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Abstract—With the advances in the next generation sequencing
technology, huge amounts of data have been and get generated
in biology. A bottleneck in dealing with such datasets lies in
developing effective algorithms for extracting useful information
from them. Algorithms for finding patterns in biological data
pave the way for extracting crucial information from voluminous
datasets. In this paper we focus on a fundamental pattern,
namely, the closest l-mers. Given a set of m biological strings
S1, S2, . . . , Sm and an integer l, the problem of interest is that of
finding an l-mer from each string such that the distance among
them is the least. I.e., we want to find m l-mers X1, X2, . . . , Xm

such that Xi is an l-mer in Si (for 1 ≤ i ≤ m) and the Hamming
distance among these m l-mers is the least (from among all
such possible l-mers). This problem has many applications. An
application of great importance is motif search. Algorithms for
finding the closest l-mers have been used in solving the (l, d)-
motif search problem (see e.g., [1], [2]). In this paper novel exact
and approximate algorithms are proposed for this problem for
the special case of m = 3. We consider the Euclidean distance
metric if the sequences contain real numbers.

Index Terms—Closest l-mers; Closest triplet; Efficient algo-
rithms; Randomized algorithms; Time series motifs; (l, d)-motifs

I. INTRODUCTION

Large amounts of data get generated in every area of science

and engineering. This is especially true in the biological

domain. Currently, the bottleneck is not in generating data

but is in processing these data. Efficient big data analytics

algorithms are called for. A powerful analytics paradigm is

patterns finding. In this paper we study an important pattern

that can be used to solve many other problems including motif

search. Specifically, we investigate the problem of finding the

closest l-mers in an input of strings. The biological strings

could be DNA sequences, protein sequences, etc. Algorithms

for finding the closest l-mers have been used to solve the

(l, d)-motif search problem, see for example [1], [2].

The pattern finding problem of interest can be stated as

follows. The input are m biological sequences S1, S2, . . . , Sm,

each of length n, and an integer l. The problem is to find m
l-mers X1, X2, . . . , Xm such that Xi is in Si (for 1 ≤ i ≤ m)

and the Hamming distance among these l-mers is the least

(from out of all such l-mers). X is an l-mer in a sequence

S if X is a subsequence of S of length l. Each input

sequence can be thought of as a string of characters from

a finite alphabet Σ. For instance, each input sequence could

be a DNA sequence or a protein sequence. We refer to
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this pattern finding problem as the closest l-mers problem

(CLP). If Xi = xi
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as
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2
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m
j ) is 1 otherwise. If the input consists of

time series data, many possibilities arise. Consider the case

of m = 3. Let X,Y , and Z be any three l-mers. Then,

one possible distance among these three is the pairwise-sum
distance d(X,Y, Z) = d(X,Y ) + d(Y, Z) + d(Z,X) where

d(X,Y ) is the Euclidean distance between X and Y .

A special case of the CLP when m = 2 has been studied in

the literature before. For instance, [1] show that this problem

can be solved in O(n2) time for m = 2, where n is the

length of each of the two input sequences. Note that a trivial

algorithm to solve this problem will examine each pair of l-
mers A and B where A comes from the first sequence and

B comes from the second sequence, compute the Hamming

distance between A and B, and output the pair of l-mers

with the least distance. This brute force algorithm runs in

time O(n2l). The O(n2)-time algorithm has been used in

solving the (l, d)-motif search problem (see e.g., [1], [2]).

Time series motif mining could be viewed as a special case of

CLP, and many algorithms have been recently used to solve

this problem, such as FFT technique in [3] and O(n2) methods

in [4] [5], and embedding-based approach in [6].

The case of m > 2 is very important as well. For instance,

in the case of (l, d)-motif search, an algorithm for the case of

m > 2 can be used in the algorithms of [1], [2] in which case

the performance of these algorithms will improve. Also, for

the time series motif mining problem, m being more than 2

can provide deeper insights.

In this paper we present novel algorithms for solving the

CLP when m = 3. We refer to this special case of the CLP

as the closest triplet problem. Specifically, we offer three

different algorithms. Two of these are exact and the third one

is approximate. An algorithm is exact if it always outputs the

closest l-mers. On the other hand, an approximate algorithm

may not output the closest l-mers all the time. In general it

outputs l-mers whose distance is very nearly the same as that

of the closest l-mers. A closely related problem is one where

the l-mers could come from the same sequence, and we also

extend our algorithms to address this problem, by enforcing
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one additional constraint that the l-mers should not overlap.

Paper Organization: The rest of this paper is organized

as follows. In Section II we review an existing algorithm

for CLP when m = 2. This special case is called the

closest pair of subsequences problem. Next in Section III, we

propose two exact algorithms. The first algorithm uses O(n2)
multiplications and O(n3) addition operations, and uses O(n2)
memory. We call this algorithm Exact-0. The second algorithm

has a run time of O(n3), but only uses O(1) memory. We call

the second algorithm Exact-1. Another version of the second

algorithm takes O(n) memory but reduces the running time

to O(n3 − n2l). Note that the second version only applies

to pairwise-sum distances. In Section IV we present our

experimental results. We have used both biological and time

series data, and employed Hamming distance and pairwise-

sum Euclidean distance, respectively. Section V provides some

concluding remarks.

II. BACKGROUND

The O(n2) Time Algorithm of [1]
For solving the closest pair of l-mers problem, Pevzner

and Sze exploit the overlaps during the process of computing

pairwise distances [1]. This eliminates the dependence of the

run time on l [1]. Let S = s1, s2, . . . , sn be any given

sequence data and let l be the length of the subsequences

we are interested in. The problem of finding the closest pair

of subsequences in S can be decomposed to (n − l + 1)
subproblems. Let these subproblems be referred to as Pi,

for 1 ≤ i ≤ (n − l + 1). Each Pi computes the distance

between the following pairs of subsequences of length l:
([sj , sj+1, . . . , sj+l−1], [si+j−1, si+j , . . . , si+j+l−2]), for 1 ≤
j ≤ (n − l + 1). Note that in these distance calculations, we

can ignore any pair if the elements sn′ (for n′ > n) appear

in any of the two subsequences. Let the distance between the

pair ((sj , sj+1, . . . , sj+l−1), (si+j−1, si+j , . . . , si+j+l−2)) be

dij , for 1 ≤ j ≤ (n− l + 1).
[1]’s algorithm makes use of the overlaps in consecutive

pairs. We use the Euclidean distance metric as an example

here but it is easy to extend our discussion to Hamming

distance as well. Since (dij)
2 = (sj −si+j)

2+ . . .+(sj+l−1−
si+j+l−1))

2, the next pair’s squared distance could be ex-

pressed as (dij+1)
2 = (sj+1 − si+j+1)

2 + . . . + (sj+l −
si+j+l)

2 = (dij)
2 − (sj − si+j)

2 + (sj+l − si+j+l)
2.

Clearly, the computation of (di1)
2 takes O(l) time. Note that

(dij)
2 can be obtained from (dij−1)

2 in an additional O(1) time

(for j > 1). Thus the problem Pi can be solved sequentially

in a total of O(n) time (for any specific value of i, 1 ≤ i ≤
(n− l+1)). Since there are a total of n subproblems, the total

running time is O(n2), which is independent of l.

III. PROPOSED ALGORITHMS

When m = 3 we can solve the CLP in O(n3l) time in

a straight forward way. The idea is to compute the distance

among every triplet of l-mers. For each triplet the time spent

is O(l) and there are O(n3) triplets.

A. Exact-0 Algorithm for Pairwise-sum Distances

We can solve the CLP for m = 3 in O(n3) time using

the algorithm of [1] as a subroutine. This algorithm will work

as follows: 1) Use the algorithm of [1] to compute pairwise

distances in O(n2) time. Store all of these distances. Followed

by this, compute the distance for each possible triplet of l-
mers.

Theorem 3.1: We can use Exact-0 algorithm to solve the

CLP for m = 3 using O(n2) multiplications and O(n3)
addition operations, as well as O(n2) space. �

B. Exact-1 Algorithm

If the input size n is large, the O(n2) memory cost may be

prohibitive. For example, when n = 40 × 103, using double

precision storage, the algorithm would require roughly 10 GB

of memory. This is quite large. Besides, as memory usage

increases, the memory accessing cost will become dominant

and make the algorithm take longer time to finish.

Motivated by this, we have developed a memory efficient

algorithm that solves this problem in O(n3) time with only a

constant memory requirement. In the case of pairwise-sum

distance measurement, O(n2l) time could be saved at the

cost of O(n) memory. We thus have two versions: The first

version takes O(n3) time and uses O(1) memory; the second

version takes O(n3 − n2l) time and employs O(n) memory.

The second version is very useful when l is not far less than

n. For instance, if l = 0.3n, then 30% of the total running

time could be reduced.

1) Version 1: O(1) Memory: The key idea to reduce the

memory cost from O(n2) to O(1), is by exploiting the overlaps

like in [1]. Rather than using [1]’s algorithm as a subroutine

to compute all pairwise distances in the first step, we split

the entire procedure into subproblems Pik such that each

subproblem represents a unique alignment (i, k) and outputs

distances of the triplets (a, a+ i, a+ i+k), a ∈ [1, n]. Clearly,

consecutively outputting the distance as a shifts, would cost

O(n) time for each subproblem, and there are a total of O(n2)
subproblems. So the total running time for this algorithm is

O(n3). Besides, since only one set of distances (for pairwise-

sum distance, three pairwise distances are stored; for direct

distance, one triplet distance is stored) needs to be stored in

memory, the memory cost becomes O(1) during the entire

process. This can be seen as an enhanced version of [1]’s

algorithm. We arrive at the following Theorem:

Theorem 3.2: The CLP can be solved in O(n3) time using

O(1) space applying Exact-1 algorithm version 1. �

2) Version 2: O(n) Memory: Without loss of generality,

we give an illustration using the example of finding the

closest 3 l-mers from one single sequence under pairwise-

sum measurement metric, with a constraint that there are no

overlaps for l-mers in the closest triplet. In the previous O(1)
version, for each alignment < i, k >, the starting cost to

compute d(0, i), d(i, i+ k), d(0, i+ k) still requires O(l) time

each. And since there are O(n2) alignments, the subproblems’

starting costs accumulate to O(n2l). After starting, all the

remaining distances are calculated in only O(1) time. As a
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result, removing the starting cost could save a descent fraction

of the total running time. As noticed, the majority of starting

cost is in the form of d(0, i), i ∈ [l, n − 2l]. Thus a simple

solution is to store these values in memory to avoid repetition

in computing them. This only requires O(n) storage and the

running time is reduced to O(n3 − n2l) as a consequence.

Details of this algorithm are given in Algorithm 1.

Algorithm 1 Exact-1 Algorithm with O(n) Memory

Input: Sequence A = s1, s2, . . . , sn; subsequence At is defined as
At = [st, st+1, . . . , st+l−1]; d̂(At1 , At2 ) denotes squared Euclidean
distance between At1 , At2

Output: A triplet of subsequences that has the least pairwise-sum Euclidean
distance

1: Set best-so-far b = ∞
2: for i = 0 to n− l do
3: Compute and store D1[i] = d̂(A0, Ai)
4: end for
5: for k = l to n− l do
6: Obtain d̂1 ← D1[k]
7: for j = l to n− k do
8: Compute d̂2 = d̂(Ak, Ak+j); Obtain d̂3 ← D1[k + j]

9: tmp =
√

d̂1 +
√

d̂2 +
√

d̂3
10: if tmp < b then
11: update b ← tmp and the corresponding indices
12: end if
13: for i = 0 to n− l − k do
14: d̂1 = d̂1 − (si − si+k)

2 + (si+l − si+k+l)
2

15: d̂2 = d̂2 − (si+k − si+k+j)
2 + (si+k+l − si+k+j+l)

2

16: d̂3 = d̂3 − (si − si+k+j)
2 + (si+l − si+k+j+l)

2

17: tmp =
√

d̂1 +
√

d̂2 +
√

d̂3
18: if tmp < b then
19: update b ← tmp and the corresponding indices
20: end if
21: end for
22: end for
23: end for
24: return b and the corresponding indices

Theorem 3.3: We can solve the CLP in O(n3 − n2l) time

using O(n) memory applying Exact-1 algorithm version 2. �

C. Approximate Algorithm

We also provide an approximate algorithm addressing CLP

problem when m = 3. Due to page limits, the details of the

approximate algorithm is in the full version of this paper.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed algorithms for run

time and/or accuracy using two existing datasets. Each dataset

is tested using one measurement metric (Hamming distance

and pairwise-sum Euclidean distance). The test platform we

are using is equipped with Intel Xeon CPU @ 2.67GHz.

A. Genome Dataset

We have performed intensive experiments on human

genome data set [7]. We chose 21 chromosomes and grouped

them into 7 files each having 3 chromosome sequences.

We have run Exact-1 and brute-force algorithms in order to

identify the closest l-mers among three sequences in each

set, and there are 7 sets of genome sequences. We have used

different values for n ranging from 4,000 to 60,000. The first

n elements of the 7 sets of genome sequences are used to form
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Fig. 1. Running time comparison on the Genome dataset

the input sequences. Hamming distance is used as the distance

metric. For a fixed n and l, we call such a combination a test

group, and the running time is calculated as an average over

the 7 sets of genome sequences for this group.

At first we compare our proposed algorithms with the

(O(n3l) time) brute-force algorithm. The result is shown in

Figure 1 for n ranging from 4, 000 to 10, 000, with l = 100
to 500. The running time is provided in Semilog-Y plot for

a better illustration. When n is larger than 6, 000, the brute-

force algorithm takes more than 10 hours. Thus we have run

the brute-force algorithm only for n = 4, 000 and n = 6, 000.

From the plot, we clearly see that the Exact-1 algorithm

outperforms the brute-force algorithm by more than one order

of magnitude for all the 5 different l values. Also, as the dataset

size n increases, the running time difference increases. For a

fixed n = 6, 000, increasing l will increase the running time of

the brute-force algorithm by a lot, but almost has no effect on

the Exact-1 algorithm. This is due to the fact that the running

time of Exact-1 is independent of l as shown in a previous

analysis.

B. Human Activity Dataset

In this experiment, we evaluate our algorithms under the

pairwise-sum distance measurement using Euclidean distance,

i.e., d(Ai, Aj , Ak) = d(Ai, Aj) + d(Aj , Ak) + d(Ai, Ak).
The goal is to identify 3 l-mers from one single sequence

A, such that their pairwise-sum distance is minimum, under

the constraint that they do not overlap with each other.

The dataset we use is from UCI Machine Learning Repos-

itory [8]. For a fair comparison, we have randomly selected

one dataset which happens to be the Heterogeneity Activity

Recognition Data Set [9]. This contains around 1 × 107 real

numbers. This dataset includes cellphone accelerometer and

gyroscope recorded data for human activity. There are 6

sensor coordinates in total and each forms a long sequence

of numbers.

To perform evaluations, we downsampled the dataset with

an interval of 10 for each sequence, and then applied a shifting

of 0 and 5 to obtain a total of 12 downsampled sequences.
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Fig. 2. Running time comparison on time series data (Activity dataset)
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Fig. 3. Running time comparison for different dimensions (Activity dataset)

We have performed evaluations on different n and d values.

The first n elements in each sequence have been pulled out to

form a group of data sequences. The evaluation is based on the

average performance across 12 data sequences in each group,

and accordingly the accuracy is reported as the number of

Hits out of 12. Three algorithms are evaluated on this dataset,

which are Exact-0, Exact-1 and Brute-force.

Similar to our previous experiment, we evaluate the algo-

rithms on different n and l values. As shown in Figure 2,

the Brute-force algorithm is the most time consuming and it

takes more than 10 hours in our experiment for n > 6, 000
cases. Exact-0 gives the best run time. For datasets of size

up to 10, 000, around 600MB memory is utilized by Exact-0.

However, since Exact-0 is five times faster than Exact-1, it is

very competitive on small to moderate datasets.

In the next test we demonstrate how the run times of the

algorithms vary as l changes. We pick n = 6, 000 and change

l from 100 to 500. Figure 3 plots three curves representing

the three algorithms, respectively. As expected, for both exact

algorithms Exact-0 and Exact-1, the running time decreases

as l increases, because the actual number of triplets (n − l)3

decreases. For Brute-force, the runnig time increases due to

its dependence on l.

The next experiment is performed on larger n and l values.

In particular, n = 10, 000, 20, 000, d ranges from 200 to

2, 000. Brute-force algorithm is not included here as it takes

too much time to finish. From Table I, we can see that Exact-

0 is faster than Exact-1 as long as enough memory is given

(O(n2) memory is required).

TABLE I
RUNNING TIMES ON LARGE DATASETS

l=200 l=400 l=600 l=800 l=1,000
n=10k Exact-0 167.5 139.4 108.2 88.4 69.0

Exact-1 695.9 587.8 489.8 403.5 329.4
l=400 l=800 l=1,200 l=1,600 l=2,000

n=20k Exact-0 1,404.0 1,146.8 953.4 725.6 582.6
Exact-1 5,583.9 4,742.6 3,997.6 3,247.1 2,681.1

C. Summary of Experimental Evaluation

In this section we have performed comprehensive evalua-

tions on the Genome dataset and the Activity dataset. The

measurement metrics we used are Hamming distance and

pairwise-sum Euclidean distance. The experiments have been

carried out for different n and l values. From the experiments

we make the following observations: The performances are

consistent using both measurement metrics on two different

datasets, showing our proposed algorithms are robust; Exact-0

algorithm runs faster than Exact-1, at a cost of O(n2) memory.

On small datasets, it is very competitive; Exact-1 is performing

much better than brute-force, making it a good candidate for

exact algorithm that always outputs the correct answer; Both

exact algorithms’ running times decrease as l increases. Due to

page limits, experimental results on the approximate algorithm

can be found in the full version of this paper.

V. CONCLUSIONS

In this paper we consider the problem of finding the closest

l-mers. Our experimental results reveal that our algorithms are

highly competitive.
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