A Tissue-aware Gene Selection Approach for Analyzing Multi-tissue Gene Expression Data | IEEE Conference Publication | IEEE Xplore

A Tissue-aware Gene Selection Approach for Analyzing Multi-tissue Gene Expression Data


Abstract:

High-throughput RNA sequencing (RNAseq) produces large data sets containing expression levels of thousands of genes. The analysis of RNAseq data leads to a better underst...Show More

Abstract:

High-throughput RNA sequencing (RNAseq) produces large data sets containing expression levels of thousands of genes. The analysis of RNAseq data leads to a better understanding of gene functions and interactions, which eventually helps to study diseases like cancer and develop effective treatments. Large-scale RNAseq expression studies on cancer comprise samples from multiple cancer types and aim to identify their distinct molecular characteristics. Analyzing samples from different cancer types implies analyzing samples from different tissue origin. Such multi-tissue RNAseq data sets require a meaningful analysis that accounts for the inherent tissue-related bias: The identified characteristics must not originate from the differences in tissue types, but from the actual differences in cancer types. However, current analysis procedures do not incorporate that aspect. As a result, we propose to integrate a tissue-awareness into the analysis of multi-tissue RNAseq data. We introduce an extension for gene selection that provides a tissue-wise context for every gene and can be flexibly combined with any existing gene selection approach. We suggest to expand conventional evaluation by additional metrics that are sensitive to the tissue-related bias. Evaluations show that especially low complexity gene selection approaches profit from introducing tissue-awareness.
Date of Conference: 03-06 December 2018
Date Added to IEEE Xplore: 24 January 2019
ISBN Information:
Conference Location: Madrid, Spain

References

References is not available for this document.