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Abstract

Database search is the main approach for identifying proteoforms using top-down tandem mass 

spectra. However, it is extremely slow to align a query spectrum against all protein sequences in a 

large database when the target proteoform that produced the spectrum contains post-translational 

modifications and/or mutations. As a result, efficient and sensitive protein sequence filtering 

algorithms are essential for speeding up database search. In this paper, we propose a novel filtering 

algorithm, which generates spectrum graphs from subspectra of the query spectrum and searches 

them against the protein database to find good candidates. Compared with the sequence tag and 

gaped tag approaches, the proposed method circumvents the step of tag extraction, thus 

simplifying data processing. Experimental results on real data showed that the proposed method 

achieved both high speed and high sensitivity in protein sequence filtration.
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I. Introduction

Because top-down mass spectrometry (MS) provides “a bird’s eye” view of whole 

proteoforms, it is an important technology for identifying proteoforms with primary 

sequence alterations, such as post-translational modifications (PTMs) and mutations [1]. 

Reliable identification of protein alterations, which are related to changes in cellular or 

tissue dynamics, is essential to understanding cellular regulatory processes and diseases [2].

Database search [3], [4], represented by tools such as ProSightPC [5] and TopPIC [6], is the 

dominant approach for top-down MS-based proteoform identification, in which top-down 
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tandem mass (MS/MS) spectra are searched against a protein sequence database to identify 

matches between spectra and protein sequences. It is a challenging computational problem 

because the target proteoform that produced the query spectrum often contains multiple 

alterations that are not included in its corresponding database protein sequence.

There are two main approaches for identifying proteoforms with alterations. The first 

approach is to build an extended proteoform database [5] using known protein alterations 

reported in the literature. For example, phosphorylation, acetylation, and ubiquitylation sites 

have been reported in the tumor protein p53 [7], and the knowledge can be used to build a 

proteoform database of the protein. When the alterations on the target proteoform are 

known, using an extended database containing the target proteoform simplifies database 

search. However, the extended database approach has its limitations. Many proteins have not 

been extensively studied, and most of their PTM sites are unknown. Even if the PTM sites of 

a protein are known, each PTM site may or may not be present in a proteoform and the 

number of combinations of these PTM sites is an exponential function of the number of 

sites. As a result, it is impractical to build a complete extended protein database.

The second approach is to employ spectral alignment algorithms [3], [4], [6], [8]–[10] to 

align a top-down MS/MS spectrum from a modified proteoform against unmodified database 

protein sequences. While spectral alignment is efficient to align a spectrum against a protein 

sequence, it is extremely time-consuming to align thousands of query spectra against all 

protein sequences in a large database. Therefore, efficient protein sequence filtering 

algorithms are essential to speeding up database search in proteome-level proteomics studies 

[3].

Given a query MS/MS spectrum and a database of unmodified protein sequences, the 

objective of a protein sequence filtering algorithm is to quickly filter out most protein 

sequences in the database while keeping the target one that produced the query spectrum. 

When the target proteoform contains alterations, the precursor mass of the query spectrum 

does not match the molecular mass of its corresponding database protein sequence. As a 

result, fragment masses of the query spectrum need to be used for protein sequence 

filtration.

Many filtering methods have been proposed in bottom-up and top-down MS [11], [12]. One 

main filtering approach is to use sequence tags, which are partial protein sequences extracted 

from mass spectra, to scan and filter protein sequences [11], [13], [14]. Correct long 

sequence tags, which are substrings of the target protein sequence, are extremely useful in 

filtering out protein sequences, but we may fail to extract such tags from mass spectra due to 

missing peaks.

To address the problem, Jeong et al. introduced gapped tags, which can be extracted from 

spectra with missing peaks [15]. Many MS/MS spectra contain correct long gapped tags, but 

not correct long sequence tags. Several algorithms have been proposed to efficiently search 

gapped tags against a protein database [16], [17]. Because of the complexity of MS/MS 

spectra, it is challenging to distinguish signal from noise peaks. The gapped tag approach 
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solves the problem of missing peaks in tag extraction, but it is highly possible that many 

incorrect tags are reported because of noise peaks.

In this paper, we propose a novel filtering algorithm, which extracts subspectra of the query 

spectrum, constructs spectrum graphs from these subspectra, and searches them against the 

protein database to filter protein sequences. Compared with the gapped tag approach, the 

proposed approach simplifies protein sequence filtration by skipping the tag extraction step. 

It directly searches spectrum graphs generated from subspectra with noise peaks against the 

protein database. Experimental results on real data demonstrated that the proposed approach 

achieved both high filtration efficiency and high speed in protein sequence filtration.

II. Methods

A top-down MS/MS spectrum of a proteoform consists of a precursor mass corresponding to 

the molecular mass of the proteoform and a list of fragment ions peaks corresponding to 

fragments of the proteoform. In general, top-down MS/MS spectra are complex because of 

the existence of highly charged fragment ions and isotopic peaks. In data preprocessing, 

fragment ion peaks in top-down MS/MS spectra are converted into monoisotopic fragment 

masses using spectral deconvolution tools [18]. The intensity of a monoisotopic mass is 

assigned as the sum of the intensities of its corresponding fragment ions peaks. We assume 

that the query spectrum is a deconvoluted one in the following analysis.

A deconvoluted top-down MS/MS spectrum may contain some noise masses. Generally 

speaking, high-intensity masses tend to be signal ones and low-intensity masses noise ones. 

We use an intensity-based method to remove noise masses from the query spectrum. For 

each mass x in the query spectrum, we rank all the masses in the width 200 Dalton (Da) 

interval [x − 100, x + 100] in the decreasing order of their intensities. If x is not one of the 

top λ masses, x is treated as a noise peak and removed, where λ is a user-specified 

parameter.

A. Spectrum graphs

In sequence tag-based protein sequence filtration, spectrum graphs are often used to extract 

sequence tags from mass spectra [19]. A spectrum graph is generated from a query spectrum 

with two steps: (a) a node is added to the graph for each fragment mass in the spectrum, and 

(b) a directed edge from node u to node v is added to the graph if mass(v) − mass(u) matches 

the mass of one amino acid residue1 within an error tolerance, where mass(u) and mass(v) 

are the masses corresponding to u and v, respectively. The edge is labeled with the amino 

acid explaining the mass difference (Fig. 1(b)). Each path in the spectrum graph corresponds 

to a sequence tag, which is the readout of the labeled amino acids on its edges. For example, 

NVRS is the sequence tag extracted from the only path from node v0 to v4 in the spectrum 

graph in Fig. 1(b). There are various methods for extracting sequence tags from the spectrum 

graph [14], [20]. These tags are then searched against the protein database for protein 

sequence filtration.

1The mass difference is matched to the mass of one or two amino acids in some algorithms.
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Long correct sequence tags that are matched to the target protein sequence are extremely 

useful because the chance that they are matched to random sequences is low. When the 

query spectrum misses many fragment masses, many node pairs whose mass differences are 

explained by 2 or more amino acids in its spectrum graph cannot be connected. In this case, 

the spectrum graph approach described in the previous paragraph may fail to extract long 

correct sequence tags. To solve this problem, gapped sequence tags were introduced to allow 

large mass gaps between two fragment masses in tag generation [15].

To extract gapped sequence tags, we change step (b) in the generation of spectrum graphs as 

follows: a directed edge is added into the graph from node u to v if the mass difference 

mass(v) − mass(u) is no large than a predefined bound α (α is chosen between 200 and 400 

Da in practice) and is explained by a combination of several amino acids; the edge is labeled 

with the mass difference mass(v) − mass(u) (Fig. 1(c)). Each path in the spectrum graph 

corresponds to a mass sequence, called a blocked pattern or a gapped sequence tag [16]. In 

protein sequence filtration, multiple blocked patterns (gapped sequence tags) are extracted 

from the spectrum graph and searched against the protein database. The number of blocked 

patterns in a spectrum graph may be an exponential function of the length of blocked 

patterns, making it inefficient to explicitly extract all blocked patterns in the spectrum graph. 

As a result, it is common that only a limited number of paths and their corresponding 

blocked patterns are chosen. Because of the existence of noise peaks, it is a challenging 

problem to determine which paths in the spectrum graph correspond to blocked patterns that 

match the target protein sequence. We propose to circumvent the tag generation step and 

search the spectrum graph directly against the protein database for protein sequence 

filtration.

B. The spectrum graph matching problem

Most protein databases, such as UniProt [21], contain only one unmodified reference 

sequence for a gene or a transcript. We assume that the protein database used in spectral 

identification contains only unmodified reference sequences to simplify the analysis. In 

addition, discretized masses are used in the definition of the spectrum graph matching 

problem. All amino acid residue masses are discretized by first multiplying the masses by a 

scaling factor (100 was used in the experiments) and then rounding the results to integers.

Notations introduced by Deng et al. [17] are used to define the spectrum graph matching 

problem. An amino acid string is represented as a list of discretized residue masses: the mass 

representation of an amino acid string a1, a2,…, an is a residue mass string S = s1, s2, ..., sn, 

in which si is the discretized residue mass of ai for 1 ≤ i ≤ n. Residue mass strings are called 

text strings in the following analysis. The sum of all the masses in a substring si, si+1, …, sj 

of S, i.e., , is called the mass of the substring. Two substrings of S are called 

consecutive substrings if the first residue mass of the second string directly follows the last 

residue mass of the first string. For example, si, si+1, …, sj and sj+1, sj+2, … ,sk are 

consecutive substrings of S. A sequence of consecutive substrings A1, A2, …, Ak including 

all residue masses in S is called a partition of S. The masses of the consecutive substrings in 

a partition is called the mass string of the partition. For example, let S = 114, 156, 99, 87, A1 

= 114, A2 = 156, 99, and A3 = 87, then A1, A2, A3 is a partition of S and the mass string of 
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the partition is 114, 255, 87, where 255 is the mass of A2. A blocked pattern obtained from a 

path in a spectrum graph is represented by a sequence of masses, which are labels of the 

edges in the path. For example, the blocked pattern corresponding to the bold path in Fig. 

1(c) is 114.04, 225.17, 87.03. The mass sequence is further discretized to an integer 

sequence using the same method for residue mass discretization. In the following analysis, 

we assume that all blocked patterns are integer ones. Unlike text strings, a blocked pattern 

contains not only single amino acid residue masses, but also those of combinations of 

several amino acids. A blocked pattern P matches a text string S if P is the mass string of a 

partition of S. For example, the blocked pattern 114, 255, 87 matches the text string 114, 

156, 99, 87 because the blocked pattern is the mass string of a partition of the text string.

In protein sequence filtration, we search all blocked patterns in a spectrum graph against the 

protein database to find matched amino acid sequences (sequence tags). All protein 

sequences in the database are concatenated and represented as a text string over an alphabet 

Σ containing the discretized residue masses of the 20 common amino acids. Because the 

masses of leucine and isoleucine are the same, the size of Σ is 19 instead of 20. Given a text 

string T over an alphabet Σ and a blocked pattern P, the blocked pattern matching problem is 

to find all substrings of T that match P. The spectrum graph matching (SGM) problem is 

more complex than the blocked pattern matching problem.

Definition 1—Given a text string T over an alphabet Σ and a spectrum graph G, the 

spectrum graph matching problem is to find all substrings of T that match a blocked pattern 

in G.

We first study a restricted version of the SGM problem, in which a start node and an end 

node in G are specified and only paths from the start node to the end node are used to find 

matched substrings of the text string. The SGM problem is solved by enumerating all node 

pairs in G as the start and end nodes in the restricted spectrum graph matching (RSGM) 

problem.

Definition 2—Given a text string T, a spectrum graph G over an alphabet Σ, a start node s, 

and an end node t, the restricted spectrum graph matching problem is to find all substrings of 

T that match a blocked pattern corresponding to a path from s to t in G.

C. A suffix tree based algorithm for the RSGM problem

We present a suffix tree based algorithm for the RSGM problem, which extends the 

algorithm proposed by Deng et al. for the blocked pattern matching problem [17]. The text 

string T is represented by a suffix tree. To simplify the algorithm description, we assume that 

each edge in the suffix tree is labeled with only one letter (integer residue mass).

Below we review the algorithm for the blocked pattern matching problem [17]. A blocked 

pattern is represented as a spectrum graph with only one path from the start node to the end 

node. Let G = {V, E} be the graph representation of a blocked pattern P, where V = {v0, 

v1…, vm} and v0, v1,…, vm is the only path from v0 to vm in G. Each prefix p1, p2,…, pk of 

the blocked pattern P corresponds to a path v0, v1,…, vk. A text string over Σ that matches 

the prefix p1, p2,…, pk is called a prefix text string of vk. A prefix text string is identifiable if 
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it is a substring of T. For example, when P = 114, 255, 87, both 114, 156, 99 and 114, 99, 

156 are prefix text string of P. When T = 114, 156, 99, 87, the string 114, 156, 99 is an 

identifiable prefix text string of P, but 114, 99, 156 is not. If a prefix text string is not 

identifiable, then all text strings with the prefix are not identifiable, making it not necessary 

to search these text strings in T. Using identifiable prefix text strings significantly improve in 

the speed of searching a blocked pattern against the text string represented as a suffix tree.

Let Bi be the set of nodes in the suffix tree corresponding to all identifiable prefix text 

strings of vi for 0 ≤ i ≤ m, where m is the length of the blocked pattern. Specifically, B0 

contains only the root node of the suffix tree. The blocking pattern matching algorithm 

progressively finds the node sets B1,…, Bm in the suffix tree. The node set Bm contains the 

solution to the blocked pattern matching problem.

Unlike the blocked pattern matching problem, the spectrum graph G in the RSGM problem 

contains many paths from the start node to the end node. A trivial method to solve the 

RSGM problem is to explicitly extract all paths in the spectrum graph and search each path 

against the suffix tree separately. However, the number of all paths in a spectrum graph may 

be an exponential function of the number of nodes, making this approach inefficient.

Next, we describe how to extend the blocked pattern matching algorithm to solve the RSGM 

problem. Let V = {v0, v1,…, vm} be the set of nodes in the increasing order of their 

corresponding masses, in which the start node s is v0 and the end node t is vm. A text string 

is a prefix text string of node vi if it matches a blocked pattern corresponding to a path from 

v0 to vi. Let Bi be the set of nodes in the suffix tree corresponding to all identifiable prefix 

text strings of vi, and C(e) be the set of all text strings whose masses match the labeled mass 

of e. In practice, a precomputed table is used to quickly obtain C(e). Because the fragment 

masses in the query spectrum have measured errors, an error tolerance ε is allowed in 

generating the text strings in the table. Denote  the set of all edges whose tail nodes 

are vi. For each edge e = (vj, vi) in Ei, we search from each suffix tree node in Bj to find all 

the paths corresponding to a text string in C(e) and add the end nodes of these paths to Bi.

After the last set Bm is found, the RSGM problem is solved by reporting all the text strings 

corresponding to a suffix tree node in Bm and their positions in T, which are stored in the 

suffix tree. Because the text string T is represented by a suffix tree, the space complexity and 

time complexity of the algorithm are both O(n), where n is the length of the text string T.

The time complexity of the preprocessing step, in which the text string T is represented as a 

suffix tree, is O(n). Let d be the maximum out-degree of the nodes in G, and N be the 

maximum size of C(e) for all edges in G, that is, . We can prove that the 

time complexity of the graph query is O(dNn).

The RSGM algorithm finds all the substrings in T that match a path from v0 to vm by 

reporting the suffix tree nodes in Bm and gives all the substrings in T that match a path from 

v0 to vi by reporting the suffix tree nodes in Bi. That is, the algorithm reports all the 

substrings in T that match a path starting from v0. The SGM problem is solved by setting vm 
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as the end node t and enumerating each node in G as the start node s, and solving the 

corresponding RSGM problems separately.

In practice, we are interested in finding only text strings that match a long path in G. Let Vs 

be the set of nodes v in G such that the sum of the labeled masses on a path from v0 to v is 

no larger than β, where β is a user-specified parameter. Let Vt be the set of nodes v in G 
such that the sum of the labeled masses on a path from v to vm is no larger than β. We only 

report text strings that match a path from a node in Vs to a node in Vt.

D. Protein sequence filtration

A top-down MS/MS spectrum often has low fragment coverage, and its spectrum graph 

consists of several connected components. Based on this observation, we propose to extract 

γ mass intervals (subspectra) that are abundant with fragment masses from the query 

spectrum and construct a spectrum graph from each extracted mass interval, where γ is a 

user-specified parameter. In practice, the value of γ is chosen between 1 and 20. The 

spectrum graphs are searched against the protein database separately and the search results 

are combined to find top sequence candidates. The filtering algorithm is referred to as the 

spectrum graph matching (SGM) filtering algorithm.

In mass interval selection, mass intervals with the same width δ are reported and the width δ 
is a user-specified parameter. In practice, the value of δ is chosen between 500 and 1400 Da 

so that the reported mass intervals correspond to 5 – 14 amino acids. (See Section 

“Parameter settings.”) The score of a mass interval is defined as the number of masses in it. 

A greedy approach is employed to find multiple top-scoring mass intervals. We first find and 

report a top-scoring mass interval. Next, we find and report a topscoring mass interval whose 

overlapping region with each reported mass interval is less than ρ, which is a user-defined 

parameter. The second step is performed iteratively until a total of γ mass intervals are 

reported or no mass intervals that satisfy the condition can be found. In addition, only mass 

intervals with at least 6 fragment masses are reported.

We use reversed mass intervals to find text strings that match suffix fragment masses in the 

query spectrum. Each extracted mass interval is further reversed to obtain a reversed mass 

interval in which suffix fragment masses are converted into prefix fragment masses. We 

search the spectrum graphs generated from the extracted and reversed mass intervals against 

the protein database represented by a suffix tree.

A protein sequence matches a blocked pattern P if its text string representation contains a 

substring that matches P. The score of the pattern P is the number of the nodes in the 

corresponding path in the spectrum graph. The similarity score between a protein sequence 

and a spectrum graph is the score of the best scoring pattern extracted from the graph that 

matches the protein sequence. Let G1, G2,…, Gk be the set of spectrum graphs extracted 

from a query spectrum, the similarity score between a protein sequence and the query 

spectrum is the best similarity score between the protein sequence and G1, G2,…, Gk.

After finding the best scoring pattern from G1, G2,…, Gk that matches a substring of the 

protein sequence, we compute the mass shift between the experimental fragment masses in 

Yang et al. Page 7

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the spectrum and the theoretical fragment masses of the protein sequence, and extend the 

substring at the both ends to find more matched experimental fragment masses. The sum of 

the scores of the path and the matched fragment masses found by the extension is called the 

extended similarity score between the protein sequence and the query spectrum.

III. Results

The SGM filtering algorithm was implemented in Java and tested on a Linux (64-bit) 

desktop PC with an Intel 3.4 GHz CPU and 16 GB memory.

A. Data sets

Two data sets were used to evaluate the SGM filtering algorithm. The first is a top-down MS 

data set with 2027 collision-induced dissociation (CID) and 2027 electron-transfer 

dissociation (ETD) MS/MS spectra from Escherichia coli (EC) K-12 MG1655. The EC 

sample was analyzed by a liquid chromatography system coupled with an LTQ Orbitrap 

Velos mass spectrometer. MS and MS/MS spectra were collected at a 60000 resolution and 

the top 4 ions in each MS spectrum were selected for MS/MS analysis.

The second top-down MS data set was generated from MCF-7 cells. MCF-7 cells were 

obtained from American Tissue Culture Collection (ATCC) and maintained in minimum 

essential media with 5% charcoal-dextran treated fetal calf serum. In the MS experiment, 

soluble MCF-7 intact proteins were separated using the bead-beating based cell lysis 

approach followed by a filter-based desalting step. A liquid chromatograph system with a 

home-made long column was directly coupled with an LTQ Orbitrap Velos Pro mass 

spectrometer with a customized ion source. A total of 5174 CID MS/MS spectra were 

collected at a 60000 resolution.

B. Protein spectrum-matches for evaluation

The EC raw data was centroided using msconvert in ProteoWizard [22] and deconvoluted 

using MS-Deconv [18]. The Escherichia coli K-12 MG1655 proteome database (September 

12, 2016 version, 4306 entries) was downloaded from the UniProt database [21] and was 

concatenated with a shuffled decoy database of the same size. TopPIC [6] was employed to 

search the deconvoluted spectra against the target-decoy database. In TopPIC, unexpected 

modifications were not allowed in identified proteoforms, and the error tolerances for 

precursor and fragment masses were set as 15 part per million (ppm). With a 1% spectrum-

level false discovery rate (FDR), a total of 1866 proteoform spectrum-matches were 

identified. Because of the stringent FDR cutoff, we assume that all the matches are correct in 

the following analysis. The 1866 proteoform spectrum-matches are referred to as the EC 

evaluation data set.

The SGM filtering algorithm was employed to search the spectrum in each of the 1866 

matches against the EC proteome database and report the 20 top scoring proteins. If the top 

20 proteins contain the protein in the proteoform spectrum-match reported by TopPIC, we 

say the filtering is efficient. The filtration efficiency rate of the filtering algorithm is defined 

as the ratio between the number of efficiently filtered spectra and the number of all spectra 

in the experiment.
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C. Parameter settings

We used the EC evaluation data set to test the performance of the SGM filtering algorithm 

with various settings of the parameters In the experiments, only one spectrum graph was 

extracted from each query spectrum (γ = 1), and reversed mass intervals were not included.

We first evaluated the filtration efficiency with various settings of the three parameters α, β 
and δ. In the filtering algorithm, no masses are removed in the spectral preprocessing (λ = 

∞), the error tolerance ε was set as 0.02 Da. To test the 3 parameters, we fixed the settings 

of 2 parameters and compared the performances with various settings of the third parameter. 

First, the parameters α and β were set as α = 300 Da and β = 200 Da, and the parameter δ 
was set as various values between 500 to 1400 Da. The best filtration efficient rate (29.21%) 

of the algorithm is obtained when δ = 900 Da (Fig. 2). Although the running time decreases 

as the value of δ increases, there is no significant difference in the running time when δ ≥ 

900 Da.

Similarly, we evaluated the performance of the SGM filtering algorithm with various settings 

of β between 0 and 400 Da and fixed settings δ = 900 Da and α = 300 Da and the 

performance with various settings of α between 200 and 500 Da and fixed settings δ = 900 

Da and β = 250 Da. The algorithm achieved the best filtration efficiency when β = 250 Da in 

the first experiment and when α = 350 Da in the second experiment. The best filtration 

efficiency rate 33.07% was obtained when α = 350 Da, β = 250 Da and δ = 900 Da.

In practice, the error tolerance ε in the SGM filtering algorithm is determined by the 

precision of the mass spectrometer. By using the following parameter settings: α = 350 Da, 

β = 250 Da, δ = 900 Da, λ = ∞, we compared the performance of the filtering algorithm on 

the EC evaluation data set with various settings of the error tolerance ε in [0, 0.05] Da. The 

best filtration efficient rate was achieved when ε = 0.02 Da, and the filtration efficient rates 

were similar when ε = 0.01 and 0.02 Da.

We also tested how the parameter λ in spectral preprocessing affects the performance of the 

SGM filtering algorithm. We set α = 350 Da, β = 250 Da, δ = 900 Da, ε = 0.02 Da, and 

compared the performance of the filtering algorithm on the EC evaluation data set with 

various settings of the parameter λ between 2 and 12. By setting λ = 8, the SGM filtering 

algorithm achieved the best filtration efficiency. Based on the experimental results, the 

default settings of the parameters are set as α = 350 Da, β = 250 Da, δ = 900 Da, ε = 0.02 

Da, and λ = 8.

D. Multiple spectrum graphs—We used the methods described in Section “Protein 

sequence filtration” to extract multiple spectrum graphs with two parameters: the number γ 
of extracted spectrum graphs and the maximum overlapping region ρ between two mass 

intervals. We compared the performance of the SGM filtering algorithm with various 

settings of the two parameters: γ = 1, 3, 5, 10, 20, and ρ = 0%, 20%, 50%, 80%. Other 

parameters were set as the default values. Using the parameter settings γ = 20 and ρ = 50% 

obtained the best filtration efficiency (Table I), but the running time with the setting was 

about 7 times longer than that with the setting γ = 20 ρ = 20%. Because the numbers of 

fragment masses in many query spectra are limited, the total number of spectrum graphs 
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reported from a query spectrum often depends on the maximum allowed overlapping region. 

When the maximum overlapping region is 0%, that is, overlapping between two mass 

intervals is not allowed, only a few spectrum graphs are generated in most cases. When the 

maximum overlapping region is 80%, more spectrum graphs are generated, significantly 

increasing the running time. This is the reason why the parameter setting γ = 20 and ρ = 

20% achieved a good balance between the filtration efficiency and speed.

We further evaluated the performance of the SGM algorithm with reverse mass intervals. 

Combining spectrum graphs generated from original mass intervals of the query spectrum 

and their reversed mass intervals improves the filtration efficiency. When γ = 20 and ρ = 

20%, experiments showed the filtration efficiency rate (71.01%) of the SGM filtering 

algorithm with reversed mass intervals was much higher than that (54.44%) without reversed 

mass intervals.

E. Comparison with other filtering algorithms

We compared the SGM filtering algorithm with two tag-based algorithms for protein 

sequence filtration on the MCF-7 data set. The first tag-based algorithm is implemented in 

MS-Align+Tag [23] and referred to as TAG-1; the second tag-based algorithm is 

implemented in MSPathFinder [10] and referred to as TAG-2. The MCF-7 raw data was 

centroided using msconvert in ProteoWizard [22] and deconvolued using MS-Deconv [18]. 

The human proteome database (July 9, 2016 version, 20191 entries) was downloaded from 

the UniProt database and concatenated with a shuffled decoy database with the same size. 

The parameters of the SGM filtering algorithm were set as the default values. In the tag-

based methods, the error tolerance for matching the difference between two fragment masses 

to an amino acid residue mass was set as 0.02 Da. Each filtering algorithm reported 20 

candidate protein sequences for each query spectrum. The average running time (554 ms) of 

the SGM algorithm for a query spectrum was about 2 times faster than the tag-based 

algorithms (TAG-1: 1340 ms; TAG-2: 1350 ms).

The three filtering algorithms were further coupled with the spectral alignment algorithm in 

TopPIC for spectral identification. The parameter settings of TopPIC were the same as those 

in the experiment in Section 3.2 except that at most 1 unexpected modification was allowed 

in an identified proteoform. With a 1% spectrum-level FDR, the SGM, TAG-1, TAG-2 

filtering algorithms identified 894, 342, 601 proteoform spectrum-matches, respectively. A 

total of 251 spectra were identified by all the three methods. The SGM method identified 

601 spectra missed by TAG-1 and 385 spectra missed by TAG-2 (Fig. 3), showing that the 

filtration efficiency of the SGM algorithm is much better than the two tag-based algorithms.

IV. Conclusions

In this paper, we proposed an efficient spectrum graph-based filtering algorithm for top-

down mass spectral identification and tested the algorithm on two real top-down MS data 

sets. Compared with tag-based methods, the SGM filtering algorithm circumvents the steps 

of tag generation and searches spectrum graph against the protein database directly, 

simplifying data processing and increasing filtration efficiency. The experimental results on 
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real data demonstrate that the SGM filtering algorithm outperforms the two tag- based 

algorithms in speed and filtration efficiency.
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Figure 1. 
Illustration of spectrum graph generation using an example deconvoluted MS/MS spectrum 

of the protein LNRVSG. (a) In the spectrum, the mass of the N-terminal fragment LNR is 

missing, and there is a noise mass peak (bold) between the fragment masses of LNR and 

LNRV. (b) In the spectrum graph, each node corresponds to a peak in the spectrum. Two 

nodes are connected by a directed edge if the difference between their corresponding masses 

matches the residue mass of one amino acid; the edge is labeled with the amino acid. The 

sequence tag NVRS extracted from the spectrum is incorrect because of the noise mass peak 

and its node v2. (c) In the spectrum graph, each node corresponds to a peak in the spectrum. 

Two nodes are connected by a directed edge if the difference between their corresponding 

masses is less than 400 Da and matches the residue mass of one or several amino acids; the 

edge is labeled by the mass difference. The mass sequence of a path is a blocked pattern of 

the spectrum. For example, the bold path v0, v1, v3, v4 corresponds to a blocked pattern 

114.04, 255.17, 87.03, which matches a correct sequence tag NRVS because 255.07 is the 

sum of the mass 156.10 of R and the mass 99.07 of V.
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Figure 2. 
The filtration efficiency and running time of the SGM filtering algorithm with various 

settings of the parameter δ from 500 to 1400 Da on the EC evaluation data set, when α = 

300 Da, β = 200 Da, no masses are removed in the spectral preprocessing (λ = ∞), and the 

error tolerance ε is 0.02 Da.
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Figure 3. 
Comparison of the numbers of proteoform spectrum-matches identified from the MCF-7 

data set by the SGM, TAG-1, and TAG-2 filtering algorithms coupled with the spectral 

alignment algorithm in TopPIC with a 1% spectrum-level FDR.
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Table I

FILTRATION EFFICIENCY RATES OF THE SGM FILTERING ALGORITHM WITH VARIOUS 

SETTINGS OF THE PARAMETERS γ AND ρ ON THE EC EVALUATION DATA SET.
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