Abstract:
With the improvement of people's living standards, there is no doubt that people are paying more and more attention to their health. However, shortage of medical resource...Show MoreMetadata
Abstract:
With the improvement of people's living standards, there is no doubt that people are paying more and more attention to their health. However, shortage of medical resources is a critical global problem. As a result, an intelligent prognostics system has a great potential to play important roles in computer aided diagnosis. Numerous papers reported that tongue features have been closely related to a human's state. Among them, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by a deep convolutional neural network (CNN), we propose a deep tongue image feature analysis system to extract unbiased features and reduce human labor for tongue diagnosis. With the unbalanced sample distribution, it is hard to form a balanced classification model based on feature representations obtained by existing low-level and high-level methods. Our proposed deep tongue image feature analysis model learns high-level features and provide more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed system on a set of 267 gastritis patients, and a control group of 48 healthy volunteers (labeled according to Western medical practices). Test results show that the proposed deep tongue image feature analysis model can classify a given tongue image into healthy and diseased state with an average accuracy of 91.49%, which demonstrates the relationship between human body's state and its deep tongue image features.
Date of Conference: 15-18 December 2016
Date Added to IEEE Xplore: 19 January 2017
ISBN Information: