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Abstract

Thoracic diseases are very serious health problems that plague a large number of people. Chest X-

ray is currently one of the most popular methods to diagnose thoracic diseases, playing an 

important role in the healthcare workflow. However, reading the chest X-ray images and giving an 

accurate diagnosis remain challenging tasks for expert radiologists. With the success of deep 

learning in computer vision, a growing number of deep neural network architectures were applied 

to chest X-ray image classification. However, most of the previous deep neural network classifiers 

were based on deterministic architectures which are usually very noise-sensitive and are likely to 

aggravate the overfitting issue. In this paper, to make a deep architecture more robust to noise and 

to reduce overfitting, we propose using deep generative classifiers to automatically diagnose 

thorax diseases from the chest X-ray images. Unlike the traditional deterministic classifier, a deep 

generative classifier has a distribution middle layer in the deep neural network. A sampling layer 

then draws a random sample from the distribution layer and input it to the following layer for 

classification. The classifier is generative because the class label is generated from samples of a 

related distribution. Through training the model with a certain amount of randomness, the deep 

generative classifiers are expected to be robust to noise and can reduce overfitting and then achieve 

good performances. We implemented our deep generative classifiers based on a number of well-

known deterministic neural network architectures, and tested our models on the chest X-ray14 

dataset. The results demonstrated the superiority of deep generative classifiers compared with the 

corresponding deep deterministic classifiers.
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I. Introduction

Thoracic diseases encompass a variety of serious illnesses and morbidities with high 

prevalence, e.g. pneumonia affect millions of people worldwide each year and about 50,000 

people die from pneumonia each year in the United States only [1]. Detecting the thoracic 

diseases early and correctly can help clinicians to improve patient treatment effectively. 

Chest X-ray (CXR), also known as chest radiograph, is a projection radiograph of the chest 

and is used to diagnose conditions affecting the chest, its contents, and nearby structures. 

Due to its affordable price and quick turnaround, CXR is currently one of the most popular 

radiological examinations to diagnose thoracic diseases. Currently, reading CXR and giving 

an accurate diagnosis rely on expert knowledge and medical experience of radiologists. With 

the increasing amount of CXR images, to handle the heavy and tedious workload of reading 

the CXR images with subtle texture changes, even the most experienced expert may be 

prone to make mistakes. Therefore, it is important to develop a Computer-Aided Diagnosis 

(CAD) system to automatically detect different types of thoracic diseases by reading 

patients’ CXR images.

Developing a CAD system to understand medical images and to diagnose diseases has 

attracted wide research interests for decades [2]–[4]. However, traditional statistical learning 

methods, such as Bayesian classifier [5]–[7], SVM [8]–[10] and KNN [11]–[14] etc., are not 

expert in directly handling the medical images in the high-dimensional pixel-level features. 

They usually require onerous highly customized feature engineering before classification, 

thus, they cannot generalize well and is expert labor intensive. With the success of deep 

learning in computer vision, it is natural to apply deep learning models to assist in disease 

diagnosis based on medical images. Recently, deep learning based CAD has benefited many 

biomedical applications [15], e.g., diabetic eye disease diagnosis [16], cancer metastases 

detection and localization [17], lung nodule detection [18], survival analysis [19] and 

clinical notes classification [20], [21], etc. In this work, we develop a generative deep neural 

network architecture and apply it to diagnosing thoracic diseases based on CXR images.

Deep neural networks usually require large-scale datasets for training. Recently, Wang et al. 

[22] released the datasets ChestX-ray8 and later ChestX-ray14 which is considered one of 

the largest public chest X-ray dataset (details in Section IV-A). There are 14 thoracic 

diseases included in ChestX-ray14, i.e., Atelectasis, Cardiomegaly, Effusion, Infiltration, 

Mass, Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, 

Pleural Thickening, and Hernia. We focus on this dataset to train a deep generative classifier 

to diagnose the 14 diseases.

In this paper, we propose using deep generative classifiers to automatically diagnose thorax 

diseases from CXR images. A Deep Generative Classifier (DGC) contains an encoder 

network and a classifier network. The encoder network encodes each input CXR image to a 

low-dimensional distribution of latent features. The classifier network classifies a sample 
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using features drawn from the latent low-dimensional distribution and outputs probabilities 

of class label assignment. Our main idea is to use the random sampling connection between 

the encoder network and the classifier network rather than a deterministic connection which 

is adopted in most previous frameworks, e.g. AlexNet [23], ResNet [24], VGGNet [25] and 

DenseNet [26]. Intuitively, by using the random sampling connection, the model would be 

more robust to noise and can reduce overfitting. An overview of our generative classifier is 

shown in Fig. 1. As shown in Fig. 1, given a CXR image, our model will output a list of 

probabilities corresponding to a list of thorax diseases, and a low-dimensional distributional 

representation of this image as a by-product which can be used for other classification or 

clustering tasks.

II. Related work

A. Deep Learning for CXR Image Analysis

Many research efforts have been directed towards automatic detection of thorax diseases 

based on diverse data generated by chest X-ray scanning. Before ChestX-ray14 dataset was 

released, there were also some works about thoracic disease classification on some relatively 

small dataset. Bar et al. [27] applied a pre-trained Decaf Convolutional Neural Network 

(CNN) model [28] to classify 8 thoracic diseases on a dataset of 433 images. Lajhani et al. 

[29] ensembled both AlexNet [23] and GoogleNet [30] for tuberculosis classification on a 

dataset of 1007 posteroanterior CXR images.

Since Wang et al. [22] released the datasets ChestX-ray14, there has been an increasing 

amount of research on CXR analysis using deep neural networks. Wang et al. [22] also 

evaluated the performance of four classic deep learning architectures (i.e., AlexNet [23], 

VGGNet [25], GoogLeNet [30] and ResNet [24]) to diagnose 14 thoracic diseases from 

CXR images. To explore the correlation among the 14 diseases, Yao et al. [31] used a Long-

short Term Memory (LSTM) [32] to repeatedly decode the feature vector from a DenseNet 

[26] and produced one disease prediction at each step. Kumar et al. [33] explored suitable 

loss functions to train a convolutional neural network (CNN) from scratch and presented a 

boosted cascaded CNN for multi-label CXR classification. Rajpurkar et al. [34] achieved 

good multi-label classification results by fine-tuning a pre-trained DenseNet121 [26]. Li et 

al. [35] used a pre-trained ResNet to extract features and divided them into patches which 

are passed through a fully convolutional network (FCN) [36] to obtain a disease probability 

map.

Previous deep learning architectures all had a deterministic mapping between encoded 

features and CXR classification. In this paper, we propose using deep generative classifiers 

for classifying thoracic disease with CXR images. By introducing a generative process, the 

learned DGC model should be more robust to noise and reduce the overfitting issue.

B. Variational Autoencoder

The deep generative classifiers have similar traits with Variational Auto-Encoder (VAE) 

[37]. In VAE, a high-dimensional sample is encoded to a low-dimensional feature 

distribution, a sample from this distribution is decoded to the original high-dimensional 
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sample. To generate new samples better, VAE needs to constrain the low-dimensional 

distribution to a certain known distribution. VAE was usually used to reduce the data 

dimension or to generate new samples, but was rarely used for supervised classification 

directly. In this paper, we leverage VAE to design a generative classification model where 

the class label was generated from the latent low-dimensional distribution.

III. Models

Our purpose is to judge whether one or more thoracic diseases are presented in a CXR 

image, it can be modeled as a multi-label classification problem. We integrate the losses of 

the multiple objectives for multiple labels, and tackle this problem using deep generative 

classifiers. In this section, we explicitly describe the technical details of the proposed deep 

generative classifiers. First, we present the detailed architecture of the deep generative 

classifier. Then, we explain the training strategy of the model. Finally, we give a 

probabilistic interpretation of our model.

A. Architecture

A DGC receives a batch of CXR image as input and computes a list of probabilities for each 

disease. In the framework, each input image is encoded to a latent low-dimensional 

distribution by the encoder network, the classifier network classifies the sample based on 

features drawn from the latent low-dimensional distribution to generate a probabilistic 

output. Fig. 2 illustrates the detailed framework of DGC. Given a CXR image input X, the 

computation flows through a series of sub-modules, including the encoder, the transition 

layer, the sampling layer, and the classifier. Next, we explain the submodules in detail

1) Encoders: As shown in Fig. 2, the encoder in our network is leveraged from a part of 

a pre-trained model on ImageNet [38], [39], e.g. AlexNet [23], VGGNet [25], ResNet [24] 

and DenseNet [26]. For the pre-trained models, we discard the fully-connected layers and 

classification layers, and keep the feature layers to extract feature maps for CXR images. 

Through the encoder, an original image X (224×224×3) is encoded to C feature maps with 

size S × S represented by En(X; Φe) where Φe is the set of trainable parameters of the 

encoder.

2) Transition Layer: The transition layer is to transform the output feature maps of the 

encoder to a flat feature vector that has a uniform dimension for different images. Due to the 

variety of the output feature maps of the encoder we adopt, we use a convolution layer with 

a certain number (D) of filters to get D feature maps, and then adopt batch normalization 

[40] right after the convolution layer to ease the training process. Finally, a max pooling 

layer [41] with kernel size equal to the feature map size is applied to reduce each feature 

map to 1 × 1 × D. The 1 × 1 × D feature map is then squeezed to a D-dimensional feature 

vector, represented by

μ =  Trans En X; Φe ; Φt (1)

where Φt is the set of trainable parameters of the transition layer.
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3) Sampling Layer: Instead of using the output of the transition layer directly as 

features, we treat it as the mean of a latent distribution. We let this sampling layer samples 

from this latent distribution to produce a feature vector. In our design, the features of a CXR 

image adopt a latent distribution whose parameters are computed from the upstream 

networks or jointly learned with the network parameters by Stochastic Gradient Descent 

(SGD) [42]. In our architecture, we treat the latent distribution as Gaussian distributions 

where the mean is computed from the upstream network, i.e., the output of the transition 

layer, and the covariance matrix is diagonal with the diagonal elements learned with the 

network parameters. Thus, for a D-dimensional latent Gaussian distribution, the sampling 

layer has a total of D parameters each of which corresponds to the standard deviation of each 

dimension. The output of sampling layer is a feature vector sampled from the latent 

distribution. The sampling layer is crucial to make the model generative rather than 

deterministic. The sampling layer can be represented by

z N(μ, σ) (2)

where μ is the output of the transition layer and σ is the trainable parameter of the sampling 

layer.

4) Classifier: Since we use a low-dimensional representation as the feature vector of an 

input CXR image, we need a classifier to discriminate if a disease is presented. For the 14 

thoracic diseases, there are 14 probabilist outputs considered as a 14-dimensional vector. In 

our architecture, we use a fully-connected layer with 14 score outputs that are then 

transformed by a sigmoid function to probabilistic outputs. The classifier is represented by

p = f z; Φc (3)

where z is the output of the sampling layer and Φc is the parameters of the classifier.

B. Training Strategy

We next describe two crucial strategies related to training that concern the loss function for 

multi-label classification and the reparameterization for distribution parameter learning.

1) Loss Function: To train our network, we must define a loss function for the multiple 

outputs corresponding to the 14 diseases. The true label of each image is considered a 14-

dimensional vector y = [y1, ⋯ , yi, ⋯ , yC], yi ∈ {0,1}, C = 14 where yi represents whether 

the corresponding disease is presented, i.e., 1 for presence and 0 for absence. An all-zero 

vector represents “No Findings” in the 14 diseases. We compute the cross entropy loss li for 

disease i as (4), where pi is the output probability of disease i.
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li = − yi * lnpi − 1 − yi * ln 1 − pi =
−lnpi, yi = 1;
−ln 1 − pi , yi = 0

(4)

For a mini-batch with n samples, the corresponding targets are n C-dimensional (0,1)-

vectors which can be considered as a (0,1)-matrix with shape n × C which we call target 

matrix. Since there usually are only a few pathologies present in a CRX image, the target 

matrix should be a sparse matrix where there are many more ‘0’s than ‘1’s. To balance the 

influence of ‘0’s and ‘1’s on the loss, we weight the losses for different classes. In the mini-

batch, we design the weights as (5), where |P| and |N| are, respectively, the number of ‘1’s 

and ‘0’s in the target matrix of the mini-batch. Thus, combining (4) and(5), we define the 

loss function for a CRX image as (6)

wi =

P + N
P , yi = 1;

P + N
N , yi = 0

(5)

L(p, y) = ∑
i = 1

14
wili = − P + N

P ∑
yi = 1

lnpi − P + N
N ∑

yi = 0
ln 1 − pi (6)

2) Reparameterization Trick: Since the sampling operation is not differentiable, we 

use the reparameterization trick [37]. In our architecture, the latent distribution is Gaussian 

(assumed N(μ, σ2)). Due to random sampling, the derivative of a sample z from this 

distribution with respect to μ and σ cannot be directly obtained. To learn the parameters with 

SGD, we construct a deterministic relation between z and μ, σ by introducing an auxiliary 

variable ϵ, ϵ ~ N(0, 1). Thus, sampling from N(μ, σ2) is equal to sampling ϵ from N(0, 1) 

and then computing the sample by

z = μ + ϵσ, ϵ N(0, 1) (7)

The derivative of z can then be easily computed as

∂z/ ∂μ = 1
∂z/ ∂σ = ϵ

(8)
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Algorithm 1

Deep Generative Classifier Training. N is the number of samples in the training set. The 

parameter list [Φ = Φe, Φt, σ, Φc].

Input:

Training set Tr = {(Xi Yi)}, i ∈ {1, ⋯ , N} ;

Batch size |B|;

The terminating condition (e.g., a number of epochs or early stop).

Output: The updated parameter list of DGC Φ.

1: Initialize the parameter list of DGC Φ

2: repeat

3:  Randomly split the training set Tr into n mini-batches {B1, ⋯ , Bn} with each batch has |B| samples, the last 
batch can have less samples

4:  for B in {B1, ⋯ , Bn} do

5:   Count the number of ‘0’s |N| and number of ‘1’s |P| in the target matrix Y

6:   ℒ = 0
7:   for (X, y) in B do

8:    Random sampling ϵ with the same shape as σ from N(0,1)

9:    Compute the output p of the model by (9)

10:    Compute the loss L by (6)

11:    ℒ = ℒ +L

12:   end for

13:   Compute the gradient g = ∇Φℒ

14:   Update parameters Φ using gradients g, Φ = update(Φ, g). e.g. SGD [42] or Adam [43]

15:  end for

16: until the terminating condition is met

17: return Φ

Combining (1), (2), (7), (3), we can compute the output of the model by (9). Thus, through 

the reparameterization trick, the network can be trained by SGD.

p = f Trans En  X; Φe ; Φt + ϵσ; Φc (9)

3) Training Algorithm: The training algorithm of DGC is briefly described in 

Algorithm 1. It starts by initializing the model parameter Φ (Line 1), then repeats the 

training procedure until the terminating condition (e.g., a threshold number of epochs or 

early stop) is met (Lines 2–16). In an epoch in the training procedure, the training set is split 

into batches (Line 3). For each batch in the training set (Line 4–15), we compute the loss of 

the batch (Lines 5–12), and the gradients with respect to the parameters Φ for error 

backpropagation (Line 13). We then update the parameters Φ using the gradients and a 

certain optimization algorithm (Line 14). Finally, if the terminating condition is met, the 

model is updated with parameters Φ.
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C. Test Strategy

After the model is trained, in the test process, a CXR image can be encoded to a Gaussian 

distribution N(μ, σ). To classify the image, we need sampling the feature vector of a sample 

from the distribution, and then input the sample to the classifier to get the probability output. 

However, the sampling process is random, that is, the output may change with the different 

samplings. Thus, to achieve a consistent classification output in the test process, we use the 

expectation of the distribution as the sample input to the classifier, i.e.,

z = 𝔼N(μ, σ) = μ (10)

IV. Experiments

In this section, we evaluate the performance of the proposed DGC model and compared it 

with the corresponding deep deterministic classifiers.

A. ChestX-ray14 Dataset

We evaluate and validate the DGC model using the ChestX-ray14 dataset1 [22]. The 

ChestX-ray14 dataset consists of 112,120 frontal-view chest X-ray images of 30,805 unique 

patients. There are 14 thoracic disease labels included in these images (i.e., Atelectasis, 

Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, 

Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening and Hernia). The labeled 

ground truth is obtained through Natural Language Processing (NLP) on the patients’ 

diagnostic reports, the labeling accuracy is estimated to be > 90% [22]. Out of the 112,120 

CXR images, 51,708 contains one or more pathologies. The remaining 60,412 images are 

considered normal. In our experiments, we split the dataset into training-validation set and 

test set on the patient level using the publicly available data split list1. All studies from the 

same patient will only appear in either training-validation set or testing set. The detailed 

information about the number of images and patients in training-validation set and test set is 

shown in Table I.

The training-validation set is further randomly split into a training set and a validation set, 

7/8 as the training set and 1/8 as the validation set. The training set is used to train the model 

and the validation set is used to select a model according to the performance.

B. Preprocessing

Since the ImageNet pre-trained models only accept 3-channel images with size 224 × 224, 

while the images in ChestX-ray14 dataset are 1024 × 1024 grayscale, we convert the 

grayscale images to 3-channel RGB images, down-scale the original resolution to 256 × 256 

and then crop the image to 224 × 224 at the center.We normalized the images by mean 

([0.485, 0.456, 0.406]) and standard deviation ([0.229, 0.224, 0.225]) according to the 

images from ImageNet. We do not apply any data augmentation techniques.

1https://nihcc.app.box.com/v/ChestXray-NIHCC
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C. Experimental setting

Our experimental setting includes the following aspects.

1) Encoder: In our experiments, we tried 6 pretrained models as the encoder in our 

architecture, including AlexNet[23], VGGNet16 [25], ResNet50 [24] and DenseNet121 

[26], DenseNet161 [26], DenseNet201 [26]. As described in Section III-A1, we discarded 

the high-level fully-connected layers and classification layers of the pretrained models and 

only used the feature layers as the encoder. As shown in Fig. 2, different encoders have 

different inner structure and have different parameters. We respectively denote the DGC 

based on these encoder as DGC-AlexNet (G-AN), DGC-VGGNet16 (G-VN16), DGC-

ResNet50 (G-RN50), DGC-DenseNet121 (G-DN121), DGC-DenseNet161 (G-DN161) and 

DGC-DenseNet201 (GDN201).

2) Baselines: The specific part of our architecture is the sampling layer which improves 

the model robustness to noise. Thus, we remove the sampling layer in the architecture and 

consider the remaining parts as the baselines, i.e., the output of the transition layer is directly 

input to the classifier in baselines. Correspondingly, we have 6 baselines, respectively 

denoted as AlexNet (AN), VGGNet16 (VN16), ResNet50 (RN50), DenseNet121 (DN121), 

DenseNet161 (DN161) and DenseNet201 (DN201).

3) Hyperparameters:

• Initialization: the encoder was initialized with a pretrained model. In the 

transition layer, the convolution layer was initialized with kaiming uniform 

initialization [44], the batch normalization layer was initialized with weights 

drawn from the uniform distribution U(0, 1) and bias as zero. To ensure the 

positivity of σ in the sampling layer, we computed σ from σ2 = eυ where υ was 

initialized with values drawn from the uniform distribution U(0, 1). In the 

classifier, the parameters of the fully-connected layer were initialized with 

kaiming uniform initialization [44]

• Latent dimension: we set the latent dimension to 1024, i.e., each image was 

encoded to 1024-dimensional feature vector adopting Gaussian distribution.

• Batch size: the batch size was 16, i.e., the model updated parameters per 16 

images.

• Optimizer: we trained the model by Adam optimizer [43] with parameters lr = 

10−5, β = (0.9, 0.999), eps = 10−8, weight_decay = 0

• Terminating condition: we terminated the training procedure when it repeated 10 

epochs. In each epoch, we tested the model on the validation set and save the 

model with the best performance.

4) Evaluation: Since our model outputs the probability for each disease, it is natural to 

plot a Receiver Operating Characteristic curve (ROC) for each disease. In our experiments, 

we calculated the Area Under ROC (AUC) for each disease, and evaluated the classification 

performance by the average AUC of the 14 diseases.
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D. Implementation

Our models and all the baselines were implemented using Python 3.6 with PyTorch 

framework on a CentOS Linux server. The models were trained and tested on 4 Tesla K40 

GPUs. We made our source code publicly available at https://github.com/mocherson/deep-

generative-classifiers

E. Classification Results and Analysis

In each of the 10 epochs of training, we evaluated the model on the validation set, and 

selected the model that achieved the highest classification performance to test on the test set. 

We repeated the training and classification procedure 5 times and reported the average 

results. The classification results for each model and the corresponding baselines are given 

in TableII. From Table II, overall, DGCs have higher classification performance than the 

corresponding baselines. The results, together with the fact that the only difference between 

DGC and its baselines is the sampling layer as described in Section IV-C2, suggest that 

adding a sampling layer can improve the classification performance of a deterministic 

classifier.

From Table II, as for the average AUC of the 14 diseases, AlexNet encoder has the worst 

performance and VGGNet16 encoder have the best performance, DGC can improve the 

most when the encoder is AlexNet (AUC from 0.7619 to 0.7654), and improve the least 

when the encoder is VGG16 (AUC from0.7875 to 0.7877). Additionally, DGC-AlexNet can 

consistently outperform AlexNet for all the 14 diseases. For “Mass”, “Pneumothorax” and 

“Consolidation”, the DGC classifiers can consistently outperform the deterministic 

classifiers for all the encoders.

Horizontal comparison shows that different classification models achieve different 

classification performances even for the same disease. In most cases, classifiers based on 

VGGNet16 can outperform other types of classifiers. Out of the 14 diseases, 8 diseases 

achieve the best performance on VGGNet16 encoder, 5 are based on DenseNet161 and only 

1 (“Hernia”) achieves the best performance on DenseNet201 encoder. From Table II, we can 

also see that only 2 diseases (“Cardiomegaly” and “Infiltration”) can achieve their best 

classification results on deterministic classifier (VGGNet16), all of the other diseases 

achieve their best performance with DGC models.

Vertical comparison shows that the same classification model can achieve different 

classification performance for the 14 diseases. The most easily identified disease is “Hernia” 

(AUC=0.9113) and the least easily identified disease is “Infiltration” (AUC=0.6894). From 

Table II, the diseases that are difficult to identify include “Infiltration”, “Pneumonia”, 

“Nodule”, “Consolidation” and “Atelectasis” (AUC<0.75); the easily identified diseases 

include “Hernia”, “Emphysema” and “Cardiomegaly” (AUC>0.85).

We also plot the ROC curves of different DGC models and their baselines over the 14 

diseases for one of the 5 runs, shown in Fig. 3. From Table II and Fig. 3, for most of the 

diseases, a DGC model can usually outperform its corresponding deterministic model. 

Moreover, we can see that the ROC curves of diseases “Infiltration”, “Pneumonia”, 

“Nodule” and “Consolidation” are relatively flat, which means that the classifications on 
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these diseases are not as good as other diseases like “Hernia”, “Emphysema” and 

“Cardiomegaly”. This is consistent with our previous analysis.

V. Conclusion

In this paper, we proposed using deep generative classifiers to diagnose thoracic diseases 

with chest X-ray images. The deep generative classifiers contained an encoder and a 

classifier. The encoder encoded the input CXR image to a low-dimensional distribution, the 

classifier classified using features drawn from this distribution. Different from the 

deterministic classifiers, in the training process, generative classifiers introduce Gaussian 

noise and learn the variance in the training process. Through training the model with a 

certain amount of noise, the learned model was expected to be more robust to noise and to 

reduce overfitting. In this paper, we implemented the DGC architecture by adding a 

sampling layer between the encoder and the classifier. We used the reparameterization trick 

to train the DGC model through SGD. Our experimental results on ChestX-ray14 dataset 

demonstrated the effectiveness of the DGC models.

The proposed DGC has similar traits with variational autoencoders (VAE). VAE is 

considered unsupervised, because it is trained without labels, its target is to reconstruct the 

original input. However, if there is a label corresponding to an image and the target is to 

predict the label for new images, we can solve the supervised classification problem using an 

adapted VAE and reconstructing the labels. This is the key idea of DGC. The difference 

between DGC and a deep deterministic classifier (e.g., AlexNet, VGGNet) is similar to the 

difference between VAE and a general autoencoder [45].

In our architecture, we used a complex model to identify the 14 diseases, and learned the 

model by a sparsity-weighted cross entropy loss, while the weights for different diseases are 

the same, i.e., we equally regarded all the 14 diseases and learned a generic latent low-

dimensional distribution for different diseases. This may somewhat influence the 

classification results of a certain disease. If only a certain disease is considered, one should 

train a specific model based on the loss corresponding to this disease. We will experiment 

with this setting in the future work. In addition, we did not explore the pathology 

localization problem using DGC, which will also be a part of our future work.
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Fig. 1: 
An overview of the deep generative classifier for thorax disease diagnosis. The network 

reads chest X-ray images and produces a probability score for each thorax disease. The 

dashed arrow between the encoder network and the classifier network denotes the two 

networks are connected by random sampling.
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Fig. 2: 
The framework of deep generative classifiers.
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Fig. 3: 
ROC curves of different DGC models (i.e., DGC-AlexNet, DGC-DenseNet161, DGC-

VGGNet16 and DGC-ResNet50) and their baselines over the 14 diseases.
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Table I:

Number of images and patients in the ChestX-ray14 dataset

Diseases

Entire Set Train- val Set
2 Test Set

#imgs
3

#pts
4 #imgs #pts #imgs #pts

Atelectasis 11535 4974 8280 4182 3255 792

Cardiomegaly 2772 1565 1707 1228 1065 337

Consolidation 4667 2150 2852 1617 1815 533

Edema 2303 1073 1378 747 925 326

Effusion 13307 4273 8659 3502 4648 771

Emphysema 2516 1046 1423 762 1093 284

Fibrosis 1686 1260 1251 1003 435 257

Hernia 227 134 141 102 86 32

Infiltration 19870 8031 13782 7111 6088 920

Mass 5746 2550 4034 2115 1712 435

Nodule 6323 3390 4708 2855 1615 535

PT
1 3385 2006 2242 1559 1143 447

Pneumonia 1353 955 876 697 All 258

Pneumothorax 5298 1484 2637 1080 2661 404

Normal 60412 16405 50500 14892 9912 1513

Summary 112120 30805 86524 28008 25596 2797

1
PT — Pleural Thickening;

2
Train-val set — Training-validation set;

3
#imgs — the number of CXR images;

4
#pts — the number of patients.
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