DMcompress: Dynamic Markov models for bacterial genome compression | IEEE Conference Publication | IEEE Xplore

DMcompress: Dynamic Markov models for bacterial genome compression


Abstract:

Genome data increasing exponentially since the last decade, compressing genome with Markov models has been proposed as an effective statistical method. However, existing ...Show More

Abstract:

Genome data increasing exponentially since the last decade, compressing genome with Markov models has been proposed as an effective statistical method. However, existing methods set a static order-k Markov models to compress various genomes. Employing static order-k Markov model could result in a sub-optimal orders on some genomes. In this paper, we propose a compression method that relies on a pre-analysis of the data before compression, with the aim of estimating Markov models order k, yielding improvements over static Markov models. Experimental results on the latest complete bacterial genome data show that our method could effectively compress genome with a better performance than the state-of-the-art method. The codes of DMcompress are available at https://rongjiewang.github.io/DMcompress.
Date of Conference: 15-18 December 2016
Date Added to IEEE Xplore: 19 January 2017
ISBN Information:
Conference Location: Shenzhen

References

References is not available for this document.