

DEVELOPMENT OF “KBCOMMONS” – UNIVERSAL INFORMATICS

FRAMEWORK FOR MULTI-OMICS TRANSLATIONAL RESEARCH

A Thesis

Presented to

The Faculty of the Graduate School

At the University of Missouri

In Partial Fulfilment

Of the Requirements for the Degree

Master of Science

By

SIVA RATNA KUMARI NARISETTI

Dr. Trupti Joshi, Advisor

DECEMBER 2017

The undersigned, appointed by the dean of the Graduate School, have examined the

Thesis entitled

DEVELOPMENT OF “KBCOMMONS” – UNIVERSAL INFORMATICS

FRAMEWORK FOR MULTI-OMICS TRANSLATIONAL RESEARCH

Presented by Siva Ratna Kumari Narisetti

A candidate for the degree of

Master of Science

And hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Trupti Joshi

Dr. Dong Xu

Dr. Walter Gassmann

For Amma, Naanna, Annayya

ii

ACKNOWLEDGEMENTS

Firstly, I would love to express my wholehearted thanks of gratitude to my advisor,

Dr. Trupti Joshi, for her constant guidance and help during my Master’s program. I really

appreciate her patience, especially her clear and profound explanation when answering my

questions. It would not have been possible for me to successfully complete my thesis

without her encouragement and support. I am very grateful for the opportunity to join Dr.

Joshi's Bioinformatics lab and to conduct research.

I would also like to extend my sincere thanks to my co-advisor, Dr. Dong Xu, for

his valuable and graceful advice on our research problem. Interactions with him helped me

think critically, especially from a computer scientist perspective. I would also like to

specially thank Dr. Walter Gassmann for being on my thesis committee and for his advice

on this thesis.

I would like to thank all the Bioinformatics lab members, who were very supportive

and helpful. Especially, I thank Shuai Zeng for sharing his academic knowledge and

experience and for the great discussions we had when working on research together. I also

thank Sadia Akter, Sidharth Sen and Priyanka Basavaraj for providing me with sample

data, for their support and friendship.

Finally, I would love to sincerely thank my parents and my brother for their

blessings and moral support throughout my life. My brother is my inspiration and all his

achievements are my motivation. My parents are my role models for their love and

encouragement throughout our education in spite of having a very modest background in a

small village of India, where higher education for a girl has only been a dream.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF FIGURES AND TABLES... v

ABSTRACT ... viii

 Introduction ... 1

1.1 Biological Background .. 1

1.2 Technical Introduction .. 3

 Database and Frontend Architecture ... 8

 KBCommons Functionalities .. 17

3.1 KBCommons Flowchart .. 17

3.2 Data Sources and Supported Datatypes .. 20

3.3 Browse KBCommons .. 22

3.4 Contribute to KB ... 28

3.5 Add Version to KB .. 30

3.6 Create a new KB ... 31

 Case Study ... 32

4.1 Medicago truncatula Introduction .. 32

4.2 Create a new KB for Medicago truncatula ... 33

4.3 Contribute to Medicago truncatula KB .. 45

4.4 Browse KBCommons for Medicago truncatula ... 59

iv

4.5 Add version to KB for Medicago truncatula .. 64

 Testing ... 65

 Applications of KBCommons ... 68

 Summary .. 69

 Future Study .. 70

 References ... 72

VITA ... 77

v

LIST OF FIGURES AND TABLES

Figure 1. Model-View-Controller cycle ... 4

Figure 2. A full MVC request cycle for Laravel application .. 6

Figure 3. Agile Software development life cycle ... 7

Figure 4. AJAX workflow .. 9

Figure 5. Organism library metadata .. 11

Figure 6. Entity-Relation diagram for organisms ... 12

Figure 7. Metadata for user library ... 13

Figure 8. Entity-Relation diagram for users ... 14

Figure 9. KBC home route .. 17

Figure 10. KBCommons Flowchart .. 18

Figure 11. KBCommons Home Page.. 19

Figure 12. KBCHome controller system-1 .. 23

Figure 13. KBCHome controller system-2 ... 24

Figure 14. KBCSystemMain view .. 25

Figure 15. Browse KBCommons organisms .. 26

Figure 16. Displaying organism’s versions .. 27

Figure 17. Medicago truncatula A17 showing the shoot with leaves and seed pods........ 33

Figure 18. Create a newKB Usecase diagram .. 34

Figure 19. Create a new organism .. 34

Figure 20. KBC user sign up... 35

Figure 21. KBC user log in ... 36

Figure 22. Javascript dynamic dropdown ... 37

file:///C:/Users/sn9v8/Dropbox/kbcommons/thesis/final_ref/MS_Thesis_Siva_KBC_updt.docx%23_Toc499742345
file:///C:/Users/sn9v8/Dropbox/kbcommons/thesis/final_ref/MS_Thesis_Siva_KBC_updt.docx%23_Toc499742350
file:///C:/Users/sn9v8/Dropbox/kbcommons/thesis/final_ref/MS_Thesis_Siva_KBC_updt.docx%23_Toc499742351

vi

Figure 23. KBC find organism list .. 37

Figure 24. Create a new KB for Mtruncatula ... 38

Figure 25. Select 6 Essential Files .. 39

Figure 26. Less number of essential files Figure 27. Correct 6 essential files 40

Figure 28. Upload 6 essential files Figure 29. Import 6 files to DB 41

Figure 30. Import 6 files to Database Status ... 42

Figure 31. Organisms Library table .. 43

Figure 32. Mtruncatula DB tables ... 43

Figure 33. KBCommons newkb steps-omics option .. 44

Figure 34. Contribute to KB workflow ... 45

Figure 35. Contribute to KB button .. 46

Figure 36. Select details for Mtruncatula .. 46

Figure 37. Omics and Entities data options .. 47

Figure 38. RNA-Seq dataset details selection-1 ... 48

Figure 39. RNA-Seq dataset file uploads-2 .. 49

Figure 40. 2DGel dataset selection ... 50

Figure 41. Bisulphite Sequencing data selection .. 51

Figure 42. SNP data selection ... 52

Figure 43. GeneExpression RNA-Seq table ... 53

Figure 44. Differential Expression Cuffdiff table ... 53

Figure 45. Transcriptomic Microarray selection details ... 54

Figure 46.Proteomic MassSpectrometry selection details .. 55

Figure 47. Methylation Array selection details... 56

vii

Figure 48. miRNA files details ... 57

Figure 49. Metabolite datatype options .. 58

Figure 50. Mtruncatula in Browse KB .. 59

Figure 51. Mtruncatula home page ... 60

Figure 52. Mtruncatula Search Gene ID ... 61

Figure 53. Mtruncatula gene card page... 61

Figure 54. Mtruncatula Search Gene ID Chromosomal Information 62

Figure 55.Mtruncatula Search Gene ID Sequence Information .. 62

Figure 56. Differential expression data retrieval .. 63

Figure 57. Differential expression data displayed in Venn diagram 63

Figure 58. Add version to KB button ... 64

Figure 59. Add version to KB details ... 64

Figure 60. SoyKB to KBCommons tools status ... 71

Figure 61. Timeline of the development ... 71

Table 1. Data types for multi-omics and entities 22

viii

ABSTRACT

Multi-level ‘OMICS’ data integration for multiple organisms has been one of the

major challenges in the era of advanced next generation sequencing and high performance

technologies. Biological data has been producing tremendously fast with the availability of

these high throughput sequencing technologies at low price and high speed. However, these

data are often stored individually across different web resources based on data type and

organism, making it difficult to find and integrate them. There are many websites available

which store data from different data types and display that data in pie charts or plain text

format but limit their data to only one fixed organism. These web-based multi-omics

analysis is an efficient and easy way of analyzing the data but it would be difficult for other

researchers working with other organisms and with complex data.

The complex multi-omics data requires extensive data management, exhaustive

computational analysis, and effective integration to have a one-stop interactive, web-based

portal to browse, access, analyze, integrate and share knowledge about genomics and

molecular mechanisms, with ultimate links to phenotypes and traits for many different

organisms. To achieve this, we have developed Knowledge Base Commons

(KBCommons), a platform that automates the process of establishing the database and

making the tools available for organisms via a dedicated web resource.

KBCommons is currently supporting four different categories including Plants and

Crops; Animals and Pets; Humans and Diseases; Microbes and Viruses. It has four main

functionalities including Browse KBCommons, Contribute to KB, Add version to KB, and

Create a new KB. Using KBCommons, researchers from different groups with different

organisms’ data can be shared and accessed among all. KBCommons is an automatic

ix

framework which uses famous and widely used Laravel PHP framework. This is very

efficient to deal with complex and diverse biological datasets.

In the Browse KBCommons section, all existing organisms will be displayed under

each category and it also shows organisms which can be used as model organisms.

KBCommons also displays the logo of each organism along with existing versions, in this

way it will give a detailed information on all existing organisms. The user can browse

existing data of each organism using various tools including Blast, Multiple Sequence

Alignment, Motif Sampler, etc., by going to that particular page. Users can also visualize

gene expression and differential expression data via pie charts and plain text.

Add version to KB and Create a new KB are related because of their similar steps

in the process, users must bring corresponding data in each section. When a particular

organism of interest is not existing then the user can create a new Knowledge Base for that

new organism with 6 essential files of Genome Sequence, protein coding sequence for

Amino acid, gene coding sequence for Nucleotide and Spliced mRNA transcripts, mRNA

sequences in GFF3, and a functional annotation file. In Add version to KB, if an organism

is already existing then the user can add a new version to the existing KB with these 6

essential files for the new version.

In Contribute to KB, user can upload multi-omics data including Transcriptomics

– RNA-Seq and Microarray; Proteomics – Mass Spectrometry and 2DGel; Epigenomics –

Bisulphite Sequencing, Methylation Array, and MBD-Seq Array. We support both gene

expression/ protein expression/ or methylation data and differential expression comparison

for each data type. We also support different entities including miRNA/sRNA, Metabolite,

SNP/GWAS, Plant introduction lines/ Animal strains, and Phenotype/ TRAIT/Diseases.

1

 Introduction

Bioinformatics combines Biotechnology and Information Technology.

Bioinformatics mainly involves developing and improving on methods for storing,

retrieving, organizing and analyzing biodata, whether it be from biotechnology or any other

biological science. It requires to have knowledge about the type of biological data we are

working on and to be strong at different programming languages including Python, PHP,

MySQL, Javascript and many other technologies based on the requirement of the project.

In this section, I will explain about the biological background of my research and the

technical details of automatic framework and software development life cycle.

1.1 Biological Background

Web-based multi-omics data analysis has become one of the most efficient ways to

offer biological researchers to understand their data with less effort and more results. There

are various data analysis tools available on the web to process and show data using

visualization tools or by giving plain text results. However, they limit their data to only one

fixed organism, one such very successful and highly used website is http://soykb.org/

which is known as Soybean Knowledge Base (SoyKB) [1][2][3]. SoyKB handles storage

and integrates different kinds of data including proteomics, transcriptomics, metabolomics,

miRNA, SNP, sRNA, and cDNA which is generated by soybean research groups. SoyKB

also facilitates users to visualize and analyze data with different tools including Affymetrix

Probe ID Mapper, Gene Family Browser and In Silico Breeding Program. This makes

SoyKB a comprehensive all-inclusive web resource for soybean.

SoyKB has many users from different countries and has been highly cited by many

biological researchers who work with soybean organism. Success of tools like SoyKB

2

gives us confidence and positive directions to research and develop more sophisticated

tools with advanced features and functionalities. With this, we are working on extending

SoyKB tools and features to other organisms to meet needs of researchers working with

other organisms and data.

The advanced next generation and high-throughput sequencing technologies

produce multi-level of ‘OMICS’ data for many organisms at a very fast rate. Raw data

without analysis is of not much use and it would be difficult for scientists to make any

meaningful insights out of it. To deal with these complex omics data, we need advanced

and high performance computational technologies to analyze and integrate for better

understanding of the data. There is an increasing need to integrate different types of

‘OMICS’ data from multiple organisms and to provide efficient ways to analyze multi-

levels of multi-omics data.

Towards this, we developed a Knowledge Base Commons (KBCommons) which

is comprehensive and interactive web resource for many different organisms belong to

Plants, Animals, Diseases, and Microbes. KBCommons shows existing organisms in the

Browse Organisms section, facilitates users to create new organism’s KB under Create a

New organism’s KB section, if KB for an organism is existing then it provides users an

option to contribute to KB to add new data and user can also add a new version to the

existing organism. In this way, researchers with different organisms’ data can be shared,

viewed and analyzed data with KBCommons very efficiently. This fills the gap between

dealing with one organism and multiple organisms. KBCommons is an automatic

framework from users uploading data to users accessing data with out requiring any manual

processing in between.

3

1.2 Technical Introduction

 An efficient and powerful framework plays an important role when developing web

based application to work with complex and heterogeneous biological data. Flexibility and

simplicity of the framework is also crucial to add, remove, or update different components

as the development is going on and to work with many individuals.

We are using Laravel PHP web framework for our KBCommons development, it

is free and open-source. It is created by Taylor Otwell with the intention for the

development of web applications following model–view–controller (MVC) architectural

pattern [4][5]. MVC is widely used software architectural pattern for implementing user

interfaces on computers [6] and it is very simple yet efficient process shown in Figure 1.

Description about MVC, Components, and Interactions:

Model: The model is the central component of the architecture. A model gets a request

from the controller and directly manages data, logic, and rules of the application.

View: View can be any output from Model. There can be multiple views of the same

information including bar chart, tabular and etc. View shows data to the user.

Controller: It takes input and sends it to the corresponding model or view.

Laravel framework is a fully MVC-compliant framework from 2nd version, Laravel 1

lacked support for controllers [7]. For this development, we are using Laravel 5 [8][9].

Specifically, in Laravel 5 framework I use the following programming languages for each

part:

4

 Controllers to handle user requests and retrieve data, by leveraging Models

(PHP+MySQL+Python)

 Models to interact with your database and retrieve your objects’ information

(PHP+MySQL+Python)

 Views to render pages(HTML+Javascript+AJAX)

Additionally, routes are used to map URLs to designated controller actions.

Figure 1. Model-View-Controller cycle

Figure 1 is collected from https://en.wikipedia.org/wiki/Model-view-controller

5

The source code of Laravel is hosted on GitHub and licensed under the terms of MIT

License [10]. There are many advantages of using Laravel PHP framework for the

development of web-based protocol including the following:

1. Template engine: One can build amazing layouts with dynamic content seeding using

Laravel’s in-built lightweight templates. It provides solid structures which are built

using CSS and JS. These templates can be used to build a simple layout with different

sections.

2. Artisan: Laravel has a built-in tool for ‘Artisan’ command line and it allows us to avoid

many manual repetitive and tedious programming tasks with simple commands. It also

gives us a way to generate basic MVC files and skeleton code with their respective

configurations.

3. Libraries: Laravel has Object Oriented libraries and many other pre-installed libraries,

which are not likely found in other popular PHP frameworks. With this feature, it is

very convenient to build complex functionalities.

4. Modular: Laravel framework is built on more than 20 different libraries and is itself

divided into individual modules. It adopts modern PHP principles, which allows

developers to build modular, responsive and handy web apps.

5. MVC Architecture Support: Laravel supports the MVC pattern, which ensures clarity

between logic and visualization. This architecture helps in improving the performance,

allows better documentation, and has multiple built-in functions.

6. Security: Making sure that applications are secure is very important in any web

application. We have to use some or other methods to make the application secure.

Another advantage of using Laravel framework is it takes care of the security within

6

the framework. For generating encrypted password Laravel uses Bcrypt hashing

algorithm which uses the very efficient Bcrypt function. Bcrypt is a password hashing

function designed by Niels Provos and David Mazières, based on the Blowfish cipher,

and presented at USENIX in 1999 [11].

A full MVC request cycle for Laravel application is shown below: (collected from

http://laravelbook.com/images/laravel-architecture/laravel-mvc-components.png)

Figure 2. A full MVC request cycle for Laravel application

From the above figure, we can learn that Laravel request cycle has 5 main steps from a user

submitting a request to show the appropriate content in the browser for that user request:

1. Submit user request: When user clicks on the required URL, request will be sent

to the routers

2. Route to appropriate Laravel controller: In routes, the Laravel controller action will

be performed according to the user request

7

3. Interact with data model: This is the main step, where we retrieve data from the

database and send back to controller

4. Controller invokes results view: After obtained results from the model, controller

will send the required results to the appropriate view

5. Render view in user’s browser: Finally, the required web page along with

appropriate data will be displayed in the user browser.

Software Development Life Cycle (SDLC): SDLC is a process of a series of planned

activities to develop or alter the software. It is used to design, develop, and test the software

to ensure high quality and to reach user needs. There are many kinds of SDLCs including

Waterfall model, Iterative model, Spiral model, V-model, Agile model, RAD model, etc.,

Agile Model is very flexible for small and large projects. It adopts characteristics of

incremental and iterative models. It breaks the product into small incremental builds and

these can be easily developed by different individuals or teams. In our project we adopted

Agile SDLC and our team members work on individual developments which can be

delivered to the user directly or combined with other developments.

Figure 3. Agile Software development life cycle

8

 Database and Frontend Architecture

In this section, I will describe briefly about programming languages that I used and I will

explain about database schema and version control importance in interdisciplinary studies

where many people work together on the same research project.

In this development, I used PHP, HTML, Javascript, and AJAX for web page development;

Python and MySQL for backend and the connection between frontend and backend. We

also used GitHub for version control and for collaborating among developers

 PHP: is a server-side scripting language originally created by Rasmus Lerdorf in

1994 [12]. It is a widely-used open source general-purpose scripting language that

is especially suited for web development and can be embedded into HTML. PHP

is designed to make dynamic pages and applications. PHP supports MySQL,

Oracle, Sybase and many other databases.

 AJAX: it is Asynchronous JavaScript And XML. AJAX is not a programming

languages it just uses a combination of a browser built-in XMLHttpRequest object

to request data from a web server; Javascript and HTML to display or use the data.

Working of AJAX is shown in the below picture, taken from

http://www.j2eebrain.com/java-J2ee-jquery-ajax.html.

9

Figure 4. AJAX workflow

When an event occurs on a web page an XMLHttpRequest object is created by Javascript

and sends a request to web server then the server processes the request and sends a response

back to the web page, and proper action is performed by Javascript.

AJAX is very useful in the development because using this we can update a web page

without reloading the page; request and receive data from a server and send data to a server

in the background.

 Python: it is a widely used high-level programming language created by Guido van

Rossum and first released in 1991. It uses whitespace indentation to delimit code

blocks rather than curly brackets or keywords, it allows developers to code in fewer

lines than using other languages like C++ or Java [13][14]. Python also provides

automatic memory management and supports multiple programming paradigms

10

including object-oriented, imperative, functional and procedural styles. It has a

large and comprehensive standard library [15].

When working complex biological data files it is very important to check the correctness

of the files. Pandas is a software library written for Python and it is very efficient for file

checks and for database connection at the backend. Pandas offer data structures and

operations for manipulating numerical tables and time series. It is free software released

under the three-clause BSD license.

 MySQL: We created Python functions to insert and retrieve data from required

tables and we also created functions to automatically create a database for new

organism’s KB and we automatically create tables if the organism is already

existing. We use phpMyAdmin which is a free software tool written in PHP and

handles the administration of MySQL over the Web. phpMyAdmin supports many

different MySQL operations with ease of use. It is an intuitive web interface and

creates graphics of database layout in various formats.

Our main database is called “KBC_Admin” which has all tables belong to all organisms.

It has two main tables which are used to store a library of tables –

“Admin_user_common_db_library” and library of organisms – “organisms_library”.

These tables are used as references when retrieving data to show on the browser. Below I

will show Entity–Relationship for important tables in the KBC_Admin database in two

diagrams one for organisms’ information and another for users’ information.

Metadata – Organisms_library: Metadata is data about data, that is giving information

about the data itself. Metadata representation about the organisms_library table would be

11

giving details about its attributes. In the database terminology, entity is logical

representation of the data and table is its physical representation; attributes are its columns.

We can get information about attributes of a table in MySQL using this simple command:

“SHOW COLUMNS FROM <table>”

Figure 5. Organism library metadata

Entity-Relationship diagram for organisms: In this, we can see main tables including

organisms_library which stores information about existing organisms including ID,

version, name, type, logo, etc., which is connected to organism_list table which has list of

all organisms with their unique ID, name, and type. This is a 1-1 relation because organism

in organism library can only appear once as we create or already existing but exactly once.

We can see the 1-many relation between organism_type, which stores 4 types of organisms,

and organism_list; organism_type and organisms_library because many organisms can

belong to the same type hence it is a 1-many relation. We also store user information in

the Admin_users where have a user id, name, password, first_name, last_name, email, title,

organization, etc., to keep track of user information and their organization. We also have

12

table Admin_user_common_db_permission which stores information about the owner of

the data and group if they belong to any research group.

Figure 6. Entity-Relation diagram for organisms

The table Admin_user_common_db_library stores information about common_user_db_1

to common_user_db_n which are created when user uploads data and they keep

13

information about what kind of data it is and which organism’s data it is. It is like a library

of tables which stores all table information. The common_user_db table has data for gene

expression, differential expression, proteomic expression etc., It can be any data and is

created automatically and information about this tables is stored in the library

simultaneously. The number of common_user_db will be increasing as user uploads files

hence in the below figure only two of them have been shown to make the diagram clear.

Metadata – Users Library:

Figure 7. Metadata for user library

In this, we have data aboutadmin_user_common_db_library table’s columns. We can also

see the comments about each columns in this display. Here we maintain data_type_id,

method_id, and so on., to represent what type of data user has brought and how this is

represented. We assigned id to each supported data type and method.

14

Entity-Relationship diagram for users:

Figure 8. Entity-Relation diagram for users

User information is stored in the Admin_users table as explained above. I used

Admin_users table in both ER diagrams to show the relation between users and organisms

and their contribution of data to the organisms. Here we store group information if a user

15

belongs to any research group, this is very useful as we collaborate with many different

groups than individuals and hence ownership of data can be given to the whole team.

Admin_user_avtar stores users or group logo to display on their page this can be used to

represent their main research area. We also have tables to store information about user

sessions and tasks to keep track of who brings data and what kind of job they are doing and

it can be used to retrieve session if they failed during any session.

 GitHub: it is a web-based version control repository and internet hosting service,

mostly used for code. It provides all of the source code management and distributed

version control functionalities of Git [16] and its own features. Git is a version

control system for tracking changes in computer files and coordinating work on

those files among multiple people. Git can be used to keep track of changes in the

set of files but mainly focused on source code management in software

development [17].

It is very important to work with version control software when multiple people are

working on the same project. In interdisciplinary and multidisciplinary fields like

bioinformatics, no problem can be solved by experts from single domain hence

collaboration with many people is required and the use of version control like Git and

GitHub is very important and convenient to make the smooth flow of the work among

multiple developers.

GitHub also offers both private and public repositories on the same account [18]. This is

very convenient because we can keep projects private until the finish of the project and

then can publish it as open-source software projects [19]. It is the largest host of source

code in the world [20].

16

GitHub uses a few very basic Git commands for basic workflow as below:

 git status - displays what files have changed or been added or deleted.

 git add -A - adds all changes ("stages" the files). The A flag adds all changes.

 git commit -m "your message" - commits all changes and adds a message

describing this change.

 git push - pushes your changes to the remote repository.

For synchronizing the changes – we can use ‘git pull’ which downloads all the changes

from the repository and updates your local files. We can also use a combination of ‘git

fetch’ which gets all the changes from the GitHub repository but not change local files; and

‘git merge’ this updates the local files with the changes obtained from fetch command.

 Architecture Flexibility: Another important feature of a good software

development is to have place holders to incorporate any future developments as any

project is ever evolving with new tools and functionalities. Our Laravel framework

is very flexible to include any other future developments easily as we adopted agile

software development life cycle for our project. Combination of Laravel

architecture and Agile software cycle make our development adjustable to add new

features and other components. For example, we could just modify routing options

in the framework to include other web pages and functionalities.

17

 KBCommons Functionalities

In this section, I will explain about the KBCommons procedure, supported data types and

KBCommons features including Browse KBCommons, Contribute to KB, Add Version to

KB, and Create a new KB.

3.1 KBCommons Flowchart

 In KBCommons, first and basic thing that users can do is to browse existing

organisms when they do not have any data about any organism and when they want to

explore existing organisms with the existing data and perform data analysis on that data.

The starting page is a home page which is the KBCommons main website:

http://kbcommons.org/. When the user goes to this URL then the request (this is MVC

cycle) will be sent to the routes as shown below:

This request from routes will send information to the KBCHomeController and in

that to the KBCSystemMain function, this is the Controller function and it is represented

as ‘System\KBCHomeController@KBCSystemMain’ in the above figure. Here System is

the folder where all controller functions for the main system are stored. The name

‘system.home.kbc_system_main’ is used as a reference to call this controller anywhere in

the Laravel project. ‘/system/home/kbc_system_main/’ is the URI that will be shown on

the address bar like this: ‘http://kbcommons.org/system/home/kbc_system_main’. We use

descriptive names in the URl and in the reference names so that by looking at the URI we

can understand at what stage of the procedure we are in.

Figure 9. KBC home route

http://kbcommons.org/

18

Figure 10. KBCommons Flowchart

19

From KBCommons home page user can navigate to Browse KBCommons, Contribute to

KB, Add version to KB and Create a new KB. KBCommons home page is shown below.

Figure 11. KBCommons Home Page

In browse KB section, the user can explore already existing organisms’

functionality and do data analysis using the existing data.

In Contribute to KB section, the user can upload omics or entities data for any

existing organism and perform more complex functionalities based on the data.

20

In Add version to KB section, the user can add a new version to the organism if it

is already existing.

And in Create a new KB section, the user can create a new organism’s KB with

basic essential files that are required to create a new KB.

 Currently, in our KBCommons, we are supporting four main types including Plants

and Crops; Animals and Pets; Humans and Diseases; Microbes and Viruses. This will

facilitates researchers to find organisms belong to their interesting category and browse

each section quickly. Study of organisms belong to Plants and Crops will help to increase

the yield of field crops, and many of our early medicines come from plant extracts hence

it will be useful in precision medicine as well. Animals and Pets organisms can also be

used in human health research and can be helpful to protect pets from diseases as well.

Studying organisms belong to Humans and Diseases is very useful and important in the

field of precision medicine and for better and healthy living of humanity. Microbes and

Viruses study will also be very useful as microbes have a profound impact on every facet

of human life and everything around us, this can be finally helpful in precision medicine.

3.2 Data Sources and Supported Datatypes

 In this section, I will explain about data types that we currently support in

KBCommons and common resources where we could find those data.

 First, to establish any organism’s new KB in our KBCommons database we need 6

essential files which are mostly in FASTA format or txt format or gff3 file format. We can

get these 6 essential files from Phytozome (https://phytozome.jgi.doe.gov/) which is

widely used and well-cited resource for organisms belong to Plants and Crops [21].

https://phytozome.jgi.doe.gov/

21

Phytozome hosts 77 assembled and annotation genomes, from 74 viridiplantae species. It

also supports different tools including BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi),

JBrowse (https://jbrowse.org/), PhytoMine (https://phytozome.jgi.doe.gov/phytomine/),

and BioMart (http://www.biomart.org/).

 Ensembl (https://www.ensembl.org/) is a very popular resource for organisms

belong to Animals [22]. It is a genome browser for vertebrate genomes that supports

research in comparative genomics, evolution, sequence variation and transcriptional

regulation. Ensemble annotates genes, compute multiple alignments predicts regulatory

function and collects disease data. It supports various tools including BLAST, BioMart,

and the Variant Effect Predictor for all species it supports. It also creates and integrates

datasets and analysis tools that enable genomics.

 GenBank (https://www.ncbi.nlm.nih.gov/genbank/) is the National Institute of

Health (NIH) genetic sequence database and it has annotated collection of all publicly

available DNA sequences [23]. GenBank exchanges data with the DNA DataBank of Japan

(DDBJ) [24][25] and the European Nucleotide Archive (ENA) [26] on a daily basis which

ensures worldwide data coverage. GenBank is accessible through the NCBI Entrez

retrieval system, which integrates data from the major DNA and protein sequence

databases along with taxonomy, genome, mapping, protein structure and domain

information, and the biomedical journal literature via PubMed. The GenBank database is

designed to provide and encourage access within the scientific community to the most up

to date and comprehensive DNA sequence information.

These are the main common data resources we could get data to create a new organism’s

KB or to upload multi-omics data and entities information to already existing organism.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://jbrowse.org/
http://www.biomart.org/
https://www.ensembl.org/
https://www.ncbi.nlm.nih.gov/genbank/

22

Table 1. Data types for multi-omics and entities

Category Type Dataset Datatype Dataset Type Dataset Method

Multi-Omics

Data

Transcriptomics

Gene

Expression

RNA-Seq

ReadCount
HTSeq

Samtools

FPKM/RPKM
Cufflinks

Tuxedo

Microarray
Affymetrix

RMA

Lowees

Agilent

Differential Expression Genes

EdgeR

Limma

Voom

Cuffdiff

Proteomics

Proteomic

Expression

Mass Spectrometry
GCMS

LCMS

2DGel

Differential Expression Proteins

Epigenomics
Methylation

Bisulphite Sequencing

CG

CHG

CHH

Methylation Array

CG

CHG

CHH

MBD-Seq Array

CG

CHG

CHH

Differential Methylated Regions

Entities

miRNA/sRNA

Expression

Target gene

Differential Expression miRNA

SNP –

Inserted/deleted

SNP Array Types

GWAS

SNP dinucleotide

Metabolite

Plant Introduction Lines/ Animal

Phenotype/ TRAIT

These are the supported data types for uploading multi-omics data and entities.

3.3 Browse KBCommons

Here, we display all the existing organisms with their versions. We categorized

organisms into four main types including Plants and Crops; Animals and Pets; Humans and

23

Diseases; Microbes and Viruses. Along with this classification, we also have Model

Organisms section when we display model organisms from all the categories.

In our current KBCommons under Plants and Crops, we have Arabidopsis thaliana

and Zea mays; under Animals and Pets, we have Musmusculus; under Humans and

Diseases, we have HomoSapies. Among these Arabidopsis thaliana and Musmusculus are

considered as Model Organisms. We save the different type of organisms in corresponding

arrays and we call that view with this information.

Figure 12. KBCHome controller system-1

For these the code snippet of the called controller function is shown in Figures 12 and 13:

PHP and MySQL are used to retrieve data and send that to the view. Like this, all

existing organisms’ information is retrieved from the corresponding table and stored in

corresponding arrays. For each existing organism, all the information including logo,

24

existing genome, and model versions are stored in the ‘info’ array and sent to the view to

display on the website.

Figure 13. KBCHome controller system-2

This view is the KBCSystemMain.blade.php which is stored in system folder which

is under views folder as shown in the above figure. Laravel is very efficient that we do not

have to give absolute path because all default paths of views, controllers, routes, etc are

already configured. Code snippet of KBCSystemMain.blade.php: where we write HTML

code along with some PHP and Javascript to perform functionality and to display the data

in the browser.

25

From the above code, we can see that we are using nested for loop to loop through

each organism in each category and display logo and existing versions. When user clicks

on any of the existing organisms it will be redirected to that particular organism’s page,

this is done by calling the action ‘system.home.kbc_home_router’, this is the name of the

controller function ‘KBCHomeRoute’ in KBCHomeController from the routes. Here we

send organism name information to the controller function to display the corresponding

data of that selected organism. We store organism logo information in one array and

existing versions information in a different array and display existing versions as a

dropdown list.

On that particular organism page, the user can browse existing data using various

tools including Blast, Multiple Sequence Alignment, Motif Sampler, Phylogeny, etc., by

going to that particular page. Users can also visualize gene expression and differential

expression data via pie charts and plain text.

Figure 14. KBCSystemMain view

26

Figure 15. Browse KBCommons organisms

27

For each organism, we show existing versions in the format

GenomeVersion_ModelVersion to give the user an overview of all the existing organisms

along with their existing versions. For example for Zmays: we have AGPv2_5b and

AGPv3_6a where AGpv2 is genome version and 5b is its model version; AGPv3 is genome

version and 6a is its model version as shown below:

Figure 16. Displaying organism’s versions

With this explicit display of existing versions of each organism user could decide

by looking at the list if user has data for a new version and wants to perform data analysis

for this new version they could go to Add version to KB page to do so or if they want to

browse this existing version they could click on that particular organism and explore

existing data.

In organism’s home page user can search genes, browse differential expression data

and visualize comparisons of different conditions and see data in different tools including

blast, pathway viewer etc., for data analysis based on the availability of the existing data

for that particular organism.

28

3.4 Contribute to KB

After exploring existing data of an organism if the user wants to perform data

analysis with different data then the user can upload new data to that particular organism.

Here, the user can select multi-omics data and also different entities.

The first step in this is to select organism’s details including what type of organism

that means whether it belongs to Plants or Animals or Diseases or Viruses. Based on that

in the dependent dropdown list of existing organisms corresponding to that type will be

displayed and based on that selected organism existing list of versions will be displayed

for the user to select.

The user must select all details including type, name, and version else error message

will be displayed. Upon successful selection of details and clicking submit button user will

be redirected to a page where the user can select what types of data they have. This page

gives an overall idea to the user what all the data types we are supporting. Currently,

supported datatypes are given in the Table1 in Data Sources section 3.2.

User has to select at least one dataset for any data type else error message will be

displayed. Upon successful selection, user will be redirected to a particular page based on

the selection. User can select both gene/protein/methylation data and differential

expression data for any data type and can have many datasets for each

gene/protein/methylation data and for each data set they have to provide details including

dataset type, dataset privacy that is whether this data is private or can it be public, name

and method of the dataset. We also need Number of conditions and number of replicates

for each dataset selected and based on that we restrict on a maximum number of differential

expression files that they can upload. For example, if they have ‘c’ number of conditions

29

then the maximum number of comparisons can be c*(c-1)/2. Hence a maximum number of

differential expression file can be c*(c-1)/2.

Apart from a number of file checks we also perform extensive checks on each selected data

set for the correctness of the files and then only we upload them to the database. A few

important file checks are mentioned below:

1. Compatibility with the number of columns in the file and the number of

conditions provided

2. Emptiness is not allowed in certain data types

3. Duplicate values are not allowed

4. Gene names in the files must be consistent with the gene names in the genome

file of the organism and selected version

5. For differential expression file, we also deal with –inf and inf value by

recalculating the log fold change value

6. There are other checks based on the specific data type selected, for example, if

user selected ReadCount data type for RNA-Seq gene expression then we make sure that

file has only integer values

Like these, we do extensive file checks for each data set user wants to upload based

on the data type selected. Supported data types for multi-omics and entities are shown in

Table1. After successful file checks and uploading to the database this data will be

available to perform data analysis and to display on the organism’s home page.

I will explain all details and conditions for each data type using a sample organism as a

case study at the end of this chapter.

30

3.5 Add Version to KB

If an organism is existing and the user wants to add a new version to the existing organism

then the user can do it here.

It mainly involves three steps, two mandatory and one additional step including:

1. Fill the organism details

i. In this, user will add organism type, name, model version and genome version

ii. Upon selecting organism type we display existing organism names for selecting

and then user will enter new version

2. Upload 6 essential files

i. User must bring 6 essential files of that organism’s version to be able to add new

version

ii. The basic files to establish a new version including

1. Nucleotide FASTA format of the Genome Sequence File

2. Nucleotide FASTA format file of all gene coding sequences

3. Amino acid FASTA format file of all gene coding sequences

4. Nucleotide FASTA format file of spliced mRNA transcripts

5. GFF3 format representation of all mRNA sequences

6. A summary of function annotation details in txt format

iii. We upload files only after all 6 required files are selected with proper file formats

iv. After this user have an option to go to home page to browse this version or if they

have multi-omics data then they can continue uploading files

3. Upload Multi-omics data

i. Refer to 2.3 Contribute to KB section, same as that

31

3.6 Create a new KB

Creating a new KB for an organism can be done when there is none existing already. This

is similar to add new version except that here the user has to select new organism details

along with organism logo to indicate about the organism.

It has three main steps, two mandatory and one additional step including:

1. Fill the organism details

i. In this, user will add organism type, name, model version, genome version and

upload organism logo – a small image file that should describe organism

ii. Upon selecting organism type we display new organism names for selecting and

then user will enter new version and upload logo

2. Upload 6 essential files

i. Refer to 2nd point upload 6 essential files in 2.2 Add version to KB section, same

as that

3. Upload Multi-omics data

i. Refer to upload multi omics in 2.3 Contribute to KB section, same as that

32

 Case Study

In this section, I will explain the working flow of KBCommons from both biological and

technical perspective with Medicago truncatula organism as an example.

4.1 Medicago truncatula Introduction

Medicago truncatula is studied as a model organism for legume biology because it

has a small diploid genome, is self-fertile, has a rapid generation time and prolific seed

production, is amenable to genetic transformation, and its genome has been sequenced [27].

It is native to much of southern and eastern Europe, as well as northern Africa, Western

Asia and the Caucasus. It is also naturalized in Australia and parts of South America. Its

common name is Barrel medic and it is adapted to different soil textured types, sandy to

clayey, but particularly well drained neutral to alkaline soils, pH 6 to 8.

A model organism is a non-human species that is extensively studied to understand

particular biological phenomena, with the expectation that discoveries made in the

organism model will provide insight into the workings of other organisms [28]. Model

organisms are in vivo models and are widely used to research human disease when human

experimentation would be unfeasible or unethical [293]. This strategy is made possible by

the common descent of all living organisms, and the conservation of metabolic and

developmental pathways and genetic material over the course of evolution [30].

Medicago truncatula can be used for a gene donor for crop improvement. It is used

as animal forage and fodder, for soil improvement and the prevention of soil erosion and

as a companion crop [31].

33

Definitions of model organism and figure of Medicago truncatula is collected from

Wikipedia (https://en.wikipedia.org/wiki/Medicago_truncatula).

Figure 17. Medicago truncatula A17 showing the shoot with leaves and seed pods

In this example, we are studying Medicago truncatula which belong to Plants and

Crops type and it is also a model organism for legume biology so it will also be shown

under model organism category. The organism under this study has genome version of Mt4

with model version V1.

4.2 Create a new KB for Medicago truncatula

If any organism which is not shown under browse organisms on the home page of

KBCommons then the user can create a new KB for that organism. In this case, Medicago

truncatula is not already existing in our KBCommons so we will create a new KB for this.

https://en.wikipedia.org/wiki/Medicago_truncatula

34

Figure 18. Create a newKB Usecase diagram

All steps for creating a new KB will be shown with data for Medicago truncatula with

screenshots for each step. In this section, I will show only with 6 essential files and in

Contribute to KB section for this same established KB, we will upload omics data files.

From KBCommons home page (http://kbcommons.org/) user have to click on Create a

New Organism as shown below.

Figure 19. Create a new organism

When click on create a new organism, the request will be sent to the routes and to

the corresponding controller function. We will send organism list for which users can

create a new KB to the view to display on the browser.

http://kbcommons.org/

35

The user must log in to create a new organism page because we keep track of owner

information who uploads the data. If the user does not have a login then the user can sign

up for a new account and then log in. To sign up user must provide us with User Name, E-

Mail Address, and a password. We also ask the user to provide First Name, Last Name,

Title, and Organization. This information would be useful later when dealing with groups

and permissions. Especially Organization information would be useful to keep track of the

type of users using KBCommons and we could research and expand to other domain of

users as well. The title could be the designation of the user for example if the user is a

student or faculty or employee or researcher etc., Sample sign up and log in for a Demo

user is shown in the below screenshots.

Figure 20. KBC user sign up

36

Figure 21. KBC user log in

After successful registration user can log in to be able to access all KBCommons

functionalities. After login and clicked on create a new KB the first thing to do is to provide

the organism’s details.

Step1: Fill the Organism’s Details: After successful signup-login user can go to create a

new organism’s KB and select details about the organism as the first step. In this we have

a dependent drop-down list of organisms; this list is collected from different websites for

a different type of organisms and we update the list frequently to keep the list updated with

the new organisms. Providing users with the list of organisms for creating KB also solves

the problem of naming conflicts. If we allow users to type the name of the organism then

one user may write Medicago truncatula and another user may type Mtruncatula hence to

deal with this issue we provided users with a dynamic dropdown list of organisms.

37

Figure 22. Javascript dynamic dropdown

This dynamic dependent dropdown is created using javascript. First when the user

selects the type of organism then a list of organisms belong to that type will be displayed

on the same page. Based on the selection request will be sent to the controller function

which is KBCFindOrganismName in KBCnewKBController from a javascript function.

This controller is named as ‘/dataCenter/newkb/kbc_findOrganismName’ in the routes

hence calling with this name from a javascript function. This list does not contain existing

organisms. Here we have three functions one to retrieve a list of existing organisms, other

to retrieve a list of other organisms and another one to retrieve a list of existing organisms’

version details.

Figure 23. KBC find organism list

38

Medicago truncatula is a model organism and it belongs to plant and crops category

with Mt4.0 genome version and v1 model version [32]. The data is collected from

Phytozome version 12.1 (https://phytozome.jgi.doe.gov/). Phytozome is the Plant

Comparative Genomics portal of the Department of Energy’s Joint Genome Institute (JGI),

that provides JGI users and the broader plant science community a hub for accessing,

visualizing, and analyzing JGI-sequenced plant genomes, as well as selected genomes and

datasets that have been sequenced elsewhere. As of release v12.1, Phytozome has 77

assembled and annotation genomes, from 74 viridiplantae species. 43 of these genomes

have been sequenced, assembled and annotated with JGI Plant Science program resources.

Figure 24. Create a new KB for Mtruncatula

https://phytozome.jgi.doe.gov/

39

Step2: Upload 6 Essential Files: After successfully submitting the details of the organism

then step2 Upload 6 Essential files will be displayed.

In this user has to select 6 essential files with correct formatting and with

descriptive names. For example whole genome sequence file should have ‘genome’ in the

name, gene coding sequence should have ‘cds’ in the file name, amino acid coding

sequence should have ‘protein’ or ‘peptide’, mRNA transcripts file should have ‘cdna’ in

its file name, and annotation file is expected to have ‘annot’ or ‘annotation’ in the file

name. This will help us to differential among file types to store data in the database and to

retrieve to display on the browser.

Figure 25. Select 6 Essential Files

40

Figure 26. Less number of essential files Figure 27. Correct 6 essential files

This is a case when the user selected less number of essential files hence upload

button is not visible. We also check for duplicate files, file extensions, and there must be

exact 6 number of files but not more or less. We also allow users to upload compressed

files because these files can be very large and they may take a long time to upload if not

compressed. Only after all conditions are satisfied then only upload files will be appeared.

All these file extensions and naming conventions are decided by collecting data from main

data resources for these organisms like from Phytozome and Ensembl.

41

After correct 6 essential files are selected we display size and names of each file to

facilitate user to check correctness files again; if found incorrect files then the user can

cancel any of them and select the appropriate files again and then upload the selected files.

Figure 28. Upload 6 essential files Figure 29. Import 6 files to DB

42

While uploading 6 essential files we show the status of file uploading. It may take some

time to upload if the file size is big. After the files are successfully uploaded on local

storage then the user can import them to the database to make the data available on the

browser for retrieval.

Figure 30. Import 6 files to Database Status

We display the status of importing files to the database and after files are

successfully imported into the database then the next step is to upload Multi-omics data

which is an optional step. By now our organism’s new KB has been created with the

uploaded 6 essential files. The user can choose to upload the multi-omics file if they have

or the user can browse this organism further by going to this organism’s page.

43

This organism has been added to the existing organisms’ list and will display on

our main page for browsing and also added in the backend database. (also display that

option to go to home or to do multi-omics file uploads)

Figure 31. Organisms Library table

 This organisms_library table stores all information about the organism including

the database name, organism unique id, organism name, version, organism category, and

path. KBC_Mtruncatula is the database where all the uploaded files for Mtruncatula will

be imported to and retrieved from.

Figure 32. Mtruncatula DB tables

 All these essential files are imported as tables to the KBC_Mtruncatula database.

This organism will be displayed on the Browse KBCommons section on the KBCommons

44

home page. It will also be available for selection under Contribute to KB and Add version

to KB sections as this organism’s KB has been already established with the 6 essential files.

Figure 33. KBCommons newkb steps-omics option

After the 6 essential files’ are processed and imported into the database then an option to

go to step 3 will be shown. Which will take users to this page shown in Figure 33, where

they can either browse this organism by going to the KBCommons home page or

contributing further by uploading multi-omics or entities data types. If user wants to browse

with these uploaded essential files then go to KBCommons home page and browse which

is explained in section 4.4 under Browse KBCommons, if user wants to upload then click

on selecting details of the data button which will take user to Add multi-omics data which

is same as Figure 37(omics data selection) and explained in section 4.3 under Contribute

to KB.

45

4.3 Contribute to Medicago truncatula KB

In the Create a new KB step if the user could not upload multi-omics files or entities

data then the user could stop the Create a new KB process and upload at a later time when

user have corresponding data using this Contribute to KB option. The first step here is to

select organism details from the existing list of organisms for which user wants to upload

multi-omics data for any of the supporting data types of for the entities (Table 1).

Figure 34. Contribute to KB workflow

46

A new KB for Mtruncatula has been established in the Create a new KB section with 6

essential files only, now we will continue contributing to this KB with omics data.

Figure 35. Contribute to KB button

This will be taken the user to the organism details selection page, which is the first step:

Figure 36. Select details for Mtruncatula

In this step to select details of Mtruncatula, we show organisms for which KB has

been already established because only to that user could bring new data to update current

KB. We give a link to homepage in case user could not find organism of interest.

47

Figure 37. Omics and Entities data options

48

The user will enter as many data sets as they have for each data type and leave it

zero if they do not have data for that particular data type. In this example, we have

Transcriptomics RNA-Seq Gene expression with FPKM datatype and differential

expression data with cuffdiff methods. This data has 8 conditions and 3 replicates. We also

have a Proteomics data with the 2DGel method and Epigenomics data with Bisulphite

Methylation method and an SNP entity dataset. All these demo files for illustrating with

Medicago truncatula. Here we selected total 4 datatypes and one dataset for each datatype

hence it is a loop of four web pages in automatics stepwise fashion starting with

transcriptomic RNA-Seq and ends with SNP entity; after SNP dataset is uploaded loop will

be terminated and will be directly taken the user to the KBCommons homepage.

Figure 38. RNA-Seq dataset details selection-1

On each page index of the dataset will be displayed to keep track of the loop. Here we have

four datasets and this is our first dataset to start with. At first, user has to select details

about RNA-Seq dataset and number of differential expression files they have and upon

49

confirming this conditions for file checks and options to upload files for each data type will

be appearing on the same page.

Figure 39. RNA-Seq dataset file uploads-2

50

 In RNA-Seq expression data for this demo, we have four different comparisons

between conditions and hence we display options for each differential expression files to

select and details to give. After filling details for each dataset and selecting the datasets;

our index in the loop will be incremented by one and it will go to the next selected datatype

after importing files to the database at the backend upon clicking submit.

Figure 40. 2DGel dataset selection

As we can see on this page it is displayed dataset 2 of total selected 4: in our dataset

selection page we selected total 4 and the 2Dgel dataset is our second dataset. It has five

seed conditions with no replicates in the data. In this example, we do not have differential

proteomic data and hence we will not show options for differential proteomics.

Our next datatype is Bisulphite sequencing methylation data with four conditions

and no replicates. This is our third dataset in the loop and will display as dataset 3 of total

selected 4. Methylation dataset type can be CG, CHG, and/or CHH because Mtruncatula

belongs to Plant organism, otherwise, we will give only CG option.

51

Figure 41. Bisulphite Sequencing data selection

 We allow two different formats of Bisulphite sequencing data which can have

chromosome information or GeneID information. With GeneID information in our data we

will have a number of datatypes, here we have all three (CG, CHH, CHG), (3) * number

of conditions (4) * number of replicates (1) + GeneID (1) = 13 columns.

 Our final dataset in this example is SNP entity which can again have three SNP

datatypes including SNP Array, GWAS, and SNP Dinucleotide or Insertion and Deletion

options. The user can select as many datasets as they have for each datatype and confirm

the number to display options to select files.

52

Figure 42. SNP data selection

This is the final dataset hence it is displayed as dataset 4 of totally selected 4. Hence

after uploading files and proper file checks user will be automatically redirected to the

KBCommons home page upon clicking submit button. All these datasets are converted to

53

tables at the backend and details of tables are stored in the reference table. Below are the

two backend table snippets of gene expression and differential expression for

Transcriptomics data that we uploaded on the browser.

Figure 43. GeneExpression RNA-Seq table

Figure 44. Differential Expression Cuffdiff table

 In the above table of differential expression, we have sample_1 and sample_2

columns which represent condition1 and condition2 for which we have this differential

expression data.

In this example, I introduced only a few datatypes functionality and how we could

proceed with how many ever datasets we have and there are no restrictions on the number

of datasets to bring to contribute to existing KB. I will briefly show other datatypes and

their file checks for transcriptomic microarray data, proteomic mass spectrometry data,

epigenomic methylation array and MBD-Seq array data. Methylation array and MBD-Seq

54

options and file condition look similar hence I will show for methylation array. I will also

show for other entities including miRNA/sRNA and Metabolite.

Figure 45. Transcriptomic Microarray selection details

 In transcriptomic microarray selection, we currently support two different dataset

types Affymetrix and Agilent. For each type, we have two methods including RMA and

Lowees. In addition to the GeneID column which is necessary for most of the files, for this

file type, we also search for Affy_Probe_ID column. Based on the dataset type we check

55

the selected file for correctness, if files satisfy all conditions then we will import these files

to the database at the backend upon clicking submit button.

Figure 46.Proteomic MassSpectrometry selection details

 In Proteomic MassSpectrometry selection we currently support two different

dataset types GCMS and LCMS. Before submit button appears user has to enter a number

of conditions and replicates and a number of differential expression files and confirm them.

If the number of differential expression compatible with number of conditions and

replicates then options to select files and to enter details will appear along with submit

56

button, if conditions fail then a descriptive error message with information about which

condition failed will be displayed on the same page to allow user to update the file

accordingly and upload again.

Figure 47. Methylation Array selection details

 Options and file checks for Methylation array dataset and MBD-Seq dataset are

almost the same hence I showed one of them. For methylation data, if an organism belongs

to Plants and Crops then we will have all three datatypes CG, CHH, CHG if non-plant

organism then only CG option will be displayed.

57

Figure 48. miRNA files details

For miRNA datatype we are supporting three different datatypes including miRNA

expression data, miRNA – Target genes data, and Differential expression miRNA data.

58

Figure 49. Metabolite datatype options

In metabolite entity datatype we are supporting three types of files including Metabolite

expression file, Differential Expression Metabolite File, and an optional Metabolite

Annotation File. With the Metabolite Annotation file, user can provide us with details

about the metabolites including their SMILES chemical formula, structure, and a

universal KEGG compound ID which can be used to map to the other databases.

These are the supported datatypes and possible file checks that we do in order to import

data to the backend tables and to perform data analysis with correct files.

59

4.4 Browse KBCommons for Medicago truncatula

Figure 50. Mtruncatula in Browse KB

Mtruncatula has been added to both Model Organisms category and Plants and Crops

category. Now user can click on Mtruncatula to browse the uploaded data on its homepage,

Figure 51. User can search gene ids of Mtruncatula, and can see all the details of that gene

id. Example gene ids based on the selected version will automatically be displayed on the

Gene Search page, shown in Figure 52. We show chromosomal and sequence information

of the selected gene id on gene card page, shown in Figures 53, 54, and 55.

60

We also display differential expression data in browse section. We show existing versions

of the selected organism and existing differential expression data along with sample name

provided and the method of the data. We display all combinations of conditions for which

user uploaded differential data with an option to select any of their combinations. We have

options to select whether the user wants to see data only for Up-regulated or Down-

regulated or for both. After data options selection and submitting we show results in plain

text format and also in the pie chart for better visualization to understand data better, shown

in Figures 56 and 57.

Figure 51. Mtruncatula home page

61

Figure 52. Mtruncatula Search Gene ID

Figure 53. Mtruncatula gene card page

62

Figure 54. Mtruncatula Search Gene ID Chromosomal Information

Figure 55.Mtruncatula Search Gene ID Sequence Information

63

Figure 56. Differential expression data retrieval

Figure 57. Differential expression data displayed in Venn diagram

64

4.5 Add version to KB for Medicago truncatula

 If the user wants to add another version to the existing organism’s KB then there is

an option to do this. The procedure to this is similar to creating a new KB with fewer

options to select details of the organism. In this section, we display only existing organism

to select to add a new version.

Figure 58. Add version to KB button

Figure 59. Add version to KB details

65

 Testing

Testing is one of the important stages in the Software Development Life Cycle. It helps to

identify defects and errors in the model and guide us to improve the quality of the

development. It also helps to make sure the reliability and satisfaction of the end user.

There are many types of testing including: Unit testing, Integration testing, Module

testing, Sub-System testing, System testing, Acceptance testing, Performance testing,

Functional testing, and so on.

A brief introduction to some of the testing that has been done on this KBCommons

development:

 Unit Testing: It is the testing of an individual unit. Each unit is tested

independently, without other system components. This helps to identity syntax

and logic errors from a single unit. Individual components are tested to ensure

they operate correctly.

 Functional Testing: It is the testing to ensure that specified functionality works

well based on the system requirements.

 Sub-System Testing: This tests collection of integrated modules, which have

been developed separately and combined later into a sub-system. We test for

component interactions in this type of testing.

 System Testing: This is testing the entire system after integrating all the

developed sub-systems into one main system. This helps to identify the

unanticipated interactions among the integrated sub-systems and to test the

functional and non-functional requirements. We also test for compatibility of the

software in different environments.

66

 Performance Testing: It is the testing to access the speed and effectiveness of

the system and to check if the system is generating results within the specified

time.

Our development has been tested with most of the above mentioned types of testing.

Unit testing has been done on Create a New KBCommons feature, Upload

MultiOmics files feature, and Add version to KB feature independently and they all

are worked as shown in the Case Study for Mtruncatula.

We also tested combining the Create a New KBCommons feature and Upload

MultiOmics files feature to test the compatibility of combining the different modules.

They worked well without any issues. This ensures integrity of the components.

The entire system along with other components from other developers has been

tested. For example, retrieving data after creating a new KB and using various

analysis tools on uploaded data. This makes sure that the entire system is performing

well.

Functional and Performance testing has been done on the Development from different

users. Due to lack of omics data for organisms, I assigned testing creating a new KB

feature to 4 of our lab students and based on the reports collected from them: it took

around 3-4 minutes to upload and import files to the database on an average for a file

size around 0.5GB.

From these results, we can see that this is a well working system with four features of

Creating a new KB, Add version to KB, Uploading multiomics files, and Browsing

existing data. However, there are many places where performance and quality can be

67

improved. Our system is flexible that, new improvements can easily be incorporated

in to the existing development.

A more extensive testing is required to further ensure better quality of the

development. For example, when user creates a new organism’s KB then we are

directly importing files to the database and making them available on the website. A

brief review of the uploaded data is required to make sure that user uploaded good

quality data.

68

 Applications of KBCommons

KBCommons currently supporting organisms belong to four main categories including

Plants and Crops, Animals and Pets, Humans and Diseases, Microbes and Viruses.

 Studying organisms belong to Plants and Crops will be very useful not only to

increase the yield of crops but also in precision agriculture and precision medicine. As we

know that many plants and leaves can be used as medicine to some diseases as a natural

remedy. A well-known and widely used medicine aspirin was developed as a result of the

study of rotting tree bark. It is very important to study plants when using for medicine as

plants have an impressive variety of defense mechanisms. Many leaves are poisonous to

eat, some are poisonous to touch and a few species even provide nectar to insects that in

turn defend the plant against predators.

 Animal scientists can protect human health and it is important for scientists to study

how diseases spread between humans and animals. In many parts of the world, animals are

used as labor for farmers. Studying animals can be helpful to improve animal breeding,

health, and nutrition. This can also be useful to keep our pets healthy. Studying this area

can tackle issues with pets like pet obesity and breeding.

 Precision medicine is an emerging approach for disease treatment and prevention

that takes into account individual variability in genes, environment, and lifestyle for each

person. Studying various diseases can be helpful in precision medicine and finally to

improve human health and lifestyle. Understanding microbes can be useful in precision

medicine too as they have a profound impact on every facet of human life and everything

around us.

69

 Summary

In this thesis, I have included five chapters of contents including Introduction to the

biological and technical background, Database and frontend architecture, KBCommons

functionalities, Case Study with an example, and Applications.

In the first chapter, I gave brief details about SoyKB and gaps of the SoyKB

framework and why we started with developing a universal KBCommons framework for

multiple organisms and what kind of functionalities we addressed in this first version. I

also introduced technical perspective of this thesis and what are the technologies that I use

for developing KBCommons.

In the second chapter, I explained the Frontend and Backend architecture and

connectivity and how KBCommons implements automatics table generation and updating

them with the data uploaded. Basically, I showed when user perform actions at the

Frontend how we perform actions at the Backend using MySQL schemas presented using

entity relationship diagrams.

In the third chapter, I talked about KBCommons workflow with a flowchart and

what kind of data we are supporting in this version and what are the main sources of that

data. I also talked about main functionalities of KBCommons, their workflow and required

details that user has to bring.

In the fourth chapter, I explained KBCommons workflow with an example

organism, Medicago truncatula, from user sign up to create a new KB and to browse

uploaded data. In the final chapter of contents, I gave applications of KBCommons for each

organism type that we addressed in this first version of KBCommons.

70

 Future Study

KBCommons is an expansion to SoyKB, with a vision to make all possible features

and tools available for users to use for many different organisms with the ultimate goal to

do a genotype to phenotype conversion. In this thesis, we introduced our first version of

KBCommons which addressed many of the features and tools that SoyKB has for soybean

organism alone. In this first version of KBCommons, user can browse existing organisms’

genes and differential expression and visualize in pie charts; user can create a totally new

organism’s KB with basic files and can also add multiple omics datasets and user can add

a new version to the organism too with an automatics framework of creating tables at the

backend and frontend web pages.

KBCommons development team is working towards addressing all the remaining

features and tools that SoyKB has and our first version of KBCommons could not have

including Pathyway viewer, Affymetrix Probe ID mapper, Protein Bioviewer, Enrichment

Analysis and options to download the existing data. In the multi-omics file uploads part,

we do not have differential expression data for Proteomics and Epigenomics yet, our team

continues to work to include these. We are also working on including other entities and

enable file checks for them.

Applying data analytics across multiple organisms, also known as comparative

genomics that is comparing one organism with another, is very important and useful to

draw conclusions in various perspectives. Other members of KBCommons development

team is working on implementing an application programmer interface (API) to enable this.

It would be helpful if we have data analytics visualizations in various forms including 3D

as the data scatter among different organisms.

71

Figure 60. SoyKB to KBCommons tools status

Figure 61. Timeline of the development

72

 References

[1] Joshi, T., Wang, J., Zhang, H., Chen, S., Zeng, S., Xu, B., & Xu, D. (2017). The

Evolution of Soybean Knowledge Base (SoyKB). Plant Genomics Databases, 149-159.

doi:10.1007/978-1-4939-6658-5_7

[2] Joshi, T., Fitzpatrick, M. R., Chen, S., Liu, Y., Zhang, H., Endacott, R. Z., Gaudiello,

E. C., Stacey, G., Nguyen, H. T., & Xu, D. (2014). Soybean knowledge base (SoyKB): a

web resource for integration of soybean translational genomics and molecular breeding.

Nucleic Acids Research, 42, 1245-1252. doi: 10.1093/nar/gkt905

[3] Joshi, T., Patil, K., Fitzpatrick, M. R., Franklin, L. D., Yao, Q., Cook, J. R., Wang, Z.,

Libault, M., Brechenmacher, L., Valliyodan, B., Wu, X., Cheng, J., Stacey, G., Nguyen,

H. T., & Xu, D. (2012). Soybean Knowledge Base (SoyKB): a web resource for soybean

translational genomics. BMC Genomics, 13 Suppl 1:S15. doi: 10.1186/1471-2164-13-S1-

S15

 [4] Reenskaug, T., & Coplien, J. (2009). The DCI Architecture: A New Vision of

Object-Oriented Programming. Retrieved from

http://www.artima.com/articles/dci_vision.html

[5] Burbeck, S. (1992). Applications Programming in Smalltalk-80(TM): How to use

ModelView-Controller (MVC). Retrieved from

http://www.dgp.toronto.edu/~dwigdor/teaching/csc2524/2012_F/papers/mvc.pdf

 [6] Davis, Ian. (2008). What Are The Benefits of MVC? Internet Alchemy. Retrieved

from http://blog.iandavis.com/2008/12/what-are-the-benefits-of-mvc/

http://www.artima.com/articles/dci_vision.html
http://www.dgp.toronto.edu/~dwigdor/teaching/csc2524/2012_F/papers/mvc.pdf
http://blog.iandavis.com/2008/12/what-are-the-benefits-of-mvc/

73

[7] Surguy, M. (2013). History of Laravel PHP framework, Eloquence emerging.

Retrieved from https://maxoffsky.com/code-blog/history-of-laravel-php-framework-

eloquence-emerging/

[8] Bean, M. (2015). Laravel 5 Essentials: Explore the fundamentals of Laravel, one of

the most expressive and robust PHP frameworks available. Available from

https://books.google.com/books?id=BWO4CAAAQBAJ&printsec=frontcover#v=onepag

e&q&f=false

 [9] Skvorc, B. (2015). Best PHP Framework for 2015 – SitePoint Survey Results.

Retrieved from https://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-

results/

[10] Otwell, T., et al. (2011). laravel/laravel: laravel/readme.md at master. Retrieved

from https://github.com/laravel/laravel

[11] Provos, N., Mazières, D., & Sutton, T. J. (1999). A Future-Adaptable Password

Scheme. Proceedings of 1999 USENIX Annual Technical Conference: 81–92. Retrieved

from https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node1.html

[12] History of PHP. Retrieved from https://secure.php.net/manual/en/history.php.php

[13] Summerfield, M. (2007). Rapid GUI Programming with Python and Qt: the

definitive guide to pyqt programming. Available from https://www.amazon.com/Rapid-

GUI-Programming-Python-Definitive/dp/0134393333

[14] McConnell, S. (2009). Code Complete, Second Edition. Available from

https://www.vitalsource.com/products/code-complete-steve-mcconnell-v9780735636972

https://maxoffsky.com/code-blog/history-of-laravel-php-framework-eloquence-emerging/
https://maxoffsky.com/code-blog/history-of-laravel-php-framework-eloquence-emerging/
https://books.google.com/books?id=BWO4CAAAQBAJ&printsec=frontcover#v=onepage&q&f=false
https://books.google.com/books?id=BWO4CAAAQBAJ&printsec=frontcover#v=onepage&q&f=false
https://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/
https://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/
https://github.com/laravel/laravel
https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node1.html
https://secure.php.net/manual/en/history.php.php
https://www.amazon.com/Rapid-GUI-Programming-Python-Definitive/dp/0134393333
https://www.amazon.com/Rapid-GUI-Programming-Python-Definitive/dp/0134393333
https://www.vitalsource.com/products/code-complete-steve-mcconnell-v9780735636972

74

[15] About Python. Retrieved from https://www.python.org/about/

[16] Hamano, J. C., et al. (2005). Releases – git. Retrieved from

https://github.com/git/git/releases

[17] Scopatz, A., & Huff, K. D. (2015). Effective Computation in Physics. O'Reilly

Media, Inc. p. 351. Retrieved from

https://books.google.de/books?id=DYoNCgAAQBAJ&pg=PA351#v=onepage&q&f=fals

e

[18] Bogard, J. (2012). Why GitHub’s pricing model stinks (for us). LosTechies.

Archived at

https://web.archive.org/web/20150629153426/https://lostechies.com/jimmybogard/2012/

11/07/why-githubs-pricing-model-stinks-for-us/

 [19] The Problem With Putting All the World's Code in GitHub. (2015). Wired.

Archived at

https://web.archive.org/web/20150629152927/http://www.wired.com/2015/06/problem-

putting-worlds-code-github/

[20] Gousios, G., Vasilescu, B., Serebrenik, A., & Zaidman, A. (2014). Lean GHTorrent:

GitHub Data on Demand. Archived pdf at

http://www.win.tue.nl/~aserebre/msr14georgios.pdf

[21] Goodstein D. M., Shu S., Howson R., Neupane R., Hayes R. D., Fazo J., et al.

(2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids

Res. 40, D1178–D1186. doi: 10.1093/nar/gkr944

https://www.python.org/about/
https://github.com/git/git/releases
https://books.google.de/books?id=DYoNCgAAQBAJ&pg=PA351#v=onepage&q&f=false
https://books.google.de/books?id=DYoNCgAAQBAJ&pg=PA351#v=onepage&q&f=false
https://web.archive.org/web/20150629153426/https:/lostechies.com/jimmybogard/2012/11/07/why-githubs-pricing-model-stinks-for-us/
https://web.archive.org/web/20150629153426/https:/lostechies.com/jimmybogard/2012/11/07/why-githubs-pricing-model-stinks-for-us/
https://web.archive.org/web/20150629152927/http:/www.wired.com/2015/06/problem-putting-worlds-code-github/
https://web.archive.org/web/20150629152927/http:/www.wired.com/2015/06/problem-putting-worlds-code-github/
http://www.win.tue.nl/~aserebre/msr14georgios.pdf

75

[22] Yates, A., Akanni, W., Amode, M. R., Barrell, D., Billis, K., et al. (2016). Ensembl

2016, Nucleic Acids Research, 44, D710–D716. doi.org/10.1093/nar/gkv1157

[23] Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., et al. (2013).

GenBank, Nucleic Acids Research, 41, D36-42. doi: 10.1093/nar/gks1195

[24] Mashima J., Kodama Y., Fujisawa T., Katayama T., Okuda Y., Kaminuma E.,

Ogasawara O., Okubo K., Nakamura Y., Takagi T. (2017). DNA Data Bank of Japan.

Nucleic Acids Research, 45, D25-D31. doi: 10.1093/nar/gkw1001

[25] Kaminuma E., Kosuge T., Kodama Y., et al. (2011). DDBJ progress report. Nucleic

Acids Research, 39, D22–7. doi:10.1093/nar/gkq1041

[26] Cochrane, G., Akhtar, R., Aldebert, P., Althorpe, N., Baldwin, A., Bates, K.,

Bhattacharyya, S., Bonfield, J., & Bower, L. (2007). Priorities for nucleotide trace,

sequence and annotation data capture at the Ensembl Trace Archive and the EMBL

Nucleotide Sequence Database. Nucleic Acids Research, 36, D5–D12.

doi:10.1093/nar/gkm1018

[27]Young, N. D., Debellé, F., Oldroyd, G. E., Geurts, R., Cannon, S. B., et al. (2011).

The Medicago genome provides insight into the evolution of rhizobial symbioses.

Nature, 480, 520-524. doi: 10.1038/nature10625.

[28]Fields S., & Johnston M. (2005). Cell biology. Whither model organism research?.

Science. 307 (5717): 1885–6. doi:10.1126/science.1108872.

[29] Griffiths, E. C. (2010). What is a model? Archived at http://www.emily-

griffiths.postgrad.shef.ac.uk/models.pdf

http://www.emily-griffiths.postgrad.shef.ac.uk/models.pdf
http://www.emily-griffiths.postgrad.shef.ac.uk/models.pdf

76

[30] Fox, M. A. (1986). The Case for Animal Experimention: An Evolutionary and

Ethical Perspective. University of California Press. Available from

http://www.cell.com/trends/neurosciences/abstract/0166-2236(87)90036-1

[31] Rhodes, L. (2016). Medicago truncatula. The IUCN Red List of Threatened Species

2016: e.T176489A19401776

[32] Tang, H., Krishnakumar, V., Bidwell, S., Rosen, B., Chan, A., Zhou, S., Gentzbittel,

L., Childs, K. L., Yandell, M., Gundlach, H., Mayer, K. F., Schwartz, D. C., & Town,

C.D. (2014). An improved genome release (version Mt4.0) for the model legume

Medicago truncatula. BMC genomics, 15:312. doi: 10.1186/1471-2164-15-312

http://www.cell.com/trends/neurosciences/abstract/0166-2236(87)90036-1

77

VITA

My personal journey of coming from a small, remote village without having access

to even the basic necessities such as schools and healthcare to the current day has been a

journey full of challenges, opportunities, and most importantly great learning experiences.

In our village, it is a rarity to finish high school especially for girl child who is often married

off in her teens. With my persistence and dedication to studies, I was able to eventually

overcome the many socio-economic challenges and excel academically.

During my high school, I realized that the only way for me to succeed in life is to

go to college and pursue my passion for Mathematics and Science. In the high school board

exams, I stood as an outstanding student by topping across our Mandal (county) and

received a special award for this stunt. This boosted my confidence and brought me

reputation in our village community.

With this support, encouragement, and interest I went to college to pursue Bachelor

of Technology in Computer Science. Towards the completion of my Bachelors, I was in a

confusion whether to pursue higher studies or to work in industry as I grew passionate

about doing practical and impactful work. It was then I heard about Bioinformatics as a

pioneering field at the intersection of biological, computational, and statistical research. I

then decided to pursue Master of Technology in Bioinformatics.

To further gain hands on experience in research, I work at two bioinformatics

research labs at the most premier research institutes in India: Indian Institute of Science

and Indian Institute of Technology where I learned how crucial computational techniques

are for scientific learning. With the research experience I gained, I am continuing research

in Bioinformatics with Masters at the University of Missouri.

