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Abstract

More than half of all cancer patients receive radiotherapy in their treatment process. However, our 

understanding of abnormal transcriptional responses to radiation remains poor. In this study, we 

employ an extended definition of Ollivier-Ricci curvature based on LI-Wasserstein distance to 

investigate genes and biological processes associated with ionizing radiation (IR) and ultraviolet 

radiation (UV) exposure using a microarray dataset. Gene expression levels were modeled on a 

gene interaction topology downloaded from the Human Protein Reference Database (HPRD). This 

was performed for IR, UV, and mock datasets, separately. The difference curvature value between 

IR and mock graphs (also between UV and mock) for each gene was used as a metric to estimate 

the extent to which the gene responds to radiation. We found that in comparison of the top 200 

genes identified from IR and UV graphs, about 20~30% genes were overlapping. Through gene 

ontology enrichment analysis, we found that the metabolic-related biological process was highly 

associated with both IR and UV radiation exposure.

I. Introduction

Approximately 60% cancer patients receive radiotherapy in the treatment process [1]. 

Radiation-induced toxicity is a common side effect for patients treated with radiotherapy. 

Therefore, it is important to find the biological processes implicated in radiation to develop 

personalized treatment for those who are predicted as being at high risk of developing 

radiation-induced side effects. Oh et al. surveyed many published studies that had shown 

associations between genes and radiation exposure, and summarized a list of 221 

radiosensitive genes and the corresponding biological processes [2]. Eschrich et al. proposed 

a linear regression predictive model of cellular radiosensitivity using the 10 hub genes from 

the top 500 genes identified by a univariate linear regression [3]. Jen and Cheung assessed 

transcriptional response of lymphoblastoid cells to ionizing radiation (IR) at various time 

points with 3 Gy and 10 Gy of ex vivo IR exposure [4]. They found that the higher radiation 
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dose exposure induced transcriptional changes in a more number of genes. Popanda et al. 

performed a literature review to identify radioresponsive single nucleotide polymorphisms 

(SNPs) associated with irradiation [5]. Andreassen and Alsner summarized studies that had 

reported associations between genetic variants and normal tissue complications in various 

cancers and proposed an allelic architecture model that shows relative risk for genetic 

variants associated with normal tissue radiosensitivity [6]. Rieger and Chu investigated 

radiosensitive genes and biological processes associated with IR and ultraviolet radiation 

(UV) using cell lines from 15 individuals [7].

In this study, we reanalyze this dataset by employing an extension of the notion of Ricci 

curvature to the case of weighted graphs known as Ollivier-Ricci curvature, and apply this to 

study a gene interaction topology. We rank genes based on the curvature difference relative 

to mock after IR and UV treatment and perform gene ontology enrichment analysis to 

identify significant radiosensitive biological processes.

Our motivation for employing curvature to study cancer comes from the recent work of 

modeling various biological systems as complex networks. In general, the growing 

importance of studying complex networks has been documented in a huge and growing 

literature, and has even been referred to as the field of network science [8]. In particular, as 

argued in various works (see [9] and the references therein), the onset and proliferation of 

cancer stems from dynamic changes that result from a series of changes in cellular 

interactions governing a complex network. As described in [10], there is a strong 

relationship between network functionality in terms of robustness and topological and 

geometric properties of networks such as curvature. One of the key ideas underpinning the 

present study, is based on the positive correlation between an increase of curvature and 

network functional robustness. Since a fundamental hurdle to cancer therapy is to acquire 

tumor robustness, it is essential to quantify the robustness of cancer networks in some easily 

computable manner. The notion of curvature as described below, turns out to be a powerful 

technique for accomplishing this purpose.

II. Curvature

In the theory of differential geometry, curvature is the amount by which a geometric object 

deviates from being flat. Ricci curvature is a notion of curvature that captures this change 

along some specific direction. In [11], Ollivier extended the concept of Ricci curvature to 

general metric measure spaces, in particular, weighted graphs. This is of great interest to us 

since the graph may represent gene regulatory networks or other biological networks. Next 

we describe the Ollivier notion of curvature on graphs.

Ollivier curvature relies on the Wasserstein distance, which is a metric based on the theory 

of optimal mass transport problems [12], [13]. Let X be a metric measure space equipped 

with distance d. On a graph  with nodes  and edges ℰ, one can simply choose 

the distance d as the hop distance. That is, the distance between two nodes  is given 

by the minimum of number of hops to go from x to y or vice versa. Given two probability 

measures μ, ν on X with finite p-th (1 ≤ p < ∞) moments, one can define the Lp Wasserstein 

distance between μ and ν as
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where Π(μ, ν) denotes a set of all joint probability measures on X × X whose marginals are 

μ and ν. This means that the Wasserstein distance is associated with the minimum cost of 

moving mass distributed according to μ, to mass distributed according to ν, when the cost of 

moving unit mass from x to y is d(x, y)p. In most applications, p = 1, 2 were used, and 

following [11], we will take p = 1. This is also known as the Earth Mover’s Distance (EMD) 

[14]. We note that when the initial and terminal mass concentrate on x and y respectively, 

i.e., μ = δx, ν = δy, then Wp(μ, ν) = d(x, y). The Ollivier-Ricci curvature captures the change 

of transportation cost after adding small diffusions to the mass distributions. If we attach to 

each point x ∈ X a probability measure μx, which corresponds to the diffusion at x or 

“fuzzifying” the point x, then the Ollivier-Ricci curvature is defined as

When the curvature is positive, W1 is less than d, which implies that a small diffusion would 

help to reduce the transportation cost. On the other hand, if the curvature is negative, then 

W1 is greater than d, which implies that diffusion would increase the transportation cost. Let 

 denote a weighted undirected graph with vertices  and edges ℰ. Let wxy denote 

the weight of the edge (x, y) ∈ ℰ. We assume that wxy is positive. For any pair of points x 
and y that are not directly connected on the graph, we define wxy = 0. We define a 

probability measure μx for a given node  by

Namely, the mass at x spreads to the neighbors of x, and the amount of mass is proportional 

to the weight between them. The Ollivier-Ricci curvature Ric and the entropy S are closely 

related. It was established in [10] that they are actually positively correlated, namely,

Furthermore, via the Fluctuation Theorem [15], [16], [17] entropy and robustness, the latter 

denoted by R, are positively correlated, namely,

Therefore, one deduces the positive correlation

Chen et al. Page 3

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the curvature Ric and the robustness R follows (see [10] for more details). The 

intuition behind this is that graphs with higher curvature will have more alternative ways to 

transport mass or information from one node to another, meaning that the possible damage 

caused by a random perturbation will be smaller, and therefore the network will be more 

robust. Further, from the above discussion, higher curvature is an indication of greater 

heterogeniety, another hallmark of cancer.

Based on the Ollivier-Ricci curvature, we can define a scalar curvature for each node 

as the sum over all the Ricci curvature values between x and its neighbors, namely,

where Nx is a set of nodes that are directly connected to x. To avoid the bias induced by the 

topology, one can also incorporate the weights and define a scalar curvature as 

. Note that unlike κ which gives a value to each pair of 

interaction, the scalar curvature η assigns a value to each node. Therefore, it provides a 

possible way to compare different genes on a network since each gene corresponds to a 

node.

III. Materials and Methods

To investigate transcriptional responses to radiation, we analyzed a gene microarray dataset 

(GSE1977) downloaded from the Gene Expression Omnibus (GEO) repository, which 

consisted of gene expression levels of ~10000 genes for 45 samples: lymphoblastoid cell 

lines collected from 15 healthy individuals (mock group), 15 IR-treated samples (IR group), 

and 15 UV-treated samples (UV group). For detailed information, refer to [7]. The network 

topology was constructed using gene interaction information derived from the Human 

Protein Reference Database (HPRD) [18]. After incorporating the gene expression data, and 

discarding redundant genes, a final graph consisted of 5568 nodes (genes) and 23689 edges 

(interactions). For each of the three treatments (mock, IR, and UV), we computed the 

Pearson correlation cxy between two connected genes (x and y) and assigned a non-negative 

weight wxy = (1 + cxy)/2 on the edge (x, y) ∈ ℰ. With this weighting strategy, we built 3 

different graphs ( , , and ) on the same topology, but with different weights for the 

mock, IR, and UV groups, respectively. We computed the scalar curvatures for all genes on 

the network topology. After that, for each gene, we computed the curvature difference 

between IR and mock graphs, and between UV and mock graphs. The absolute difference 

value was used as a metric to assess the extent to which each gene responds to radiation. 

Based on the curvature difference, we ranked genes and performed gene ontology 

enrichment analysis using a curated database (MetaCore, Thomson Reuters).
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IV. Results

We computed the scalar curvatures on the 3 graphs and assessed the curvature change for 

each gene after IR and UV radiation, i.e, mock–IR and mock–UV. As shown in Figure 1, 

overall the differences were small for most of the genes in response to IR and UV treatment. 

Only a small portion of genes showed significant changes in curvature. We selected the top 

200 genes with the most significant changes: the top 100 genes with a curvature increase 

(negative difference) relative to mock results and another top 100 genes with a curvature 

decrease (positive difference). Increasing the number of the top ranked genes from 10 to 100 

in steps of 10, we compared these genes to investigate how many genes responded to both 

UV and IR treatment. As can be seen in Figure 2, about 20~30% percent genes were 

overlapping with a slightly higher percentage for genes with the negative curvature 

difference. Table I shows the top 10 genes with the most significant curvature changes after 

IR and UV treatment for the positive difference and negative difference, separately. For IR 

treatment, TP53 and MYC were top-ranked, whereas for UV treatment CALM1 and AR 

were top-ranked with respect to the positive and negative difference, respectively. It should 

be noted that in our previous research [2], MYC gene was found to be the most significant 

radiosensitive gene. The confirmation using the Ollivier-Ricci curvature approach in this 

study implies that MYC appears to play a crucial role in radiation-induced biological 

processes. We performed gene ontology enrichment analysis with the top 200 genes using 

the MetaCore. Figures 3 and 4 show the top 10 biological processes for IR and UV 

treatment, respectively, resulting from the MetaCore analysis. Interestingly, the metabolic-

related process was top-ranked in both treatments, implying that there may be common 

biological processes in response to both IR and UV radiation.

V. Conclusion

We employed a graph-based curvature concept to identify radiosensitive genes and 

biological processes using a microarray dataset. Using the idea that the change of robustness 

of a biological network after radiation treatment is positively correlated with the network 

curvature, we computed the curvature differences between mock and IR or UV treatment for 

all genes and used the difference value as a metric to assess the degree to which each gene 

responds to radiation. It was found that about 20~30% genes among the top-ranked genes 

responded to both IR and UV radiation. Despite the relatively low overlapping fraction, the 

metabolic-related process was top-ranked in both IR and UV treatment, suggesting that the 

key biological processes associated with IR and UV radiation exposure appear to be similar. 

However, a further evaluation on larger datasets is needed to elucidate these observations.
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Fig. 1. 
Sorted curvature values in ascending order. Left: curvature differences between mock and IR 

graphs (mock–IR) and right: curvature differences between mock and UV graphs (mock–

UV) for all genes.
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Fig. 2. 
Faction of overlapping genes between IR and UV treatment. Left: the top 100 genes with a 

curvature decrease (positive curvature difference) and right: the top 100 genes with a 

curvature increase (negative curvature difference).
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Fig. 3. 
Gene ontology enrichment analysis using the top 200 genes associated with IR treatment.
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Fig. 4. 
Gene ontology enrichment analysis using the top 200 genes associated with UV treatment.
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