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Abstract

Kidney cancer is of prominent concern in modern medicine. Predicting patient survival is critical 

to patient awareness and developing a proper treatment regimens. Previous prediction models built 

upon molecular feature analysis are limited to just gene expression data. In this study we 

investigate the difference in predicting five year survival between unimodal and multimodal 

analysis of RNA-seq data from gene, exon, junction, and isoform modalities. Our preliminary 

findings report higher predictive accuracy-as measured by area under the ROC curve (AUC)-for 

multimodal learning when compared to unimodal learning with both support vector machine 

(SVM) and k-nearest neighbor (KNN) methods. The results of this study justify further research 

on the use of multimodal RNA-seq data to predict survival for other cancer types using a larger 

sample size and additional machine learning methods.

INTRODUCTION

Kidney cancer is of prominent concern in modern medicine; it is expected that 61,560 new 

cancer cases reported in 2015 will be localized to the kidney or renal pelvis [1]. Effective 

survival time prediction may provide patients with valuable perspective and inform their 

physicians’ course of action in developing a treatment regimen. Determining the five year 

survival rate for kidney cancer remains relatively unclear, as survival rate varies notably by 

subtype [1], [2]. Though the five year survival rate for renal cell carcinoma is 74%, for renal 

pelvis carcinoma this expectancy drops to 49% [1]. This inconsistency combined with the 

sheer variety of kidney cancer subtypes [3] and the lack of recommended screening tests for 

early detection [1] highlights the importance of computational models for predicting survival 

time of kidney cancer patients.

Several different models for predicting kidney cancer survival rates currently exist [3], [4]. 

Some models rely on symptoms, tumor anatomy, and time from the initial disease diagnosis 

[4] [5] [6] [7]; however, these models encounter many of the aforementioned prognostic 

limitations in subtyping, timely detection of kidney cancer, and early stage symptom 

recognition. Models built upon molecular feature analysis avoid these limitations and seek to 

identify various biomarkers that are potentially present in the body in specific amounts 

during the diseased state. Numerous studies have established survival models based on the 
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presence of different biomarkers [4], [8], [9]–, but relatively little is known about the 

predictive power of machine learning protocols built upon the predicted outcomes of 

multiple different biomarker models.

Our research objective is to investigate a multi-view learning method that integrates 

information from multiple modalities of RNA-seq data (gene, exon, isoform, and junction). 

To this end, we have gathered kidney cancer RNA-seq data provided by The Cancer Genome 

Atlas (TCGA). It was our anticipation that integrating multimodal RNA-Seq data may 

provide a holistic molecular view of cancer that can potentially lead to more accurate 

prognostic clinical predictors of disease outcome.

BACKGROUND

Current research on designing prediction models for kidney cancer survival is largely 

focused on selecting pertinent data features for training machine learning algorithms. These 

features can be symptomatic, as with the work conducted by Kattan et al. [5] which sought 

to estimate five year survival using features such as tumor size, tumor node metastasis 

(TNM) classification, and histologic type. Similarly, the Memorial Sloan-Kettering Cancer 

Center (MSKCC) prediction model developed by Motzer et al. [7] and expanded upon by the 

Cleveland Clinic Foundation (CCF) group [6], classifies patients into risk groups ranging 

from favorable to poor based on the number of certain adverse factors like starting systemic 

therapy less than one year after diagnosis, elevated corrected serum calcium, elevated lactate 

dehydrogenase [LDH] level, low hemoglobin level, and low Karnofsky performance status 

score [4], [6], [7].

Alternatively, the increasing role of bioinformatics in the field of medicine has placed much 

focus on molecular feature analysis as the basis for clinical prediction modelling. The 

solution offered by our research involves the integration of molecular feature analysis, which 

may provide a means of kidney cancer model performance improvement. A study done by 

Jagga et al. [8] analyzed RNA-Seq gene expression data and utilized various machine 

learning algorithms to determine which classifier out of a group of 4 different machine 

learning classifiers (J48, naïve Bayes, sequential minimal optimization (SMO), and random 

forest) offered the best performance as measured by prediction accuracy, sensitivity, 

specificity, and ROC analysis [8]. 10-fold Cross Validation and Fast Correlation Based 

Feature (FCBF) selection methods [10] were used in analysis of gene expression profiles 

obtained from TCGA and the classifiers were trained using solely gene expression data. The 

random forest model demonstrated the best performance, resulting in an area under the 

receiver operating curve (AUC) of 0.876 and total accuracy of 0.797. Our study follows 

similar protocols with a slightly different objective-observing differences in predictive 

accuracy between machine learners trained on a combination of multiple genomic modalities 

of kidney cancer data and those trained on one modality. Employing multimodal genomic 

expression machine learning for prediction of kidney cancer survival rate is unique to our 

study and should provide a distinctive perspective on cancer prediction and the complexities 

that surround it.
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METHODS

We have compared the survival rate predictive accuracy of integrating prediction results 

from four different genomic modalities of kidney cancer with the predictive accuracy 

attained by each modality individually. To monitor changes in predictive accuracy across 

different modes of machine learning, this comparison was made using prediction models 

built upon KNN and SVM learning methods. Predictive accuracy was evaluated using AUC, 

while PPV and overall accuracy (percent of correct predictions) were also observed as 

additional metrics for predictive accuracy.

A. RNA-Seq Kidney Cancer Data

The data analyzed in this study was acquired by TCGA using RNA-seq technology and 

comprised information from gene, exon, isoform, and junction modalities as depicted in Fig. 

1. The initial feature size of each modality is listed in Table I. Our dataset contained 

genomic data from 220 kidney cancer patients labeled by survival class (survival >= 5 years 

= 1, survival <5 years = −1). Mapped reads from genomic data were reported as ‘Reads Per 

Kilobase Per Million’ (RPKM) values. As denoted in Table II, these patients were randomly 

divided into three groups. Training1 patients were used to cross validate and train the 

learners for each individual modality. These learners were in turn used to predict the survival 

class of each patient in Training2 and Validation. The predicted labels for the patients in 

Training2 were used to cross validate and train the multimodal learners which assigned 

predicted labels to each patient in Validation.

B. Feature Selection

Given the tens of thousands of genetic features present in each modality, it was necessary to 

select a small number of features distinctive to each class. Minimum Redundancy Maximum 

Relevance (mRMR) [11] feature selection, which seeks to remove redundant features from a 

list of features identified as highly relevant, was utilized to extract 100 significant features. 

Given dataset S and class c, the mean of all mutual information values between the 

individual feature fi and class c is calculated to determine relevance:

(1)

The mean of all information values between the feature fi and the feature fj in set S is 

calculated to determine redundancy and thus mRMR:

(2)

(3)
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C. Machine Learning Methods

We selected KNN and SVM to build our preliminary prediction models in order to expand 

the scope of similar studies that did not explore these methods [8]. KNN classifies data into 

a specific class by identifying a certain number of neighbors from the training dataset that 

are closest to the data point in question and assigns the data point to the class associated with 

the most neighbors [12]. SVM defines a decision boundary that is optimized to separate two 

categories by a margin that is as wide as possible and assigns classes to new data points 

based on their position relative to the decision boundary [12].

D. Prediction Performance Metrics

Because the patient distribution in this dataset was relatively uneven (<5 years: 56%, >= 5 

years: 44%), AUC was chosen to be the metric for evaluating predictive accuracy as it is 

independent of class prevalence. Eq. 4 shows that for Formula samples in group x and 

Formula. samples in group y:

(4)

where I(x) evaluates to 1 if x is true and 0 if x is false. As additional metrics for prediction, 

positive predictive value (PPV) and total accuracy were also reported.

(5)

(6)

E. Cross Validation to Optimize Learning Parameters

Cross validation is necessary to establish optimal learning parameters prior to training 

machine learners [13]. As Fig. 2 highlights, prior to training the unimodal learners, a 3-fold 

cross validation was conducted in which the Training1 dataset was divided into 3 subsets of 

equal patient distribution. One subset was designated a testing set while the other two were 

joined into one training set. These subsets were then used to iteratively determine the feature 

size (and k value for KNN) that yielded the highest predictive accuracy. This process was 

repeated twice more with the two other combinations of testing and training subsets, 

yielding two more optimal feature sizes and k values. Final optimized parameters were 

obtained by rounding the mean of these parameters. Similarly, prior to training the 

multimodal learner, a 3-fold cross validation was conducted to establish an optimized k 

value and list of modalities. A linear kernel was assumed for SVM learning.
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F. Building Machine Learners

Using the optimized parameters identified during cross validation, KNN and SVM unimodal 

learners trained on the data from Training1 assigned predicted labels for the patients in 

Training2 and Validation for all four modalities, and AUC, PPV, and total accuracy for each 

were recorded. The predicted labels from each modality were then assembled into a 4-by-n 

matrix (n = number of samples in Training2, see Fig. 3) to cross validate and train KNN and 

SVM multimodal learners.

The multimodal learners assigned predicted labels to the patients in the Validation set using 

its matrix of unimodal predicted labels. AUC, PPV, and total accuracy were recorded for 

multimodal prediction and compared to the results obtained from unimodal prediction.

RESULTS

A. Cross Validation

The results of unimodal KNN and SVM cross validation are reported in Tables III and IV. 

Fig. 4 shows an example cross validation plot where each color represents a different 

iteration in the cross validation process and each point indicates an optimal k value for a 

particular feature size.

A cross validation step was also performed prior to multimodal learning to determine the 

optimum number of modalities and, for KNN, k value to use when training multimodal 

learners. Utilizing all four modalities proved to be most optimal for SVM and KNN. An 

optimized k value of 15 was reported for the multimodal KNN learner.

Optimized learning parameters were taken as the mean of the parameters that yielded the 

highest AUC value from each cross validation iteration. For KNN cross validation, the 

combination of k value and feature size that yielded the highest AUC were taken as optimal 

parameters. To evaluate cross validation performance, the mean of the maximal AUC 

reported in each iteration was recorded. KNN cross validation reported maximal AUC values 

of 0.8669, 0.8437, 0.9015, and 0.9960 for gene, exon, isoform, and junction modalities 

respectively and 0.9222 for multimodal cross validation. SVM cross validation reported 

maximal AUC values of 0.7778,0.7206,0.9015, and 0.9319 for gene, exon, isoform, and 

junction modalities respectively and 0.9222 for multimodal cross validation.

B. Predictive Accuracy

The optimized parameters obtained from cross validation were used as inputs for machine 

learning. Using Training1 as the unimodal training data set, predicted labels were obtained 

for patients in the Validation and Training2 datasets. For KNN, predicted labels were 

weighted from −1 to 1 by summing the labels (either 1 or −1) of the k nearest neighbors to 

each patient and dividing by k. SVM learners reported predicted labels as 1 or −1. Predictive 

accuracy was determined by comparing the predicted patient class labels assigned by each 

machine learner with each patient’s known class label. The AUC PPV, and total accuracy of 

each KNN and SVM machine learner are reported in Tables V and VI and Fig. 5 and 6.
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The results of our analysis are promising, as AUC was greater in comparison to all unimodal 

learning methods for both KNN (AUC = 0.6444) and SVM (AUC = 0.6042) learning 

methods. What is more, KNN multimodal learning lead to a total accuracy (0.6481) and 

PPV (0.7037) greater than or equal to all unimodal learners, while SVM multimodal 

learning lead to a total accuracy (0.6111) greater than all unimodal learners and a PPV 

(0.6452) second only to the gene modality learner (PPV = 0.6667). Though small, a distinct 

increase in predictive accuracy associated with multimodal learning has been noted across 

multiple machine learning platforms and suggests that multimodal machine learning may 

augment the power of clinical prediction modelling.

DISCUSSION

The results of this study show promise for multiple reasons. Not only have we demonstrated 

the potential that multimodal machine learning holds for improving predictive accuracy, but 

we have also observed such a trend using two different machine learning methods. This 

observation illustrates that multimodal learning may lead to improvements in predictive 

accuracy across a multitude of different machine learning techniques. Our findings suggest 

that the predictive accuracy of existing high performance prediction models may be 

enhanced by our multimodal process. Such enhancements provide physicians and patients 

with a more informed perspective on the course of action for effective disease management. 

Furthermore, our findings may extend to the prediction of other clinical endpoints that can 

be characterized by genomic data.

The limitations of this study include: First, the sample size of our training and validation 

data is rather small, and thus mislabeling a small number of patients can have a big impact 

on predictive accuracy. However, it is our anticipation that increasing the sample size will 

affect the performance of multimodal and unimodal learners similarly. Second, our study 

was limited to two machine learning methods, and thus the notion that multimodal learning 

will work as effectively with other machine learning methods has not been confirmed. Third, 

it remains unclear if our process will yield similar results for predicting the survival time of 

other cancer types. In light of these limitations, further work is underway that extends our 

process to other cancer types and incorporates additional machine learning methods.

CONCLUSION

We have provided preliminary evidence suggesting that multimodal learning, which uses the 

predicted labels from machine learners trained on data from four different genomic 

modalities as the basis for learning, more accurately predicts the expected five year survival 

of kidney cancer patients compared to learning with just one modality. That the difference in 

predictive accuracy between the multimodal and highest performing unimodal processes is 

observed using two different machine learning methods warrants further research to validate 

our preliminary results. To that end, we are currently expanding the scope of our 

investigation on the predictive implications of multimodal learning to incorporate ovarian 

cancer data, additional cross validation steps to optimize parameters which were assumed to 

have negligible effects on predictive accuracy, and other machine learning methods featured 

in comparable research studies [8] such as random forest and naïve Bayes predictors.
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Fig. 1. 
Example of gene, isoform, exon, and junction expression quantification from RNA-seq.
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Fig. 2. 
Schematic for 3-fold cross validation
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Fig. 3. 
Generation of the final integrated prediction model using outputs from the unimodal 

prediction models
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Fig. 4. 
K value cross validation plot for gene modality KNN learner.
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Fig. 5. 
Predictive accuracy of KNN learners
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Fig. 6. 
Predictive accuracy of KNN learners
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Table I

Initial modality feature size

Modality Feature Size

Gene 20531

Exon 239322

Isoform 73599

Junction 249567
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Table II

TCGA data patient stratification for kidney cancer

Training1 Trainings2 Validation

Known Survival < 5 years 62 31 30

KnownSurvival>=5 years 49 24 24

Total Samples 111 55 54
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Table III

Optimized unimodal KNN learning parameters

Modality Optimized k value Optimized feature size

Gene 29 53

Exon 31 64

Isoform 15 55

Junction 21 78
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Table IV

Optimized unimodal SVM learning parameters

Modality Optimized feature size

Gene 6

Exorr 37

Isoform 88

unction 86
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Table V

Predictive accuracy of KNN learners

Modality AUC PPV Total accuracy

Multimodal 0.6444 0.7037 0.6481

Gate 0.6389 0.6897 0.6481

Exon 0.5799 0.6667 0.6111

Isoform 0.5924 0.6522 0.5741

Junction 0.6292 0.6250 0.5926
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Table VI

Predictive accuracy of SVM learners

Modality AUC PPV Total accuracy

Multimodal 0.6042 0.6452 0.6111

Gene 0.6000 0.6667 0.5926

Exon 0.5375 0.5926 0.5370

Isoform 0.4792 0.5357 0.4815

Junction 0.5942 0.5588 0.5185
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