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Abstract—A Supertree synthesizes the topologies of a set of
phylogenetic trees carrying overlapping taxa set. In process,
conflicts in the tree topologies are aimed to be resolved with
the consensus clades. Such a problem is proved to be NP-hard.
Various heuristics on local search, maximum parsimony, graph
cut, etc. lead to different supertree approaches, of which the most
popular methods are based on analyzing fixed size subtree topolo-
gies (such as triplets or quartets). Time and space complexities of
these methods, however, depend on the subtree size considered.
Our earlier proposed supertree method COSPEDTree, uses
evolutionary relationship among individual couplets (taxa pair),
to produce slightly conservative (not fully resolved) supertrees.
Here we propose its improved version COSPEDTree-II, which
produces better resolved supertree with lower number of missing
branches, and incurs much lower running time. Results on
biological datasets show that COSPEDTree-II belongs to the
category of high performance and computationally efficient
supertree methods.

Index Terms—Phylogenetic tree, Supertree, Couplet, Directed
Acyclic Graph (DAG), Equivalence Relation, Transitive reduc-
tion, Internode count.

I. INTRODUCTION

Supertree methods combine the evolutionary relationships
of a set of phylogenetic trees G, into a single tree T [1]. These
methods differ from the consensus-based approaches [2], [3],
by allowing input trees to have different but overlapping
set of taxa. Supertrees are useful in combining input trees
generated from completely incomparable approaches, such as
statistical analysis of discrete dataset and distance analysis of
DNA-DNA hybridization data [1]. Input trees often exhibit
conflicting topologies, due to different evolutionary histories of
respective genes, stochastic errors in site and taxon sampling,
and biological errors due to paralogy, incomplete lineage
sorting, or horizontal gene transfer [4]. Supertree methods
quest for resolving such conflicts in order to produce a ‘median
tree’, which minimizes the sum of a given distance measure
with respect to the input trees [4]. Large scale supertrees are
intended towards assembling the Tree of Life [5].

Our earlier work [6], and the study in [1], provide a
comprehensive review of various supertree methods. Indirect
supertree methods first generate intermediate structures like
matrices (as in MRP [7], Minflip [8], SFIT [9]) or graphs (as
in Mincut (MC) [10], modified Mincut [11]) from the input
trees, and subsequently resolve these intermediate structures
to produce the final supertree. These methods, especially
MRP, are quite accurate, but computationally intensive. Direct

methods, on the other hand, derives the supertree directly
from input tree topologies. These methods may aim for
minimizing either the sum of false positive (FP) branches
(as in the veto approaches like PhySIC [12], SCM [13]) or
the sum of Robinson-Foulds (RF) [14] distance (as in RFS
[15]) between T and G. Another approach named Superfine
[16], [17] employs greedy heuristics on MRP [7] or Quartet
Maxcut (QMC) [18], to derive the supertree, which may not
be completely resolved. Supertrees formed by synthesizing
the subtrees (such as triplets [4], [19], quartets [18], [5]) of
the input trees, exhibit quite high performance. But, time and
space complexities of these methods depend on the size of the
subtree used.

We have previously developed COSPEDTree [6], a supertree
algorithm using evolutionary relationships among individual
pair of taxa (couplets). The method is computationally ef-
ficient, but produces somewhat conservative (not fully re-
solved) supertrees, with low number of false positive (FP)
but high number of false negative (FN) branches between
T and G. Here we propose its improved version, termed as
COSPEDTree-II, which produces better resolved supertree,
with lower number of FN branches between T and G, keeping
the FP count also low. We have also proposed a mechanism
to convert a non-resolved supertree into a strict binary tree, to
reduce the FN count. COSPEDTree-II requires significantly
lower running time than COSPEDTree and most of the refer-
ence methods, particularly for the datasets having high number
of trees or taxa.

Rest of this manuscript is organized as follows. First, we
review the basics of COSPEDTree (as in [6]) in section II.
The method COSPEDTree-II is then described in section III.
Performance of COSPEDTree-II is summarized in section IV.

II. OVERVIEW OF COSPEDTREE
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Fig. 1. Example input phylogenetic trees. All the nodes are labeled by
Newick [20] representation.
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Let G consist of M rooted input trees t1, t2, . . . , tM . For an
input tree tj (1 ≤ j ≤ M ), let L(tj) be its set of constituent
taxa. Suppose a pair of taxa p and q belong to L(tj). Further,
let φp and φq be the parent internal nodes (points of speciation)
of p and q, respectively. COSPEDTree [6] defines four boolean
relations rpqk (k ∈ {1, 2, 3, 4}) between p and q, with respect
to tj , as:

1) Earlier Speciation of p than q (rpq1 ) is true, if φp is
ancestor of φq in tj . For the tree in Fig. 1(b), rbX1 is
true, where X ∈ {a, c}. Similarly, reY1 is true for Y ∈
{a, c, b}.

2) Later Speciation of p than q (rpq2 ) is true, if φp is a
descendant of φq . So, rqp1 and rpq2 are equivalent.

3) Simultaneous Speciation of p and q (rpq3 ) is true, if φp
= φq . In Fig. 1(a), rab3 and rcd3 are true.

4) Incomparable Speciation of p and q (rpq4 ) is true, when
φp and φq occur at different (and independent) clades.
For the tree in Fig. 1(a), rac4 is true.

Using another taxon s ∈ L(tj), properties of r1 to r4 can
be stated as the following:

P1: Both r1 and r2 are transitive. Thus,
• rpq1 & rqs1 ⇒ rps1 .
• rpq2 & rqs2 ⇒ rps2 .

P2: r3 is an equivalence relation.
P3: rpq3 (= rqp3 ) & rpsk ⇒ rqsk , where k ∈ {1, 2, 4}.
P4: rpq1 (= rqp2 ) & rps4 (= rsp4 ) ⇒ rqs4 (= rsq4 ).
Support tree set Γpq for a couplet (p, q) is defined as:

Γpq = {tj : (p, q) ∈ L(tj)} (1)

The frequency F pqk (k ∈ {1, 2, 3, 4}) of a relation rpqk between
a couplet (p, q) is the number of input trees tj where tj ∈ Γpq
and rpqk is true.

The set of allowed relations R(p, q) between a couplet (p, q)
is defined as the following:

R(p, q) = {rpqk : F pqk > 0} (2)

A couplet (p, q) exhibits conflict if |R(p, q)| ≥ 2 (where
|.| denotes the cardinality of a set). The consensus relation
between (p, q) is the relation having the maximum frequency.

Priority measure P pqk for a relation rpqk (k ∈ {1, 2, 3, 4})
between a couplet (p, q) is defined as the following:

P pqk = F pqk −
∑

1≤k′≤4,k′ 6=k

F pqk′ (3)

COSPEDTree also defines a support score V pqk for individual
relations rpqk as the following:

V pqk = F pqk × P
pq
k (4)

The consensus relation rpqk between a couplet (p, q) exhibits
the highest P pqk and F pqk values. So, corresponding V pqk also
becomes the highest among all relations between (p, q).

Final supertree T resolves (assigns a particular relation
to) individual couplet (p, q) with a single relation rpqk (k ∈
{1, 2, 3, 4}) between them. Maximum agreement property

[15] of a supertree quests for resolving individual couplets
with their respective consensus relations. But, satisfying such
property is NP-hard since consensus relations among couplets
can be mutually conflicting [6]. Thus, order of selection of
individual candidate relations rpqk (to resolve the corresponding
couplet (p, q)) is crucial. In view of this, COSPEDTree first
constructs a set of relations Sr, such that if a relation rpqk ∈ Sr,
the couplet (p, q) is resolved with rpqk . To construct Sr,
COSPEDTree applies an iterative greedy approach. At each
iteration, it selects a relation rp

′q′

k to resolve (p′, q′) among all
unresolved couplets, provided:

V p
′q′

k′ = max
∀(p,q),∀k

V pqk .

If the selected relation rp
′q′

k′ does not contradict with any of
the already selected relations in Sr (according to the properties
P1 to P4 mentioned before), it is included in Sr.
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Fig. 2. (a) Transitive parent problem (b) Multiple parent problem MPP. (c)
No parent problem NPP. (d) solution of NPP by COSPEDTree, by inserting
a hypothetical root R.

Suppose, L(G) = ∪Mj=1L(tj) denotes the complete set of
input taxa. Then, N = |L(G)|. Using the set of relations
Sr, COSPEDTree partitions L(G) into s mutually exclusive
taxa clusters C1,C2,. . .,Cs, with the following rule (details are
provided in [6]):

R1: If a pair of taxa p and q belong to the same cluster
Ci (1 ≤ i ≤ s), rpq3 ∈ Sr.

R2: Suppose Ci and Cj (1 ≤ i, j ≤ s, i 6= j) are any
two distinct taxa clusters. Then, ∀p ∈ Ci, and ∀q ∈
Cj , r

pq
k ∈ Sr, where k ∈ {1, 2, 4}. This property is

denoted by saying that rCiCj

k is true, or Ci is related
with Cj via the relation rk.

COSPEDTree creates a directed acyclic graph (DAG),
whose nodes are individual taxa clusters Ci (1 ≤ i ≤ s).
A directed edge from Ci to Cj means rCiCj

1 is true. However,
occurrence of one or more of the following properties means
this DAG needs to be refined to form a tree:

1) Transitive parent problem (TPP): for three nodes A, B,
and C, when rAC1 , rBC1 , and rAB1 are simultaneously
true, as indicated in Fig. 2(a).

2) Multiple parent problem (MPP): when rAC1 , rBC1 , and
rAB4 are simultaneously true, as shown in Fig. 2(b).

3) No parent problem (NPP) (Fig. 2(c)): when a node A
does not have any parent, i.e. So, there exists no node
B such that rBA1 is true.

COSPEDTree [6] applies transitive reduction to resolve
TPP. The problem MPP is solved by arbitrary parent assign-
ment, while NPP is resolved by assigning one hypothetical



root node to the isolated node (as shown in Fig. 2(d)). Finally,
a depth first traversal of this DAG produces the supertree T.
As there is no restriction regarding the number of taxa in
individual taxa clusters (partitions with respect to the relation
r3), T may not be strictly binary (completely resolved).

III. PROPOSED METHODOLOGY

COSPEDTree-II extends COSPEDTree by incorporating the
following modifications:

1) COSPEDTree-II skips the formation of Sr. Rather, the
taxa clusters (containing one or more taxon) are first derived,
solely by the frequencies of different relations between indi-
vidual couplets. Subsequently, directed edges between individ-
ual pairs of clusters are assigned, according to the properties
of individual couplets contained within these cluster pairs.
Such processing on the taxa clusters, rather than the couplets,
achieves high speedup and much lower running time.

2) In COSPEDTree, if a relation rpqk (1 ≤ k ≤ 4) between
a couplet (p, q) is supported in a tree tj ∈ Γpq , the frequency
F pqk is incremented by 1. COSPEDTree-II, on the other hand,
uses fractional and dynamic frequency values. In the above
case, COSPEDTree-II increments F pqk with a weight W tj

pq (0 <
W tj
pq ≤ 1), which varies for individual couplets (p, q), and also

for individual trees tj ∈ Γpq .
3) For the problem MPP, COSPEDTree-II proposes a deter-

ministic selection of the parent, for the node having multiple
parents.

4) COSPEDTree-II also suggests a mechanism to convert a
non-binary supertree into a binary tree.

Subsequent sections describe all such improvements.

A. Fractional frequency value for relations

A B C

(a)

A B CD

(b)

A C E

(c)
A C EB D

(d)

Fig. 3. Fig. (a) to (c) shows three input trees. Fig. (d) shows the corresponding
supertree.

COSPEDTree-II applies a fractional frequency value W tj
pq

if an input tree tj supports the relation rpqk between a couplet
(p, q). Value of W tj

pq depends on the set L(tj). Utility of such
a dynamic (and fractional) frequency measure is explained by
Fig. 3, which shows three input trees (Fig. 3(a) to Fig. 3(c))
and corresponding supertree (Fig. 3(d)). For the couplet (A,C),
all of the relations r2, r3 and r4 are supported. However,
we observe that the relation r3 is supported only because
corresponding tree does not include taxa B and D. Similarly,
the relation r2 occurs due to the absence of the taxon D. When
both B and D are present (Fig. 3(c)), the relation r4 (which is
the ideal relation between (A,C)) is satisfied. So, the relation
r4 should be given higher weight, since the corresponding tree
has higher taxa coverage. So, our proposed dynamic frequency
measure varies according to the coverage of taxa of different
input trees.

Considering an input tree tj (1 ≤ j ≤ M ) and a couplet
(p, q) in L(tj), first we define the following notations:
• V (tj): set of nodes (leaf or internal) of tj .
• LCAtjpq: lowest common ancestor (LCA) of p and q in
tj .

• Cladetj (v): subtree rooted at an internal node v ∈
(V (tj)− L(tj)).

• Clustertj (v): Set of taxa underlying Cladetj (v).
With such definitions, the set of excess taxa (excluding the

couplet itself) underlying the LCA node of (p, q) in tj , is
defined as the following:

U tjpq = Clustertj (LCA
tj
pq)− {p, q} (5)

For (p, q), union of all excess taxa underlying the respective
LCAtjpq nodes for all tj ∈ Γpq , is:

UG
pq =

⋃
tj∈Γpq

U tjpq (6)

We assign the weight of a relation rpqk (1 ≤ k ≤ 4) between
(p, q) in an input tree tj , as:

W tj
pq =

|UG
pq

⋂
L(tj)|

|UG
pq |

(7)

where W tj
pq = 1 if UG

pq = φ.
Thus, the weight equals the proportion of taxa within UG

pq ,
that is covered in the input tree tj . Frequency F pqk of the
relation rpqk , is now redefined as the following:

F pqk =
∑

tj supports rpqk

W tj
pq (8)

B. Generating taxa clusters

COSPEDTree [6] creates taxa clusters after formation of
the set of resolving relations Sr. COSPEDTree-II, on the other
hand, creates taxa clusters before resolving any couplets at all.
Rather, for individual couplets (p, q), COSPEDTree-II inspects
the values of F pqk for individual relations rpqk (k ∈ {1, 2, 3, 4}).
Creation of taxa clusters requires identifying couplets which
can be resolved by the relation r3. COSPEDTree-II places a
pair of taxa p and q in the same taxa cluster (thereby resolving
the couplet (p, q) with the relation r3), provided:

1) Either |R(p, q)| = 1 and rpq3 ∈ R(p, q) (R(p, q) is
already defined in Eq. 2).

2) Or |R(p, q)| = 2 and rpq3 is majority consensus. In such
a case, F pq3 ≥ 0.5 ∗ {

∑
k

F pqk }.

3) If |R(p, q)| > 2, the couplet (p, q) is not placed in the
same taxa cluster, even if rpq3 is majority consensus.
This is because, as the couplet exhibits high degree of
conflict, we check the relations between p, q, and other
taxa set.

The first condition is obvious. A couplet having only r3 as
its allowed relation would be preferably resolved with it. On
the other hand, if there exists one more relation rpqk′ (k′ 6= 3)



within R(p, q), we check whether F pq3 > F pqk′ , which ensures
that rpq3 is the majority consensus relation of (p, q). In such a
case, the couplet is highly probable of being resolved with r3
in the final supertree.

Above mentioned heuristics are applied for individual cou-
plets, to perform the equivalence partitioning (taxa clusters)
of the input taxa set L(G).

C. Connectivity between taxa clusters to form DAG

Creation of the taxa clusters is followed by the assignment
of directed edges between them. As mentioned in section II,
directed edge from a cluster Ci to a cluster Cj corresponds
to the relation rCiCj

1 (= r
CjCi

2 ) being true. In such a case, the
cluster pair (Ci, Cj) is said to be resolved by the relation
r1. In general, a pair of clusters can be resolved via any
one of the relations r1, r2 or r4 (no directed edge in this
case). For individual relations rk (k ∈ {1, 2, 4}), we define its
frequency FCiCj

k with respect to the pair of cluster (Ci, Cj),
as the following:

F
CiCj

k =
∑

∀p∈Ci,∀q∈Cj

F pqk (9)

Priority of individual relations rk (k ∈ {1, 2, 4}) for the cluster
pair (Ci, Cj) is defined as the following:

P
CiCj

k = F
CiCj

k −
∑

k′∈{1,2,4},k 6=k′
F
CiCj

k′ (10)

Support score of a relation rk between the cluster pair (Ci, Cj)
is defined as:

V
CiCj

k = P
CiCj

k + F
CiCj

k (11)

Note that we have used sum, rather than the product, of the
priority and frequency measures. This is due to the disparity
of signs of frequency (which is always non-negative) and the
priority (which can be negative even for a consensus relation)
measures. Higher support score of a relation (between a pair
of clusters) indicates higher frequency and priority of the
corresponding relation.

The set Q of support scores for different relations between
individual cluster pairs is defined as follows:

Q = {V CiCj

k : Ci 6= Cj , k ∈ {1, 2, 4}, F
CiCj

k > 0} (12)

Individual taxa clusters are now resolved by an iterative
algorithm, using the set Q. Each iteration extracts a relation
r
CxCy

k′ (k′ ∈ {1, 2, 4})) from Q, provided the following:

V
CxCy

k′ = max
∀(Ci,Cj),∀k

V
CiCj

k (13)

Following conditions are checked to see whether the extracted
relation rk′ can resolve the cluster pair (Cx, Cy).

1) If (Cx, Cy) is already resolved with a different relation,
rk′ is not applied.

2) If k′ = 1 or 2, resolving (Cx, Cy) with rk′ would create
a directed edge between the cluster pair. If such an edge
forms a cycle with the existing configuration of the taxa
clusters, rk′ is not applied.

For no such above mentioned conflicts, the relation rk′ is
applied between Cx and Cy .

The set Q is implemented as a max-priority queue [21],
to achieve O(1) time complexity for extracting the cluster
pair having the maximum support score. Iterations continue
until Q becomes empty. However, the final DAG may still
have the problems TPP, MPP, and NPP (as defined in Fig. 2).
The problem TPP is removed by transitive reduction (already
described in COSPEDTree [6]). COSPEDTree-II employs a
better solution for the problem MPP, which is described in
the following section.

D. Solving Multiple Parent Problem (MPP)

As shown in Fig. 2(b), the problem MPP corresponds to a
cluster Cz having k (k ≥ 2) other clusters C1, C2, . . . , Ck
as its parent, which are not themselves connected by any
directed edges. The objective is to assign a unique parent Cp
(1 ≤ p ≤ k) to the cluster Cz . Such assignment was arbitrary
in COSPEDTree [6]. COSPEDTree-II proposes a deterministic
selection of Cp, by a measure called the internode count
Itj (p, q) between a couplet (p, q), with respect to a rooted
tree tj . The measure was introduced in [22] for unrooted trees.
Here, the measure is adapted for a rooted tree tj , as the number
of internal nodes between p and q through the node LCAtjpq .

As individual trees tj carry overlapping taxa subsets of
L(G), we define a normalized internode count distance be-
tween p and q in tj as:

INtj (p, q) =
Itj (p, q)

W
tj
pq

(14)

where W tj
pq is defined in the Eq. 7. So, INtj (p, q) becomes low

only when both Itj (p, q) is low and W tj
pq is high (when the

tree tj carries higher proportion of the taxa subset belonging
to UG

pq ).
Significance of the internode count distance can be ex-

plained by considering a rooted triplet (r, (p, q)) (shown in
the Newick [20] format), consisting of three taxa p, q and
r. Here, IN (p, q) < IN (p, r) = IN (q, r). In general, lower
internode count means corresponding couplet is evolutionarily
closer, compared to the other couplets.

Average internode count of a couplet (p, q), with respect to
G, is defined by the following expression:

Iavg(p, q) =
1

|Γpq|
∑
tj∈Γpq

INtj (p, q) (15)

The internode count distance between a pair of cluster Cx
and Cy is defined by the following equation:

I(Cx, Cy) =

∑
∀p∈Cx,q∈Cy

Iavg(p, q)

|Cx||Cy|
(16)

where |Cx| denotes the cardinality of the taxa cluster Cx.
For the MPP problem, COSPEDTree-II selects the cluster

Cp (1 ≤ p ≤ k) as the parent of Cz , provided that Cp has the
lowest internode count distance to Cz:

Cp = argmin1≤i≤kI(Cz, Ci) (17)



Such condition is based on the assumption that the cluster
pair having lower internode count, is possibly closer in the
evolutionary tree, compared to other cluster pairs.

E. Binary supertree generation

A1 A2
A3 A4

B1

B2 B3

C1 C2

D1 D2 D3 D4

A
B

C

D

R

(a)

A2A3 C1 D2B3B1

(b)

AC DB

(c)

Fig. 4. (a) Example of a multifurcation, containing the taxa subset X =
A ∪B ∪ C ∪D. (b) an input tree tj|X , restricted to the taxa subset X . (c)
Tree t′j|X created from tj|X .

After resolving the problem MPP, the refined DAG is con-
verted to the supertree T, by a depth first traversal procedure
(as described in COSPEDTree [6]). However, the generated
supertree T may not be completely resolved. COSPEDTree-II
proposes a refinement strategy which converts T into a strict
binary tree.

Suppose, the tree contains an internal multi-furcating node
of degree n (> 2). Let X1, X2, . . . , Xn denote the taxa subsets
descendant from it, where each taxa subset Xi (1 ≤ i ≤ n)
consists of one or more taxon named as Xi1, Xi2, . . ., etc.
Union of these taxa subsets is represented by X = ∪ni=1Xi.
Suppose, tj|X represents the input tree tj (1 ≤ j ≤ M )
restricted to the set of taxa X . Thus, L(tj|X) = L(tj) ∩ X .
Considering Fig. 4(a) as an example, the node R represents a
multi-furcation with degree 4. Four taxa subsets A, B, C, and
D, descend from R. Here, X = A ∪ B ∪ C ∪D. Generation
of a binary tree requires introducing bifurcations among these
taxa subsets. So, for individual input trees tj , corresponding
restricted input tree tj|X is produced, as shown in Fig. 4(b).

Our proposed binary refinement first generates a tree t′j|X
from the tree tj|X , such that the leaves of t′j|X represent indi-
vidual taxa subsets Xi (1 ≤ i ≤ n). In other words, individual
taxon in tj|X is replaced by the name of its corresponding taxa
subset (without any duplicate). For example, both the taxa A2

and A3 (belonging to the taxa subset A) are present in the tree
tj|X (as shown in Fig. 4(b)). So, in t′j|X , a leaf node labeled
A is first inserted as a child of the LCA node of A2 and A3.
Subsequently, the leaves A2 and A3 are deleted from t′j|X .
This process is repeated for other taxa subsets B, C and D
as well. Fig. 4(c) shows the tree t′j|X .

For the current set of taxa X , each of the input trees tj
are processed to generate the corresponding t′j|X . These trees

TABLE I
RESULTS FOR MARSUPIALS [23] DATASET (M = 158, N = 267)

Method FP FN RF MAST Runtime
Minflip∗ [8] 792 946 1738 75.84 20m
MMC∗ [11] 911 1251 2162 69.3 -
MRP PAUP∗ [7] 756 400 1156 86.59 4.6m
PhySIC [12] 0 1324 1324 35.1 14s
RFS [15] 710 361 1071 105.6 6.5m
SCM∗ [13] 0 1220 1220 40.75 -
SFIT∗ [9] 1327 979 2306 61.69 111h
Superfine(MRP)∗ [16] 750 396 1346 89.54 3m
thSPR [19] 740 860 1600 97.26 3m
thTBR [19] 739 859 1598 97.1 3m
Supertriplet [4] 598 390 988 ER 57s
COSPEDTree 326 841 1167 68.93 6m
COSPEDTree-II 459 695 1154 78.02 2.4s + 2.2s
COSPEDTree-II+B 827 482 1309 89.34 2.4s+2.2s+34.4s

TABLE II
RESULTS FOR PLACENTAL MAMMALS [24] (M = 726, N = 116)

Method FP FN RF MAST Runtime
Minflip∗ [8] 2965 4002 6967 276.64 7.25m
MRP PAUP∗ [7] 2545 1902 4447 313.77 3.5m
PhySIC [12] 0 4830 4830 222.86 3s
RFS [15] 2481 1650 4131 511.54 4.2m
SCM∗ [13] 0 4816 4816 223.86 -
SFIT∗ [9] 3315 2353 5668 316.53 108h
QIMP∗ [25] 2423 1823 4246 477.84 -
Superfine(MRP)∗ [16] 2540 1746 4286 439.65 9.25m
Superfine(QMC)∗ [16] 2631 1835 4466 432.84 6m
thSPR [19] 2627 3268 5895 496.23 7s
thTBR [19] 2626 3272 5898 496.25 6.39s
Supertriplet [4] F F F F F
COSPEDTree 1232 3762 4994 394.42 3.2m
COSPEDTree-II 1406 2601 4007 429.34 3.5s + 0.5s
COSPEDTree-II+B 2730 1819 4549 491.85 3.5s+0.5s+9.2s

are then used as input to an existing triplet based supertree
approach thTBR [19], to generate a supertree TX consisting
of the taxa subsets Xi as its leaves. The supertree method
is selected since it processes rooted triplets, and generates a
rooted output tree. The tree TX is used as a template, such
that its order of bifurcation among individual taxa subsets Xi

is replicated to the original multi-furcating node R and its
descendants. As the degree of multifurcation (n in this case)
is much lower than the total number of taxa (N ), construction
of TX is very fast. This process is continued until all the
multi-furcating nodes are resolved.

TABLE III
RESULTS FOR SEABIRDS [26] DATASET (M = 7, N = 121)

Method FP FN RF MAST Runtime
Minflip∗ [8] 38 72 110 3.24 11s
MRP PAUP∗ [7] 61 166 227 4.97 11s
PhySIC [12] 0 150 150 0.64 3s
RFS [15] 28 14 42 5.63 4s
SCM∗ [13] 1 66 67 2.75 -
SFIT∗ [9] 42 202 244 2.22 1h
Superfine(MRP)∗ [16] 32 19 51 4.43 3s
Superfine(QMC)∗ [16] 29 19 48 4.6 3s
thSPR [19] 69 242 311 5.71 6s
thTBR [19] 115 234 349 5.73 6s
Supertriplet [4] 2 176 178 ER 5.6s
COSPEDTree 24 81 105 2.37 3s
COSPEDTree-II 27 66 93 2.58 0.2s + 0.3s
COSPEDTree-II+B 50 37 86 5.02 0.2s+0.3s+3.1s



TABLE IV
RESULTS FOR THPL [27] DATASET (M = 19, N = 558)

Method FP FN RF MAST Runtime
Minflip∗ [8] 142 149 291 4.93 1.1h
MRP PAUP∗ [7] 75 476 551 6.27 31m
PhySIC [12] 0 279 279 1.19 5.7m
RFS [15] 106 66 172 11.9 4.5m
SCM∗ [13] 13 128 141 4.64 -
Superfine(MRP)∗ [16] 85 50 135 6.39 1m
Superfine(QMC)∗ [16] 62 43 105 6.5 1.5m
thSPR, thTBR [19] ER ER ER ER ER
Supertriplet [4] F F F F F
COSPEDTree 88 162 250 4.21 4.5m
COSPEDTree-II 96 137 233 5.74 2s + 9s
COSPEDTree-II+B 166 114 280 8.22 2s+9s+1.2m

TABLE V
RESULTS FOR CETARTIODACTYLA [28] DATASET (M = 201, N = 299)

Method FP FN RF MAST Runtime
MMC∗ [11] 1181 1438 2619 83.84 -
MRP PAUP∗ [7] 860 964 1824 120.84 -
PhySIC [12] ER ER ER ER ER
RFS [15] ER ER ER ER ER
thSPR [19] 969 1006 1975 118.39 5.5m
thTBR [19] 969 1006 1975 118.09 4.5m
Supertriplet [4] 125 2175 2300 ER 59s
COSPEDTree 510 1001 1511 80.43 11.7m
COSPEDTree-II 732 864 1566 95.2 2s + 1s
COSPEDTree-II+B 1240 667 1907 102.18 2s+1s+43s

F. Computational complexity of COSPEDTree-II

For M input trees covering a total of N taxa, both
COSPEDTree [6] and COSPEDTree-II incurs O

(
MN2

)
time complexity for extracting the couplet based measures
from the trees. These methods differ in their subsequent
steps. COSPEDTree first resolves individual couplets in
O
(
N2 lgN

)
time (as shown in [6]), and subsequently parti-

tions the taxa set according to the relation r3, to form a DAG
containing NC (< N ) nodes (taxa clusters). Formation of a
supertree from this DAG involves O

(
N3
C

)
time complexity

[6].
COSPEDTree-II, on the other hand, first forms the taxa

clusters in O
(
N2
)

time (processing time for all couplets).
Subsequently, support scores for individual relations between
each pair of taxa clusters are placed in the max-priority
queue Q. Here, size of Q is O

(
N2
C

)
, considering NC as the

number of taxa clusters. During each iteration, maintaining
the max-priority property of Q requires O(lgNC) time. So,
the complete iterative stage to resolve all pairs of clusters (as-
signing connectivities between them) involves O

(
N2
C lgNC

)
time complexity. As in general, NC is considerably lower than
N , this iterative step in COSPEDTree-II is much faster than
COSPEDTree.

TABLE VI
RESULTS FOR MAMMAL [12], [4] DATASET (M = 12958, N = 33)

Method FP FN RF MAST Runtime
PhySIC [12] 17414 254527 271941 968 36s
RFS [15] ER ER ER ER ER
thSPR [19] 272752 296159 568911 8378 7s
thTBR [19] 276104 301787 577891 8378 7s
Supertriplet [4] 71117 105671 176788 ER 6s
COSPEDTree 35124 141295 176419 4441.5 5.3m
COSPEDTree-II 39079 134834 173913 4577.26 2m+0.1s
COSPEDTree-II+B 104226 98407 202633 8365.57 2m+0.1s+1m

Resolving individual pair of clusters, rather than the
couplets, enables COSPEDTree-II to achieve a significant
speedup. Suppose, |X| denotes the cardinality of a taxa cluster
X . So, for a pair of taxa clusters X and Y , COSPEDTree [6]
resolves all |X| × |Y | couplets, and maintains their relations
(and the transitive connectivities inferred from these relations).
But COSPEDTree-II resolves X and Y by processing only
one relation between them. So, for this cluster pair, speedup
achieved by COSPEDTree-II is ≈ |X| × |Y |. For a total of

NC taxa clusters, number of cluster pairs is
(
NC
2

)
. Thus,

overall speedup achieved by COSPEDTree-II is ≈
∑

X,Y ∈(NC
2 )

|X| × |Y |.
To derive the time complexity associated with the binary

refinement of COSPEDTree-II, suppose m is the number of
internal nodes in T having degree > 2. Further, suppose n
(> 2) denotes the maximum degree of multi-furcation among
all of these nodes. In such a case, applying thTBR [19] for
a particular internal node involves maximum O

(
Mn3

)
time

complexity. So, overall complexity of the binary refinement
stage is O

(
Mn3m

)
.

COSPEDTree [6] involves a storage complexity of O
(
N2
)
,

to store the couplet based measures. COSPEDTree-II uses
additional storage space for storing the set of excess taxa UG

pq

for individual couplets (p, q). As 0 ≤ |UG
pq | ≤ (N − 2), the

space complexity of COSPEDTree-II is O
(
N3
)
.

IV. EXPERIMENTAL RESULTS

Both COSPEDTree and COSPEDTree-II are implemented
in Python (version 2.7). Tree topologies are processed by the
phylogenetic library Dendropy [20]. A desktop having Intel R©

Quad CoreIntel
TM

i5-3470 CPU, with 3.2 GHz processor and
8 GB RAM, is used to execute these methods.

A. Dataset

COSPEDTree-II is tested with the datasets like Marsupials
(267 taxa and 158 input trees) [23], Placental Mammals (726
trees and 116 taxa) [24], Seabirds (121 taxa and 7 trees) [26],
Temperate Herbaceous Papilionoid Legumes (THPL) (19 trees
and 558 taxa) [27]. Work in [16] modified these datasets by
removing duplicate taxon names and few infrequent taxa in-
formation1. We have also experimented with Mammal dataset
[12], [4] consisting of 12958 trees and 33 taxa2. In addition,
the dataset Cetartiodactyla (201 input trees and 299 taxa) [28]
is also tested3.

B. Performance measures

Performance comparison between COSPEDTree-II and the
reference approaches, employs the following measures:

1Datasets are downloaded from the link http://www.cs.utexas.edu/∼phylo/
software/superfine/submission/.

2Downloaded from the link http://www.supertriplets.univ-montp2.fr/.
3Maintained in TreeBASE [29], and is downloaded from the link https:

//treebase.org/treebase-web/search/study/summary.html?id=1271.

http://www.cs.utexas.edu/~phylo/software/superfine/submission/.
http://www.cs.utexas.edu/~phylo/software/superfine/submission/.
http://www.supertriplets.univ-montp2.fr/
https://treebase.org/treebase-web/search/study/summary.html?id=1271
https://treebase.org/treebase-web/search/study/summary.html?id=1271


1) False positive distance FP(T, tj): Number of internal
branches present in the supertree T, but not in the input
tree tj (1 ≤ j ≤M).

2) False negative distance FN(T, tj): Number of internal
branches present in tj but not in T.

3) Robinson-Foulds distance RF(T, tj): Defined as FP(T,
tj) + FN(T, tj).

4) Maximum agreement subtree MAST(T, tj): Let N1 be
the number of taxa contained in the maximum agreement
subtree (MAST) common to T and tj . Then, MAST(T,

tj) =
N1

|L(tj)|
. This measure is computed using Phylonet

[30].
Above measures are accumulated for all the input trees tj

(1 ≤ j ≤ M), to be used as the final performance measures.
Supertree producing lower values of the sum of FP, FN, and
RF values is considered better. On the other hand, supertree
having higher sum of MAST score is considered superior.

C. Performance comparison

We have reported the results for the following two variations
of COSPEDTree-II:

1) COSPEDTree-II: Produces supertree with possible
multi-furcations.

2) COSPEDTree-II + B: Produces completely resolved
binary supertrees, by applying the binary refinement
suggested in section III-E.

Tables I to VI compare the performances of both of these
variants, and with the reference approaches as well. Reference
methods marked with a symbol ‘*’, could not be executed in
all datasets, either due to the unavailability of correspond-
ing source code, or due to their very high computational
complexity. In such a case, we have used their results (both
topological performance and running time) published in the
existing studies [16]. The approaches MRP and superfine
require PAUP* [31] to execute, which is a commercial tool
and not available to us. So, these methods could not be tested
in all datasets. Missing entries are indicated by ‘-’.

The methods RFS [15] and Supertriplet [4] produced errors
in parsing few of the input datasets. Entries showing ‘ER’
indicate these errors. Supertrees generated by Supertriplet [4]
could not be parsed by Phylonet [30]. So, we could not
compute the MAST scores for these trees. Finally, a symbol
‘F’ indicates that corresponding method could not produce a
valid supertree for that dataset.

Results show that COSPEDTree-II produces better resolved
supertrees than COSPEDTree, as indicated by lower FN, and
mostly lower RF values for individual datasets. COSPEDTree-
II also achieves higher MAST scores for these datasets.
COSPEDTree-II+B produces completely resolved binary su-
pertrees. So, the number of FN branches reduces. However, as
the input trees may not be fully resolved (may contain multi-
furcating nodes), number of FP branches increases consid-
erably. As COSPEDTree-II+B produces completely resolved
supertrees, corresponding MAST scores are much higher than
COSPEDTree-II.

Comparison with reference approaches shows that only
RFS [15] produces supertrees with consistently lower RF
and higher MAST scores than COSPEDTree-II. The method
Superfine [16] performs better than COSPEDTree-II for the
datasets Seabirds and THPL, while our methods perform
slightly better (in terms of lower RF and higher MAST
score) for the Marsupials and Placental Mammals dataset.
Superfine does not always generate strictly binary (completely
resolved) supertrees (for example, in the THPL dataset), unlike
COSPEDTree-II+B. Such a supertree exhibits much lower RF,
but also much lower MAST score (compared to COSPEDTree-
II+B).

Matrix based methods like Minflip, SFIT, MMC, are out-
performed by COSPEDTree-II. Veto approaches like SCM,
PhySIC, produce supertrees with the lowest (mostly zero) FP
branches, by not including any conflicting clades. In such
a case, the number of FN branches becomes very high,
and MAST scores of these trees also become much lower.
COSPEDTree-II also produces significantly better results than
MRP PAUP for all the datasets except Cetartiodactyla. Subtree
decomposition based approaches like thSPR, thTBR, produce
slightly higher MAST score values than COSPEDTree-II,
since these methods directly synthesize input triplets, or in
general, subtree topologies. Considering the measure RF, on
the other hand, these methods are mostly outperformed by
COSPEDTree-II.

D. Runtime Comparison

Tables I to VI express the running time of COSPEDTree-II
and COSPEDTree-II+B for different datasets, in the formats
(A+B) or (A+B+C), respectively, where:

1) A = Time to extract the couplet based measures from
the input trees.

2) B = Time to process the couplets and cluster pairs, to
produce a (possibly not binary) supertree.

3) C = Time required to refine the non-resolved supertree
into a strict binary tree.

We observe that COSPEDTree-II incurs a significant frac-
tion of its running time in the stages A and C. The stage A
depends on the processing speed of the python based phy-
logenetic library Dendropy [20]. On the other hand, running
time for the stage C depends both on the construction of t′j|X
from individual tj for all the multi-furcating nodes, and on the
execution of thTBR [19]. Results show that COSPEDTree-II
incurs much lower running time than COSPEDTree. Excluding
the binary refinement stage, the running time is decreased by
a factor from 2 (for the dataset Mammal [12], [4]) to 135 (for
the dataset Cetartiodactyla [28]).

When the number of taxa is high (such as Marsupials [23],
Cetartiodactyla [28]), COSPEDTree-II exhibits much lower
running time than the triplet based methods [19], [4], due to its
lower time complexity. For datasets with large number of trees,
COSPEDTree-II incurs slightly higher running time than these
methods, due to the time associated in extracting the couplet
based measures.



V. CONCLUSION

We have proposed COSPEDTree-II, an improved couplet
based supertree construction method (extending our earlier
proposed method COSPEDTree). COSPEDTree-II produces
supertrees with lower topological errors, and incurs much
lower running time (compared to COSPEDTree). A binary
refinement to generate a fully resolved supertree, is also
suggested. Due to its high performance and much lower
running time, COSPEDTree-II can be applied in large scale
biological datasets.

EXECUTABLE

Executable and the results of COSPEDTree-II are pro-
vided in the link http://www.facweb.iitkgp.ernet.in/∼jay/
phtree/cospedtree2/cospedtree2.html.
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