM-Combo Class & Confidence 
Labels

Weight on classification loss Provided by author Standard linear SVM classification 
with penalty that enforces and weight 
ranking loss ranking of patients by 
confidence labels

CAMEL-CL Class & Confidence 
Labels

λ1 and λ2 Our own Our algorithm for solving (9)
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TABLE III

Mean (STD) sparsity statistics over all experiments

Expert 1 Expert 2

Sparsity Rank Sparsity Rank

CAMEL 0.794(0.241) 34.195(18.884) 0.754(0.237) 38.734(16.311)

CAMEL-CL 0.896(0.286) 20.080(18.921) 0.883(0.203) 21.755(18.862)

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2016 March 02.


