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Abstract

Adverse drug reactions (ADRs) represent one of the main health and economic problems in the 

world. With increasing data on ADRs, there is an increased need for software tools capable of 

organizing and storing the information on drug-ADR associations in a form that is easy to use and 

understand. Here we present a step by step computational procedure capable of extracting drug-

ADR frequency data from the large collection of patient safety reports stored in the Federal Drug 

Administration database. Our procedure is the first of its type capable of generating population 

specific drug-ADR frequencies. The drug-ADR data generated by our method can be made 

specific to a single patient population group (such as gender or age) or a single therapy 

characteristic (such as drug dosage, duration of therapy) or any combination of such.
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I. INTRODUCTION

Adverse drug reactions (ADRs) are unwanted outcomes of drug treatments. Due to their 

frequencies and severity of their presentations, ADRs represent one of the main public 

health problems [1,2]. The clinical impact of ADRs is manifested by frequent visits to 

emergency departments and extended hospital stays [3]. ADRs are the major cause of failed 

drug-discovery pipelines and, in turn, loss of revenue by the drug manufacturers. The 
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accompanying burden on world economy is large and is measured by tens of billions of 

dollars annually [4].

Understanding side-effects and their associations to drugs is of utmost importance in 

medical research. Databases of drugs, side-effects and their associations are used to predict 

other side-effects and ensure the safe use of drugs. Drug-ADR databases can be used to 

prescribe the correct drugs to patients or to predict the likely side effects of a yet-untested 

drug. As such, drug-ADR association databases are vital in medicine, biomedical research, 

and drug discovery.

A vast amount of raw data on drugs and their observed side effects is already made available 

as part of the Food and Drug Administration database openFDA (https://open.fda.gov/) [5]. 

OpenFDA was launched in 2014 with the goal of providing easy access to data which, in 

turn, is expected to educate the public and save lives. The public data is also intended to 

support biomedical research and drug discovery.

The openFDA data is available for direct download or can be accessed through the 

Application Programming Interface (API). The data is massive is size (~100 GB) as it 

contains millions of reports on drugs, medical devices, and food. These categories are 

further divided into specific types of reports. For example, drug reports are divided into drug 

adverse events, drug product labeling, and drug recall enforcement reports. There are over 

7.4 million drug adverse event reports which can be queried using the API.

The openFDA API provides a large number of search parameters as well as the ability to 

filter data by the parameters, such as the drug dosage, patient gender, age and weight, to 

name a few. While adverse event reports contain varying levels of details, they all follow the 

same general structure. At the top is the information about the report itself, such as the 

report ID and receive date. Each report contains the information about the patient’s statistics 

(age, weight, sex, etc.). Finally, there is a list of medicinal products the patient is taking and 

a list of reactions the patient suffered from.

The ultimate goal of our project is to compile and organize the openFDA reports into a 

collection of drug-ADR databases that will provide the frequency (probability) that any 

given drug will give rise to any particular ADR. Most importantly, by taking advantage of 

the openFDA data categorized by patient characteristics and drug treatment, we can compute 

the relative frequency of an adverse reaction for each drug each given patient population. 

Availability of patient and treatment specific ADR frequencies is very important since the 

probability of a drug giving rise to a particular ADR vary among groups. For instance, 

unlike the pediatric population, the geriatric population has several known issues with 

antibiotics [6], such as the acute renal insufficiency. Other frequently seen ADRs in elderly 

are hypokalaemia and symptomatic hypotension [7]. The pediatric population is prone to 

skin reactions (e.g. urticaria) and adverse events affecting the gastrointestinal system, 

although serious ADRs, such as those related to the central nervous system, are also 

frequently observed [8].

While the importance of accurate population- and therapy-specific drug-ADR databases 

cannot be underestimated in biomedical research and drug discovery in general, the field that 
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can immediately take advantage of our data and programs is the computational prediction of 

drug side-effects [9,10,11]. Currently, all computational tools for predicting ADRs for a 

given drug use a single, one-fits-all binary matrix of known drug-ADR associations [12]. 

Our project is expected to enhance the computational ADR prediction in two directions. 

First, instead of using a binary (0/1) matrix of known drug-ADR associations (where 1 

represents a known association and 0 represents no known association), future 

computational methods will be able to employ the probabilities of drug-ADR associations 

(ranging from 0 to 1). Furthermore, the ADR predictions can be made more accurate by 

utilizing drug-ADR frequencies specific to the population group of interest (gender, age, 

etc.) or the drug treatment characteristics (such as drug dosage, duration of treatment, etc.) 

or any combination of such.

II. METHODS

Our research was carried out in three phases. Section A below describes how we identify a 

representative set of FDA approved drugs according to some well-defined criteria. In section 

B we describe how we modify and use the FDA API to extract all drugs associated with a 

given ADR. The work-in-progress procedure for normalizing the output set of drugs and the 

procedure for generating drug-ADR counts (frequencies) is described in section C.

A. Generating a representative drug set

We were primarily interested in drugs approved for use in the United States. Thus, we began 

compiling drugs from the Food and Drug Administration (FDA). The FDA has two 

resources for approved drugs, Drugs@FDA [13] and Orange Book [14]. Both of these 

databases contain prescription as well as over-the-counter drugs approved for human use in 

the United States. Both lists also contain approved drugs which have been labeled 

“discontinued” due to never being marketed, discontinued from marketing, drugs intended 

for military use, for export only, or drugs having approval withdrawn. These sets of drugs do 

not contain dietary supplements, animal drugs, or drugs approved outside the United States 

that have not been approved for marketing inside the country. Of these two drug sets, Orange 

Book is the smaller one and is a strict subset of Drugs@FDA. This is because Drug@FDA 

also includes tentatively approved drugs and therapeutic biological products. However, we 

were only concerned with approved drugs and so we used Orange Book as a starting point to 

compile our initial drug list.

Orange Book is available for download from the FDA’s website and includes both the 

ingredients and trade names of each drug. The same ingredient may appear many times 

under different trade names, and the ingredient information (column) for a drug may actually 

contain a mixture of multiple ingredients. To obtain a set of unique ingredients, we extracted 

the ingredient column of the Orange Book’s products.txt file and used it as our initial (yet 

unrefined) set of drugs.

However, when compared to similar work, such as SIDER [15], our set of drugs turned out 

to be significantly larger. We found this difference was due to three main factors: our set 

contained mixtures of ingredients, discontinued drugs, and ingredients in pharmaceutical salt 

forms. The differences due to mixtures and discontinued drugs were intentional and required 
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no action, but several ingredients appeared in the set multiple times under different salt 

forms.

Our solution to merge the salt forms of the same ingredients together was to use the RxNorm 

[16]. RxNorm is a publicly available suite of designated standards that provides normalized 

names for clinical drugs. Each concept within RxNorm is assigned a term type (TTY) and 

links to other related concepts. For example, a concept under the Ingredient (IN) TTY may 

have related salt forms under the Precise Ingredient (PIN) TTY and brand name drugs which 

contain that ingredient may appear under the Brand Name (BN) TTY. We used RxNorm to 

check our set of drugs (each represented by the corresponding ingredient specified in the 

Orange Book), and if any were found to be PINs, we would replace it with the related 

Ingredients (INs).

Specifically, for each drug in our set, we used the RxNorm Web API to determine the TTY. 

The API accepts an ingredient (represented as a string in Orange Book) as input and returns 

the concept in RxNorm including a unique identifying number and the TTY (such as IN or 

PIN). If the search returned a TTY other than IN, the Web API was used again to find the 

related IN concept. In rare cases when there were more than one related IN, we chose the 

best matching IN manually. An illustrative example is provided in Fig. 1.

However, we encountered a problem when it came to finding mixtures from our set in 

RxNorm. Namely, while RxNorm also contains Mixtures (MINs), the TTYs of IN and MIN 

are grouped together. In other words, RxNorm’s MIN is a combination of INs, and contains 

no PINs. This created a problem because many of the mixtures from the Orange Book 

contained at least one PIN which led to the search API failing to find the mixtures in 

RxNorm.

An attempted solution was to use the approximate search also available in the API. 

Approximate search would return a large number of results and rank them with a score 

indicating the best match. Ultimately this proved unreliable in converting PINs to INs. More 

specifically, the search returned many different candidates tied for the highest score, and 

these candidates were often MINs with an ingredient from the search string missing, or an 

unrelated ingredient included.

Since approximate search was not working, we sought a solution to converting salt forms 

within a mixture to INs using the original API search. While the original API search would 

not work with the entire mixture string from the Orange Book at once, we could make it 

work by searching one ingredient at a time. Each mixture was split into its component 

ingredients, the TTY checking procedure was performed on each component, and then the 

components were recombined back into a mixture.

As we converted PINs to INs, we saved the salt form (PIN) to ingredient (IN) associations 

for future use. This was done in the hope of reducing the future run time by loading the 

associations into a dictionary for constant time lookup and no longer needing to query the 

RxNorm API.
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However we also discovered the need for another dictionary unrelated to PINs. Some INs 

have multiple synonymous names and the name preferred by Orange Book is different than 

that preferred by RxNorm. The RxNorm API will correctly direct the Orange Book name to 

the RxNorm name, but a direct string comparison would fail. As a remedy, we created a 

second dictionary, this one for non-salt form synonyms to also reduce the number of queries 

to the RxNorm API. In the end, we had our set of drugs from the Orange Book with the 

pharmaceutical salt forms removed, along with two lists of synonymous terms to aid in 

future work.

B. Querying openFDA to generate a list of drugs for a given ADR

The openFDA database provides drugs’ side-effect data through its FDA Adverse Event 

Reporting System (FAERS, https://open.fda.gov/data/faers/). FAERS contains ADR 

information specific to not only drug indication and dosage, but also to patient sex, onset 

age, demographics, weight, start and end date of a reaction, etc. Although FAERS mostly 

contains ADRs for combination drugs, the resource is large enough to provide meaningful 

single-drug-to-single-ADR relationships. For instance, the latest quarterly release (Oct–Dec 

2017) (among 17 published) contains over 300,000 case reports.

Since FAERS case reports are given in the form of .xml files with well-defined tag hierarchy, 

the first approach we considered was to create a MySQL database containing two distinct 

tables. One table would specify the relationship between medicinal products and the other 

would specify the relationship between medicinal products and active substance names. 

These would later be mapped to the normalized set of drugs found earlier (as explained in 

section A). We abandoned that approach due to the concern that MySQL databases would 

not perform well because of the large amount of data (although we could have tried creating 

multiple MySQL databases and query them in parallel).

Instead of directly downloading and dumping FAERS .xml files into MySQL databases, we 

decided to take advantage of the recently made available API from FDA. While this 

approach proved feasible, it was also faced with difficulties. First, an FDA API is not 

configured to return all safety reports for each query ADR. Specifically, upon getting the 

first 100 safety reports related to the query, the API query parameter “skip” had to be set in 

order to access the next 100 safety reports. Since the maximum limit on the “skip” is 50 we 

could access only (100) + (50*100) = 5100 safety reports. FDA has recently increased the 

limit on the total number of safety reports to 25,000. However, even the new limit is not 

large enough, since some query ADRs are found in hundreds of thousands of safety reports.

We thought of two potential ways to address the issue above. The first was to create our own 

API (using the source code provided by FDA at github) and modify it to fit our needs. 

However, we found that it was simpler to do some adjustments in the processing of data and 

queries. We could eliminate the upper limit on the number of safety reports returned for a 

query by decomposing the search. More specifically, we divided original query into several 

smaller queries by placing the limits on safety report “receive dates”. In some cases the 

increments in safety report’s “receive dates” were as small as 10 days (an example case 

being the drug “aspirin” which shows in 404,389 safety reports). The procedure of 

decomposing the search is illustrated in Fig. 2.
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The other difficulties were encountered when trying to parse the output data for drugs 

related to query ADRs. In some cases, API queries provided false results. Occasionally, the 

query ADR is not associated to any drug listed in the output but only appears in the 

reference section of the safety report. We also found that the metadata section of the output 

json safety report file often had improperly nested parentheses, which created further 

difficulties. Both of these issues required post-processing of the output files to ensure the 

accuracy of the drug-ADR association data.

C. Normalizing the drug names in the output files and computing drug-ADR counts

The drugs from the openFDA safety reports contained many spelling errors and random 

punctuation, making them difficult to compare with our set of drugs. In order to identify 

these drugs we used the natural-language processing software MetaMap [17], provided by 

the U. S. National Library of Medicine. MetaMap dramatically improved our ability to 

identify drugs in the safety reports. One case went from 28.2% of drugs identified before 

MetaMap and rose to 59.7% identified after using MetaMap.

In order to run MetaMap on the drugs from the openFDA safety reports associated to query 

ADR, we first output the drugs from the safety report to a file containing one drug per line. 

This is the format that MetaMap can read. We configured MetaMap to identify terms (rather 

than complete sentences) by ignoring the order of words in the input text. The output was 

restricted to only concepts of the specified semantic types. In our case this was 

Pharmacologic Substance (phsu), Antibiotic (antb), Organic Chemical (orch), and Vitamin 

(vita). Finally, we configured MetaMap to generate an unformatted XML file with the 

results. This XML file was then parsed by a Python script to find the results for each drug, if 

any exist.

In the end, each drug from the safety reports had a pair of names: the original name as it 

appeared in the safety report, and the name returned by MetaMap (if any). Both of these 

names were compared to our set of drugs, and if at least one matched, then that drug was 

identified to be part of our set of drugs.

III. AVAILABLE DATA AND PROGRAMS

The Python scrips for computing the representative set of drugs and querying openFDA 

safety reports can be downloaded from http://bioinfo.cs.uni.edu/Drug-Adr/. At the same 

URL, we provide the script getDrugs.py for creating a compact set of FDA approved drugs 

using FDA’s Orange Book and RxNorm as well as two dictionaries: one for replacing salt 

forms (or other PINs) with their associated INs and another one for translating between 

vocabularies that use different names for the same ingredient. We also provide the script 

query_hard.py for compiling the set of safety reports containing the query ADR of interest.

IV. DISCUSSION AND CONCLUSION

Adverse drug reactions (ADRs) represent a major burden on public health and world 

economy [18,19]. While most ADRs for individual drugs are reported and documented on 

drug package inserts, limited resources currently exist that provide explicit statistics on drug-
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ADR associations. And while current databases of drug-ADR associations, such as SIDER 

[15], provide comprehensive binary drug-ADR associations, the actual probabilities 

(frequencies) of those associations are only reported for less than 50% of drug-ADR pairs. 

Furthermore, the drug-ADR associations in SIDER are only cumulative associations, 

computed for all patient and treatment categories combined. To the best of our knowledge, 

patient-specific or treatment-specific drug-ADR frequencies are not currently available in a 

form that is easy to use and understand.

The method we present here is able to explore large openFDA resources using the FDA 

provided API and the natural language processing and text mining tools to extract 

comprehensive data on drug-ADR association counts. Our method is able to generate drug-

ADR counts for different population groups such as gender-, age- and demographics-

specific drug-ADR associations, drug-dose specific associations, and side-effects arising 

from combination drugs.

We believe that population specific drug-ADR databases, such as those developed using our 

methodology, will fuel progress in biomedical research. For instance, current methods for 

computational prediction of ADRs associated with novel chemicals can immediately take 

advantage of population specific data to improve accuracy of ADR predictions. At present, 

methods for computational prediction of ADRs, such as ML (multi-label learning) or CCA 

(canonical correlation analysis) can predict ADRs for a given drug based upon the 

knowledge of ADRs associated to other drugs. This knowledge is stored in a binary m × n 
matrix R, where each row represents a drug and each column represents an ADR. The 

entries of R are defined as

ri j = 1
0

if drug i causes ADR  j
otherwise

Techniques such as collaborative filtering or multi-label learning can also take advantage of 

known drug-ADR associations to identify ADRs for novel chemicals. Currently, the matrices 

of drug-ADR associations represent cumulative knowledge, computed for all populations 

combined. It is reasonable to expect that replacing current, one-fits-all matrices with 

population specific matrices will increase the accuracy of computational ADR prediction.

Our method for extracting drug-ADR associations can be viewed as a three-step procedure. 

In the first step we generate a representative set of FDA approved drugs according to some 

well-defined criteria. We require that our set contains neither animal drugs nor dietary 

supplements. We also exclude drugs approved outside the United States that have not been 

approved for marketing inside the country. However, since a larger data sets is still desirable 

(e.g. for use in computational ADR prediction methods) we do allow into our set the 

previously approved but discontinued drugs. Drug duplicates are removed using the RxNorm 

resource that provides links between drug terminologies and pharmacy knowledge systems 

[16].

To compile the set of drugs responsible for each given ADR, we mine openFDA adverse 

reaction database (FAERS) using the API provided by FDA. This API is modified to ensure 
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that each search with a query ADR returns all safety reports containing that ADR. A 

straightforward post-processing of the results is needed to ensure the accuracy of extracted 

drug-ADR associations.

Finally, we use a natural language processing tool (namely MetaMap [17]) to map the set of 

drugs returned in the safety reports to the set of FDA approved drugs compiled in the first 

step. This ensures better drug coverage and results in more accurate drug-ADR association 

data.

Our method for computing drug-ADR counts is different and complementary to all existing 

methods for the same problem. For instance, in contrast to drug-ADR associations extracted 

from the drug package inserts (as done in SIDER) our associations are derived from patient 

safety reports deposited in openFDA. In general, there may be multiple drugs and reactions 

in a single report, which makes it difficult to determine which drug is responsible for which 

reaction. This uncertainty can be accounted for by taking advantage of large and increasing 

number of safety reports available in openFDA. Moreover, a simple statistical model can be 

developed for computing accurate association frequencies that takes account of the overall 

occurrence of ADRs across all openFDA safety reports.

To increase the database accuracy further, our future research will focus on the openFDA 

records that pertain to the reported role of each drug in the adverse event. We will also take 

advantage of the “Potential Signals of Serious Risks/New Safety Information” resource, 

which provides a listing of possible safety concerns for selected drugs from FAERS. For 

instance, the July-Sept 2016 quarterly report lists the use of sensipar tablets as a potential 

risk for gastrointestinal bleeding, which is invaluable information in predicting 

gastrointestinal bleeding (or a similar ADR) as an adverse event of drugs similar to sensipar.
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Figure 1. 
Normalizing the active ingredient abiraterone acetate. Figure A shows the entry of this 

ingredient in the Orange Book. Figure B shows the mapping of the same ingredient in “salt” 

form (PIN) to the corresponding (IN) TTY form given in the RxNorm. The detailed 

mapping procedure is presented in figure C.
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Figure 2. 
Decomposing the query search to circumvent the limit on the number of returned safety 

reports.
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