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Abstract

Genome-wide Association Study has presented a promising way to understand the association 

between human genomes and complex traits. Many simple polymorphic loci have been shown to 

explain a significant fraction of phenotypic variability. However, challenges remain in the non-

triviality of explaining complex traits associated with multifactorial genetic loci, especially 

considering the confounding factors caused by population structure, family structure, and cryptic 

relatedness. In this paper, we propose a Squared-LMM (LMM2) model, aiming to jointly correct 

population and genetic confounding factors. We offer two strategies of utilizing LMM2 for 

association mapping: 1) It serves as an extension of univariate LMM, which could effectively 

correct population structure, but consider each SNP in isolation. 2) It is integrated with the 

multivariate regression model to discover association relationship between complex traits and 

multifactorial genetic loci. We refer to this second model as sparse Squared-LMM (sLMM2). 

Further, we extend LMM2/sLMM2 by raising the power of our squared model to the LMMn/

sLMMn model. We demonstrate the practical use of our model with synthetic phenotypic variants 

generated from genetic loci of Arabidopsis Thaliana. The experiment shows that our method 

achieves a more accurate and significant prediction on the association relationship between traits 

and loci. We also evaluate our models on collected phenotypes and genotypes with the number of 

candidate genes that the models could discover. The results suggest the potential and promising 

usage of our method in genome-wide association studies.
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1. Introduction

Genome-wide Association Study (GWAS) has been used to relate a number of causal 

variants and trait variables for a long time and many relations have been revealed, such as 

the genetic architecture of global level traits in plants [1] and mice [2], also risks for human 

diseases, like type rheumatoid arthritis [3]. However, it is widely recognized to be 

challenging for statistical analysis to understand associations because of the difficulty raised 

by small individual effects and many-to-many gene-trait relationships. Further, confounding 

relatedness between samples inherently limits the power to unveil weak effects. It is 

necessary to address these challenges at the same time, modeling combinatorial associations 

while correcting population and genetic confounding factors, in order to understand the true 

genetic architecture of complex traits.

Despite the achievement made so far with simple methods that assess the significance of 

individual loci independently, these independent testing methods do not reach genome-wide 

mapping power due to the belief of multiple variants contributing to phenotype variation in 

an additive manner [4]. The challenge of additive effects of multiple SNPs has been widely 

addressed with multivariate regression of all genome-wide SNPs, with a shrinkage prior or 

stepwise forward selection [5], Laplace prior [6] and its extension [7], or other complicated 

modern priors [8, 9, 10].

However, the aforementioned methods easily fall into the trap of another challenge: the 

population and genetic structure may induce spurious correlations between genotype and 

phenotype. To address this challenge, Principle Component Analysis that extracts the major 

axes of population differentiation from genotype data has been explored [11]. Linear mixed 

model is another tool that provides a more dedicated control of modeling population 

structure with its random effect component and it has been shown to greatly reduce the 

impact of population structure [12, 13, 14, 15, 16, 17, 18, 19, 20].

Then a natural following question is about combining the above methods and addressing 

these two challenges simultaneously. As a result, Segura et al. proposed a related multi-locus 

mixed model approach with the stepwise forward selection [21]. Rakitsch et al. proposed a 

method that bridges the advantages of linear mixed models together with Lasso regression 

[22]. Additional works proposed to extend previous LMM-Lasso and incorporate more 

regularizers to further improve the performance in modeling combinatorial associations. [20, 

23] These methods grant us the chance to consider complex genetic effects while reducing 

the impact caused by population structure. However, there might be other cryptic relatedness 

that cannot be effectively corrected by current implementation of LMM.

In this paper, we propose a new way of constructing the Kinship matrix for a better 

modeling of cryptic relatedness in addition to population structure and family structure with 

the introduction of squared LMM (LMM2). We further extend our idea to SLMM2, LMMn, 
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and SLMMn. In the analysis on synthetic data with generated phenotypic variants and real 

genetic variants from Arabidopsis Thaliana, we show that our model can effectively correct 

confounders and discover the associated markers.

The contributions of this paper are three-fold:

• We introduce an extension of LMM by raising the power of the kinship matrix, 

leading to two direct implementations LMM2 and sLMM2 dependent on the 

testing procedure. We further extend these two models to even higher power.

• Our proposed models can also be seen as a proof of the concept of the limitation 

of current realization of kinship matrix as ZZT.

• Despite the seemingly simple extension, we offer substantial arguments in both 

statistical view and genetic view for the necessity of raising the power of kinship 

matrix. These arguments are further validated with simulations and real data 

experiments.

2. Method

2.1. Linear Mixed Model (LMM)

For an LMM, suppose we have m samples, with phenotypes y = (y1, y2, …ym) and 

genotypes X = (x1, x2, …xm) and for each i = 1, 2, …,m, we have xi = (xi,1, xi,2, …xi,s), i.e., 

each sample has s markers to be tested. With linear mixed model, we have:

y = Xβ + Zu + ε (1)

where β stands for genetic effect, u stands for random effects ( u N(0, σg
2)), Z stands for 

population structure, and ε stands for observation noise ( ε σe
2). Z is not always directly 

observed from data, but can be conveniently achieved as Z = X, which is a convention that is 

widely used in GWAS research (e.g. [14, 24]).

Equivalently, Equation 1 can be formalized as following:

y N(Xβ, σg
2K + σe

2I) (2)

where K = ZZT. K is also called kinship matrix.

The vanilla LMM assumes u N(0, σg
2) to be identically and independently distributed across 

Z.

2.2. Squared Linear Mixed Model (LMM2)

This i.i.d assumption of u mentioned above might not be general enough. For example, the 

assumption is justifiable when Z encodes the family structure since there are barely inter-

family influences that can confound the phenotypes. However, when Z encodes pedigree 
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information, there can be correlations of the random effects introduced via the underlying 

relationship of family tree. This is especially true when we use the genome to denote 

population structure, i.e when Z = X, in which case, the existence of LD will make the naive 

assumption even more problematic.

To account for this, we extend LMM by relaxing the i.i.d assumption of u and propose 

another assumption that μ N(0, σg
2M), where the covariance matrix M describes the 

correlation induced by confounding factors. Interestingly, ZTZ, as the covariance matrix, is a 

reasonable choice for M. Therefore, our proposed extension of Equation 2 leads to:

y N(Xβ, Zσg
2MZT + σe

2I)

which is:

y N(Xβ, σg
2ZZTZZT + σe

2I)

and this leads to an elegant result that our model can be represented as:

y N(Xβ, σg
2K2 + σe

2I)

which accounts to squaring the kinship matrix of original LMM. Therefore, we refer to this 

model as LMM2.

Additionally, considering the confounding factors that caused by cryptic relatedness that 

cannot be explained with the above-accounted relationships like population structure, family 

structure or genetic correlation, we explore to raise the power of squared LMM further. As 

an extension of squared LMM, we propose a LMMn model that could automatically learn 

the order n of kinship matrix from data with likelihood maximization. Formally, LMMn is as 

following:

y N(Xβ, σg
2Kn + σe

2I)

2.2.1. Statistical Advantage—In addition to the convenient derivation showed above, 

another natural statistical advantage introduced via higher order kinship matrix is the ability 

to distinguish random effects from fix effects. Since Z is set as X in most cases [14, 24]. By 

setting K = ZZT, we will have

y = Xβ + Zu + ε = Xβ + Xu + ε

This formulation will lead to the identification problem for the method to differentiate β out 

of u.
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With higher order of kinship matrix, the method now models the data as:

y = Xβ + (XXT)
n
2u + ε, ∀n ≥ 2

Therefore, the method naturally avoid the identification problem between β and u.

2.2.2. Higher Order Kinship Matrix—In addition to the elegant mathematical derivation 

of LMM2 and extensions to LMMn, we continue to discuss the intuitive understanding of 

higher order LMM.

As a simple example, we consider a kinship matrix that describes the pedigree information 

of individuals as showed in Figure 1(a). Figure 1(a) shows the direct relationship collected. 

Each node stands for one individual. The connection between each individual means that the 

above individual is the parent of the below one. Obviously, kinship matrix here may miss 

some information as it does not consider any implicit connection. A squared kinship matrix 

could infer second order relationship, as showed in Figure 1(b). Now, sibling information 

and grandparental information are modeled. Figure 1(c) shows a even higher order kinship 

matrix, where further related information can be accounted. This example shows the 

necessity of raising raising the order of kinship matrix as higher order kinship matrix can 

reveal implicit information.

This example leaves us with two questions: 1) Whether it is always helpful to raise the order 

of kinship matrix. 2) Whether the order of kinship matrix is the higher the better.

We proceed to answer these two questions with another example. Assuming we have 20 

individuals from three populations as showed in Table 1.

As a start, we simply represent the population of each individual as a scalar, then Z is a 20×1 

vector, and the kinship matrix can be calculated as ZZT. Figure 2 shows the kinship matrix 

under different orders and we could see that raising the order of kinship matrix does not gain 

any improvement.

Then, we directly use the percentage to represent the group information, therefore, group 

information is described with a 20 matrix Z and kinship matrix is ZZT. Raising the order of 

kinship matrix can allow the model to consider different relationships between different 

groups, as showed in Figure 3.

However, when the kinship matrix is converged to a very high order, the relationship is not 

very well captured since Figure 3(c) cannot distinguish 2nd and 3rd population well. 

Therefore, raising the order infinitely high until it converges may not be the best practice.

At this point, we have mathematically and intuitively explained the advantages of higher 

order kinship matrix, which supports the idea of LMM2 and LMMn. We now proceed to 

introduce the idea of sLMM2 and sLMMn after we briefly discuss the idea of sLMM.
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2.3. Sparse Linear Mixed Model (sLMM)

To also account for multifactorial association mapping, recent works proposed a sparse 

Linear Mixed Model called LMM-Lasso [22, 20], where they added a Laplacian shrinkage 

prior over the fixed effect β and as a result, the majority of genetic effects will be zero.

In detail, instead of traditional likelihood function of LMM, sLMM solves:

p(β ∣ y, X, K, σg
2, σe

2, λ) ∝ N(y ∣ Xβ, σg
2K + σe

2I) ∏
j = 1

s
e
− λ

2 ∣ β j ∣

where λ is the sparsity hyperparameter of the Laplace prior.

2.4. Squared Sparse Linear Mixed Model (sLMM2)

The sparse Squared-LMM (sLMM2) is a simple extension of sLMM, with a non-trivial 

belief that such an extension could effectively correct confounders caused by population 

structure and genetic structure simultaneously, as extensively discussed in Section 2.2.2.

Instead of u N(0, σg
2K), our model believes that the random effect variable u N(0, σg

2K2) and 

the model becomes:

p(β ∣ y, X, K2, σg
2, σe

2, λ) ∝ N(y ∣ Xβ, σg
2K2 + σe

2I) ∏
j = 1

s
e
− λ

2 ∣ β j ∣

2.5. Ordered-N Sparse Linear Mixed Model (sLMMn)

sLMMn extends sLMM2 by relaxing the order of covariance component of u. Therefore 

u N(0, σg
2Kn). Different from sLMM2 where K2 could be calculated beforehand, the 

challenge of SLMMn lies on how to reliably estimate n.

2.6. Parameter Estimation

We extend the parameter estimation procedure introduced in [20], where we first correct the 

confounders with a null model and then apply either independent hypothesis testing or 

combinatorial sparse regularized multivariate regression afterwards. The estimation of n is 

conducted via a Grid Search algorithm in the first phase of the algorithm when Brent search 

is conducted to search for optimal variance parameters.

An important point is that, raising the power of K does not significantly increase the 

computation load because we can utilize the fact that the estimation procedure requires 

eigendecomposition of K, and trivially raise the order of K by Kn = USnV T, where K = 

USV T is the eigendecomposition.
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3. Results

We perform experiments to compare the performance of raising the power of kinship matrix. 

More specifically, we compare the performance among LMM, LMM2 and LMMn, we also 

compare the difference between sLMM, sLMM2 and sLMMn. By analyzing the results, we 

reach the conclusion that when single association testing method behaves best and when 

combinatorial association method will lead to a better result. For LMMn and sLMMn, we set 

n ∈ {3, 4, 5} in application to avoid the situation when higher order models only behave 

similar to vanilla case or squared case for a better understanding of necessity of even higher 

power.

We do not consider other LMM methods in addition to the vanilla LMM because the main 

contribution of our method is raising the power of the kinship matrix. Other methods, 

including [17, 19, 18], can always raise the corresponding Kinship matrix to achieve a 

similar performance. In other words, the novelty of our paper can also be understood as 

introducing a general framework with the argument that raising the power of kinship matrix 

can effectively increase the power of confounding correction. However, we do not have to 

exhaust every LMM implementation to validate this point. Instead, this paper only concerns 

with the experiments regarding vanilla LMM, sLMM and their corresponding higher order 

counterparts to prove the concept of higher order kinship matrix.

We compare these models with three different experiments. The first two experiments are 

performed on semi-empirical synthetic data sets, out of which, the first experiment is to 

show that different order of models can consider different confounding structure and the 

second experiment is a set of repeated experiments on a variety of different configurations 

for semi-empirical synthetic data sets. These repeated experiments are to show that higher 

order models can consistently perform better than traditional settings as they consider more 

information.

The third experiment is based on real data set. Following the standard in [22], to handle the 

non-availability problem of gold standard data set of genotype-phenotype association 

relationship, we test our results with candidate genes. If the discovered SNP belongs to a 

candidate gene for the phenotype, this discovery is seen as a true positive discovery.

3.1. Arabidopsis thaliana

The Arabidopsis thaliana data set we obtained is a collection of around 1300 plants, each 

with around 215k SNPs [25]. The latitude and longitude for each of these plants are also 

available. The candidate genes are collected from [1], we considered eight candidate gene 

sets, which correspond to 28 phenotypes.

3.2. Semi-emperical Synthetic Data Set Experiment One

First, we show that to raise the order of Kinship matrix can gain us the benefit of handling 

complex confounding structures once they exist.

Synthetic Data—To show that, we generate two synthetic data sets based on real SNPs. 

Without loss of generalizability, we only consider the SNPs of Chromosome 1, which are 
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denoted as X. There are about 50k SNPs considered (p = 50, 000). 100 causal (N = 100) 

SNPs are randomly sampled and fixed effect of causal SNP is uniformly sampled from 0 to 

1, namely:

CN = sample(1, p)

βi =
U(0, 1) if i ∈ CN
0 otherwise

Two synthetic phenotypes are generated as follows:

a. With Population Structure: Population structure of plants are collected by 

clustering their genome sequences. We cluster these plants into 100 groups, each 

group (Group k) is assigned with an effect, namely:

yg
k = ek

where k is the index of clustered group and e is the effect sizes that are sampled 

from i.i.d, i.e. ek ~ N(0, 1), ∀k Then, the phenotype is generated as follows:

y f = Xβ (3)

y1 = (1 − pe)(p f y f + (1 − p f )yg) + peε (4)

where pe stands for observation noise effect, pf stands for the weight of fixed 

effect, so 1–pf can be interpreted as heritability.

b. With Complex Population Structure: In addition to Case (a), we introduce higher 

order group structure, which simulates the fact when the effect sizes in Case (a) 

are not i.i.d. but governed by the group structure. Other than clustering X into 

groups in Case (a), we clustered XXT into groups so simulate complex 

population structure. Therefore, we have the phenotypes as following:

ys
k = sk (5)

y2 = pe′(p f y f + p f′ (ps′yg + psys)) + peε (6)

where, same as Case (a), sk stands for the kth value of a pre-assigned vector of 

complex population effects and ps stands for the weight of complex population 

effect, and pe + pe′ = p f + p f′ = ps + ps′ = 1
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We generate y1, y2 by setting pe = 0.1, pf = 0.6 and ps = 0.7 across the data generation 

process.

3.2.1. Experiment Results—The results are showed as a comparison of ROC curve. 

Here, we truncate the curve to show the differentiating part of curves, as showed in Figure 4.

As the figure shows, for Case (a) where there is only a simple population structure, 

traditional LMM behaves better than our proposed higher order model. However, for 

Scenario (b), when we are simulating more complicated population structure which is more 

similar to the real dataset than Case (a), our proposed higher order LMM–LMM2 behaves 

best as the data is generated with second order kinship matrix in the figures we show.

3.3. Semi-emperical Synthetic Data Set Experiment Two

The second experiment is an extension of the first one, and it is aimed to show that under 

different combinations of parameters governing the generation process of data, our proposed 

higher order LMM can consistently outperform previous methods.

3.3.1. Data Generation—We generate synthetic data sets following the same way of Case 

(b) in the previous experiment, under Equation 6. Default values of parameters are set in the 

same way.

To make a fair comparison between these models, we repeat the data generation process with 

different parameters. In addition to these three parameters (ph, ps, pe), we also consider the 

number of causal SNPs sampled N (default value N = 100) as a parameter for data 

generation. Together with another parameter of the model K (default value K = 1000), which 

indicates the number of SNPs our model reports. We repeat our experiment many times with 

different combination of these five parameters.

The candidate values for each of these parameters are showed in Table 2. Our experiment 

falls into five parts. In each part, we adjust one of those parameters while other parameters 

set to the default value. For each configuration of parameters, we repeat the experiment five 

times and report average area under ROC curve. We plot the curve of these averaged values 

along the different parameters of the parameter of interest.

3.3.2. Results—Results are showed in Figure 5. As the figure shows, for single association 

mapping, LMM2 also shows some unstable behavior when its performance is compared to 

LMM, but in most cases (except experiment set of the parameter pf ), LMM2 can outperform 

LMM. The figure also shows that LMMn usually works better than LMM and LMM2 in 

single SNP testing cases. For combinatorial association mapping cases, sLMM2 outperform 

sLMM in almost all the cases. sLMMn does not show a stable performance compared to 

sLMM, although its performance still exceeds sLMM in the majority of cases.

It is also interesting to compare the differences between combinatorial association mapping 

models and single association mapping models. As the figure shows, combinatorial 

association mapping models (sLMM, sLMM2 and sLMMn) usually outperforms the 

corresponding single association mapping models (LMM, LMM2 and LMMn), which 
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indicates the necessity of introducing combinatorial association mapping models to 

overcome the limitation of traditional hypothesis testing in GWAS tasks.

3.4. Real Dataset Experiment

After showing the advantage of higher order LMM over synthetic data sets, we apply our 

proposed model real data set of A. thaliana where both genome information and phenotype 

information are available. To show the feasibility of our model compared to traditional 

LMM, we collect the candidate genes for each phenotype from [1].

Discarding the results that do not show a difference between original LMM and our 

proposed model (27 phenotypes in total), Table 3 shows the results of 10 sets of candidate 

genes and 20 phenotypes in correspondence. For the meaning of these phenotypes, please 

refer to [1].

For Kinship matrix, we choose the group information to be the same as genome sequence, 

which leads to a kinship matrix of XXT.

Table 3 shows the true positives of the discoveries of each model, constraining each model 

to discover the same number of most significant associations. It shows that our proposed 

method, which raises the kinship matrix to the second order, behaves the best in both single 

SNP testing scenario and combinatorial testing scenario.

Interestingly, the results show that combinatorial testing scenario behaves better than its 

counterparts in a single testing scenario, which probably shows that most of these 

associations are a result of combinatorial effects contributed by a set of genetic markers, 

instead of one.

It is also noticeable that, for all these results reported, there are only five cases where LMM/

sLMM behaves better than its squared counterpart. Out of these five cases, four of them are 

in the candidate gene set that is related to Flowering time. The reason we conjecture is that, 

whether the effect sizes of association should be explained in a more complicated way may 

depend on the phenotype of these associations of interest. Phenotypes regarding flowering 

time might be better explained with traditional 1st order LMM, for the reason that flowering 

time may depend more on the environment than genetics relationship and higher order 

kinship matrix may dilute the geographical information genetics captured.

3.4.1. Results Comparison—Besides a numerical comparison of the discovered 

performance between these methods, here we select some typical examples to compare the 

genes each model discovered. The following associations discussed are verified with the 

online data base TAIR [26]1.

For example, for the phenotype that describes the visual chlorosis in plants under 22 °C after 

five weeks of growth (Row 3 in Table 3), all three single testing methods discover the same 

two associated two genes: AT4G24290 and AT1G74710, while for combinatorial testing, 

sLMM discovered one more associated gene AT5G44030 and sLMM2 discovered one more 

in addition to what sLMM has discovered, namely AT1G28380. However, on the other hand, 

sLMMn did not discover any of those associations, but it discovered AT4G37000.
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For the phenotype that describes leaf roll presence 8 weeks post germination for plants 

grown at 10 °C (Row 4 in Table 3), LMM and LMMn discovered the association 

AT1G09530 and LMM2 discovered one more associated gene (AT3G14110) additionally. 

On the other hand, combinatorial association methods discovered completely different sets 

of genes, sLMM found AT3G56400 and AT3G02570 and sLMM2 discovered AT1G34210 
additionally.

For the phenotype that describes the days from removal from stratification (3 days at 4 °C in 

the dark) until emergence of first cotyledon at 16°C (Row 13 in Table 3), single testing 

methods did not discovered any associated genes. sLMM discovered two associated genes, 

namely AT2G29630 and AT3G54810 and sLMM2 discovered two additional associated 

genes, namely AT5G51760 and AT2G18790.

These examples all validate the performance of our proposed squared LMM that, by raising 

the order of kinship matrix, the model can typically discover more associated genes in 

addition to what original LMM can discover. In fact, except the phenotypes that are related 

to flower timing and few other cases, squared models are always capable of discovering 

associated genes in addition what original models discover in both single testing case and 

combinatorial case.

4. Conclusion

In this paper, we proposed an extension of linear mixed model to consider more complex 

confounding factor structures and this improvement can be applied to both traditional linear 

mixed model that tests the association individually and sparse linear mixed model that test 

the combinatorial association.

We first made the argument that raising the order of kinship matrix can gain many 

advantages of the model including 1) allowing the model to consider hidden confounding 

structures 2) distinguish the statistical representation power for fixed effect variables and 

kinship matrix when kinship matrix is calculated as the covariance matrix of fixed effect 

variables 3) can be reformulated into another model that considers that the random effects 

are not independently, but also following a covariance matrix. Based on these reasonings, we 

proposed our model LMM2 for single association testing case and sLMM2 for combinatorial 

association testing case and further extend these models to LMMn and sLMMn for 

comparison.

As our extensive experiment on synthetic data showed, our squared model can outperform 

its counterparts for correctly discovering the causal SNPs on both simulations and real data 

in most cases. However, for flowering time-related phenotypes in real data, our proposed 

model discovered less associated genes than the traditional linear mixed model.

Since this model is primarily an improvement over previous models in the performance of 

confounding correction. In the future, we plan to proceed to incorporate more powerful 

regularizers for multivariate regression to further improve the performance, like the 

Precision Lasso [9], which is used to account for linkage disequilibrium of SNPs. To further 

improve the modeling performance of associations, we will also consider the deep neural 
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network approaches [27]. A neural network equivalent of vanilla linear mixed model has 

already been proposed [28], but more efforts are necessary to incorporate our higher order 

linear mixed model. We will also implement our method into the GWAS tool box GenAMap 

[29]2 for convenient usage of biologists.
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Figure 1. 
Different order of kinship matrix captures the different information.
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Figure 2. 
Different order of kinship matrix captures the same information when kinship matrix does 

not capture the relationship of different groups. (a) first order kinship matrix. (b) second 

order kinship matrix. (c) kinship matrix when it is converged.
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Figure 3. 
Different order of kinship matrix captures the different information when kinship matrix 

captures relationship of different groups. (a) first order kinship matrix. (b) second order 

kinship matrix. (c) kinship matrix when it is converged.
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Figure 4. 
ROC curve to compare LMM2 with LMM (top row) and sLMM2 with sLMM (bottom row) 

on two different synthetic data sets
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Figure 5. 
Curves to show the averaged area under ROC under different settings
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Table 1

A simple example that contains three different populations of individuals, categories are decided according to 

their different percentage of genome inherited from different continents.

Group ID Group 1 Group 2 Group 3

European 0.1 0.4 0.5

American 0.3 0 0.5

African 0.6 0.4 0

Asian 0 0.2 0
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