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Abstract

Convolutional neural network (CNN) and recurrent neural network (RNN) models have become the mainstream methods for relation

classification. We propose a unified architecture, which exploits the advantages of CNN and RNN simultaneously, to identify

medical relations in clinical records, with only word embedding features. Our model learns phrase-level features through a CNN

layer, and these feature representations are directly fed into a bidirectional gated recurrent unit (GRU) layer to capture long-term

feature dependencies. We evaluate our model on two clinical datasets, and experiments demonstrate that our model performs

significantly better than previous single-model methods on both datasets.

Keywords: Relation classification; Clinical record; Convolutional neural network; Gated recurrent unit.

1. Introduction

Relation classification, a natural language processing (NLP)

task which identifies the relation between two entities in a sen-

tence, is an important technique in many subsequent NLP appli-

cations, such as question answering and knowledge base com-

pletion. In the clinical domain, Informatics for Integrating Bi-

ology and the Bedside (i2b2) released an annotated relation

dataset on clinical records and attracted considerable attention

[1]. Identifying relations in clinical records is a challenging task

because one sentence from clinical records may contain more

than two medical concepts and a concept may contain several

words. Figure 1 illustrates relation samples in this task.

Due to the powerful feature learning ability, convolutional

neural network (CNN) and recurrent neural network (RNN) are

the mainstream architectures in the relation classification task

[2–9]. In order to utilize the advantages of these two neural

networks simultaneously, combinations of CNN and RNN turn

into a research trend. The most direct way is to use the voting
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Sentence 
Pain control was initiated with morphine but was then changed to 
demerol, which gave the patient better relief of his epigastric pain.

Relations
(pain control, his epigastric pain, type=TrIP)
(morphine, his epigastric pain, type=TrAP)
(demerol, his epigastric pain, type=TrIP)

Fig. 1. An example of medical relations in a sample sentence. TrIP, treatment

improves medical problem; TrAP, treatment is administered for medical

problem.

scheme [10]. The second combination way is to feed features

extracted by a RNN architecture into CNN [11, 12], which can

be seen as generating new input representations by RNN. The

third way is to stack RNN on CNN. Even though this archi-

tecture has not been applied to identify medical relations from

clinical text, its variants have achieved remarkable results in

many other classification tasks [13–16].

Deep learning methods have presented satisfactory results

[2–7, 17, 18] and make the models less dependent on man-

ual feature engineering. Moreover, some researchers proposed

models only with word representations as input features [9, 19],
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which achieved outstanding results. Similarly, our goal is to

propose a model for relation classification on clinical records,

without using any external feature set. In this work, we follow

the third combination way and design a two-layer architecture:

input representations (word-level) are fed into a CNN layer to

learn n-gram features (phrase-level), and these feature repre-

sentations are directly used as the input of a bidirectional gated

recurrent unit (GRU) [20] layer to achieve the final sample rep-

resentation (sentence-level). Our main contributions are as fol-

lows: (1) we propose a unified architecture to identify medical

relations in clinical records, which has the ability to capture

both local features (extracted by a CNN layer) and sequential

correlations among these features (extracted by a bidirectional

GRU layer); (2) we also explore training our model with atten-

tion mechanism (C-BGRU-Att) and compare the performance

with the model using the conventional max-pooling operation

(C-BGRU-Max); (3) experiments show our model achieves bet-

ter performance than previous single-model methods, with only

word embedding features.

2. Methodology

Figure 2 describes the architecture of our model for medi-

cal relation classification on clinical records. This model learns

a distributed representation for each relation sample, and cal-

culates final scores with relation type representations. More

details will be discussed in the following sections.

2.1. Word representation layer

With reference to a previous study on relation classification

[21], word position features capture information of the rela-

tive position between words and target concepts. Therefore,

an word embedding matrix Ww ∈ Rdw×|V w| and an word po-

sition embedding matrix Wwp ∈ Rdp×|V p| are given in this

work, where V w is the vocabulary, V p is the word position set,

and dw and dp are pre-set embedding sizes. Every word in the

relation sample is mapped to a column vector xwi to represent

the word feature. In addition, relative distances between the

Fully Connected
Layer

Pooling Layer

GRU Layer

Convolutional Layer

tanh

Word Representation
Layer

treatment for problem at thetreated with ……

tanh tanh tanh tanh

Fig. 2. Architecture of our model for medical relation classification. In the

input of this architecture, concept contents in the relation sample “she was

treated with [steroids]treatment for [this swelling]problem at the outside

hospital , and these were continued .” are replaced by their concept types.

current word and the target concepts are mapped to word po-

sition vectors xp1i and xp2i . Based on the above features, each

word can be represented by x′i = [(xwi )
T
, (xp1i )

T
, (xp2i )

T
]
T

,

and x′i ∈ Rdx , where dx = dw + 2dp.

2.2. Convolutional layer

The semantic representations of n-grams are valuable fea-

tures to the relation classification task, and convolution opera-

tion can capture this information by combining word embed-

ding features in a fixed window. Given the input representation

x′ = (x′1,x
′
2, . . . ,x

′
n) and a context window size k, concate-

nation of successive words in this window size can be defined
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as Xj = [x′j
T
, . . . ,x′j+k−1

T
]
T

, and the representation of this

relation sample can be reformatted asX = (X1, . . . , Xn−k+1).

Given a weight matrix of the convolutional filters W conv and a

linear bias b, the local feature representations are computed:

Cj = tanh(W conv ·Xj + b), (1)

where W conv ∈ Rdc×dxk, b ∈ Rdc , and tanh denotes the

hyperbolic tangent function.

Generally, this convolutional result will be fed into a max-

pooling operation to extract the most significant features. How-

ever, these extracted features are independent, and the corre-

lation information among the local features are not captured.

GRU has the ability to make up for this deficiency by using a

gating mechanism to capture short-term and long-term depen-

dencies. Therefore, in this study, a GRU layer is stacked on

top of the convolutional layer to continue the feature extraction

work.

2.3. GRU layer

Similar to the long short-term memory (LSTM) unit with a

memory cell and three gating units [22, 23], GRU is much sim-

pler to compute because only two gating units are used to adap-

tively capture dependencies over different time scales: one is

the reset gate rj , which controls how much information from

the previous hidden state is kept in the candidate hidden state;

another is the update gate zj , which decides how much previ-

ous information contributes and how much information from

the candidate hidden state is added. The computational process

are demonstrated by the following equations:

rj = σ(Wr · Cj + Ur · hj−1 + br), (2)

zj = σ(Wz · Cj + Uz · hj−1 + bz), (3)

h̃j = tanh(Wh · Cj + rj � (Uh · hj−1) + bh), (4)

hj = (1− zj)� hj−1 + zj � h̃j , (5)

where σ is the logistic sigmoid function, � stands for the

element-wise multiplication, Cj is the current n-gram feature

representation (mentioned in Section 2.2), hj−1 and h̃j are

the previous and the candidate hidden state, respectively, and

hj ∈ Rdh is the current hidden state. Wr, Ur, br, Wz , Uz , bz ,

Wh, Uh and bh are weight matrices to be learned.

We use a bidirectional GRU [20] to encode the n-gram

feature representations, which contains a forward GRU and

a backword GRU. A sequence of forward hidden states

(
−→
h 1, . . . ,

−→
h n−k+1) and a sequence of backward hidden states

(
←−
h 1, . . . ,

←−
h n−k+1) are obtained. The final j-th hidden state

can be achieved by concatenating the j-th forward and back-

ward hidden state: hj = [
−→
h j

T
,
←−
h j

T
]
T

, which contains the

dependencies of the preceding and the following n-gram fea-

tures.

2.4. Pooling layer

Two different kinds of pooling schemes are adopted to gen-

erate the semantic representation of the relation sample rs.

Max pooling can be seen as a down-sampling operation that

aims to extract the most significant features. After using this

operation in our network, the i-th feature value rsi is calculated

by

rsi = max([h1]i, . . . , [hn−k+1]i), (6)

where [hj ]i denotes the i-th element in vector hj . And all these

features constitute the semantic representation of the relation

sample rs = (rs1, . . . , rsdh)
T.

Attentive pooling Given the output of the GRU layer H =

[h1, . . . ,hn−k+1], we follow the attention mechanism used in

[9], and the representation rs is formed:

α = softmax(vT · tanh(H)), (7)

rs = tanh(H ·αT), (8)

where v is a model parameter vector and α is a weight vector

to measure which parts of the GRU output are relatively signif-

icant for the relation classification.

2.5. Fully connected layer

We apply a softmax classifier to achieve the confidence

scores with a class embedding matrix W cs:

sθ = softmax(W cs · rs), (9)

3



where θ is the model parameter set. syθ is the confidence score

of the true relation type y, and the loss function can be defined

as

L = − 1

m

m∑
i=1

log syθ + β||θ||2, (10)

where m is the sample size and β is the l2 regularization pa-

rameter.

3. Experiments

3.1. Dataset and experimental settings

Experiments are conducted on the 2010 i2b2/VA relation

dataset1 and the WI relation dataset2. The former dataset com-

prises 426 English discharge summaries (170 for training and

256 for test), and the latter dataset contains 992 Chinese clin-

ical records (521 for training and 471 for test). The relation

types and their counts in these two datasets are listed in Ta-

ble 1. As stipulated in the official evaluation metric in the

2010 i2b2/VA challenge, the model performance is based on

the micro-averaged F1 score over all positive relation types.

In our methods, the initial word representations and the other

matrices are randomly initialized by normalized initialization

[25], and a 5-fold cross-validation is used on the training set to

tune the model hyperparameters. The selected hyperparameter

values are: word embedding size dw, 100; word position em-

bedding size dp, 10; convolutional size dc, 200; context window

size k, 3; GRU dimension dh, 100; learning rate, 0.01. Adam

technique [26] is utilized to optimize our loss function. We use

both l2 regularization and dropout technique [27] to avoid over-

fitting, and the values are set to 0.0001 and 0.5, respectively.

3.2. Baselines

3.2.1. 2010 i2b2/VA relation dataset

When doing experiments on this dataset, the previous meth-

ods [12, 28, 29] followed inconsistent data split schemes. In

1The relation dataset is available at https://www.i2b2.org/NLP/

Relations/.
2https://github.com/WILAB-HIT/Resources/tree/

master/entity_assertion_relation

Table 1

Relation type statistics.

2010 i2b2/VA relation dataset WI Relation dataset

Relation Train Test Relation Train Test

TrIP 51 152 TrID 103 92

TrWP 24 109 TrWD 38 27

TrCP 184 342 TrAD 221 166

TrAP 885 1732 NTrD 675 656

TrNAP 62 112 TrIS 337 215

NTrP 1702 2759 TrWS 297 242

TeRP 993 2060 TrCS 125 176

TeCP 166 338 TrAS 334 238

NTeP 993 1974 NTrS 1062 901

PIP 755 1448 TeRD 301 227

NPP 4418 8089 NTeD 331 248

SID 969 620 TeRS 527 542

DCS 228 181 TeAS 313 564

NDS 777 635 NTeS 8628 7060

Positive relations were annotated in both relation datasets, and samples of neg-

ative relation types (starting with “N” in this table) were extracted to ensure

each concept pair within a sentence could be assigned a certain relation type.

For more details of these relation types, please refer to [1, 24].

order to compare these methods together, we choose the split

scheme in [28], which is also the official data split.

SVM: due to the dataset available to the research community

is only a subset of the dataset used in the 2010 i2b2/VA chal-

lenge, so Souza and Ng [28] reimplemented the state-of-the-art

model in the challenge [30] and reevaluated this model on the

relation dataset accessible. SVM+ILP: Souza and Ng [28] also

proposed a better single-model method and an ensemble-based

method within an integer linear programming (ILP) framework.

In these feature-based state-of-the-art methods, a variety of ex-

ternal features sets are used, such as part-of-speech (POS) tag-

ging and dependency parsing.

In this work, three previous neural network methods are

reimplemented and reevaluated. CNN: a multiple-filter CNN

with max-pooling proposed by Sahu et al. [29]. To evaluate the

model performance independent of the external features, POS

and chunk features used in this method are removed. CRNN-

Max and CRNN-Att: a two-layer model comprising recurrent

4
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and convolutional layers with max and attentive pooling [12].

However, only word embeddings were used in their work. In

order to maintain a fair comparison, word position embeddings

are added in our model reimplementation. In these three base-

line reimplementations, we follow the selected hyperparame-

ters used in the corresponding work and the word embeddings

are pre-trained on the deidentified notes from the MIMIC-III

database [31].

3.2.2. WI relation dataset

SVM: this model is implemented using scikit-learn3. And it

involves the following features: entity e1, entity e2, entity type

et1, entity type et2, distance between e1 and e2, words in e1 and

e2, words between e1 and e2, words behind e2, POS of words in

e1 and e2, POS of words between e1 and e2, and POS of words

behind e2.

CNN: the model version of C-BGRU-Max after removing

the GRU layer, which is a CNN-based model.

3.3. Experimental results

3.3.1. System performance

The performance results are displayed in Table 2 and 3, in-

cluding 95% confidence intervals for the models we imple-

mented, which are derived using bootstrapping [32]. We use

the same bootstrapping method described in [33]. We observe

that our C-BGRU-Max model outperforms the previous single-

model methods significantly in both datasets, without using any

external features. After using attentive pooling, the model per-

formance on the two datasets shows different changes: drops

on the 2010 i2b2/VA relation dataset but increases on the WI

relation dataset. The intuitive explanation is that descriptions in

English discharge summaries tend to be more colloquial, mak-

ing specific features more difficult to capture. More details of

the category-wise and class-wise performance comparisons are

listed in Table 4, 5, 6, and 7.

3http://scikit-learn.org/stable/.

Table 2

System performance comparison with other models using the 2010 i2b2/VA

relation dataset.

Classifier
External

features
P R F1

Single-model methods

SVM∗ [30] Set1 58.1 66.7 62.1

SVM+ILP [28] Set2 75.0 58.9 66.0

CNN [29] None 68.0

(67.4, 68.6)

55.1

(54.5, 55.7)

60.9

(60.4, 61.4)

CRNN-Max [12] None 65.1

(64.6, 65.6)

61.3

(60.7, 61.8)

63.1

(62.7, 63.6)

CRNN-Att [12] None 63.2

(62.6, 63.7)

58.5

(58.0, 59.0)

60.7

(60.3, 61.2)

C-BGRU-Max None 69.3

(68.8, 69.9)

66.3

(65.8, 66.8)

67.8

(67.3, 68.3)

C-BGRU-Att None 69.6

(69.0, 70.1)

63.7

(63.1, 64.2)

66.5

(66.0, 66.9)

Ensemble-based method

Ensemble+ILP◦ [28] Set2 66.7 72.9 69.6

The symbol ∗ indicates that this model is reimplemented by [28] on the rela-

tion dataset available to the research community, due to the accessible dataset

is only a subset of that used in the 2010 i2b2/VA challenge. The symbol ◦ indi-

cates that this classifier is the ensemble of 5 independent models. The bold item

is the best result. Set1: POS, chunk, semantic role labeler, word lemma, depen-

dency parse, assertion type, sentiment category, Wikipedia. Set2: POS, chunk,

semantic role labeler, word lemma, dependency parse, assertion type, sentiment

category, Wikipedia, manually labeled patterns. POS, part-of-speech; ILP, in-

teger linear programming.

Table 3

System performance comparison using the WI relation dataset.

Classifier P R F1

SVM 72.9 63.9 68.1

CNN 72.7

(72.0, 73.4)

64.5

(63.7, 65.2)

68.3

(67.7, 69.0)

C-BGRU-Max 73.2

(72.5, 73.9)

68.3

(67.6, 69.0)

70.7

(70.1, 71.3)

C-BGRU-Att 74.8

(74.1, 75.5)

68.8

(68.1, 69.5)

71.6

(71.0, 72.3)

The bold item is the best result.

5
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Table 4

Category-wise performance comparison with other neural network models

using the 2010 i2b2/VA relation dataset.

Classifier TrP relations TeP relations PP relations

P R F1 P R F1 P R F1

CI(±)CI(±)CI(±)CI(±)CI(±)CI(±)CI(±)CI(±)CI(±)

CNN [29] 60.9 48.2 53.8 75.8 69.2 72.3 64.8 43.3 51.9

1.0 0.9 0.9 0.9 0.8 0.7 1.3 1.1 1.1

CRNN-Max [12] 58.4 53.8 56.0 73.3 73.1 73.2 61.6 54.4 57.8

0.9 0.9 0.8 0.8 0.8 0.7 1.1 1.2 1.0

CRNN-Att [12] 55.2 50.8 52.9 70.1 73.8 71.9 63.3 46.3 53.5

0.9 0.9 0.8 0.8 0.8 0.7 1.3 1.2 1.1

C-BGRU-Max 62.7 59.7 61.2 78.4 77.5 77.9 64.8 58.9 61.7

0.9 0.9 0.8 0.8 0.8 0.6 1.2 1.1 1.0

C-BGRU-Att 63.9 57.1 60.4 79.4 72.5 75.8 62.8 60.0 61.4

0.9 0.9 0.8 0.7 0.8 0.7 1.1 1.2 1.0

TrP, Treatment-Problem; TeP, Test-Problem; PP, Problem-Problem. CI(±) is

confidence interval for P, R, and F1. The bold item is the best result. Compared

with previous models, the underlined item is statistically significant.

3.3.2. Discussion of attentive pooling

As show in Table 2, the F1 scores of CRNN-Att and C-

BGRU-Att are lower than that of CRNN-Max and C-BGRU-

Max, respectively. This indicates that the attention mecha-

nism, which presents a positive effect in the general domain

[9, 34], does not show any performance improvement on the

2010 i2b2/VA relation dataset. In this dataset, there exist ∼3.3

entities in each sentence on average. Therefore, input represen-

tations of relation samples generated from the same sentence

are quite similar, and the only difference is that some of the

word position representations between these relation samples

are different, which may not be able to show sufficient sample

differentiation. In addition, attentive pooling does not extract

the most significant features like max-pooling, which may lead

to relative deficiencies in distinguishing model similar samples.

We will try to analysis and validate these speculations in our

future work.

3.3.3. F1 score vs. distance

Figure 3a and 4a show the frequency distribution of different

distances in the two datasets, and Figure 3b and 4b depict the Ta
bl
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Table 6

Category-wise performance of neural network models using the WI relation dataset.

Classifier TrD relations TrS relations TeD relations TeS relations DS relations

P R F1 P R F1 P R F1 P R F1 P R F1

CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±)

CNN 59.5 56.3 57.8 58.1 50.5 54.1 90.1 90.7 90.4 86.9 59.0 70.3 72.5 82.7 77.3

2.6 2.7 2.5 1.5 1.5 1.3 1.7 1.7 1.2 1.1 1.3 1.1 1.3 1.2 1.0

C-BGRU-Max 59.9 60.4 60.1 59.3 54.2 56.7 91.7 92.0 91.8 85.5 64.7 73.7 73.6 84.7 78.8

2.4 2.5 2.3 1.5 1.5 1.3 1.6 1.5 1.1 1.1 1.3 1.0 1.2 1.1 1.0

C-BGRU-Att 61.8 58.7 60.2 64.4 55.5 59.6 91.6 93.6 92.5 82.6 68.0 74.6 75.0 80.8 77.8

2.6 2.6 2.5 1.5 1.5 1.4 1.6 1.4 1.1 1.1 1.2 0.9 1.3 1.2 1.0

TrD, Treatment-Disease; TrS, Treatment-Symptom; TeD, Test-Disease; TeS, Test-Symptom; DS, Disease-Symptom. CI(±) is confidence interval for P, R, and F1.

The bold item is the best result. Compared with CNN, the underlined item is statistically significant.

Table 7

Class-wise performance of neural network models using the WI relation dataset.

Classifier TrID TrWD TrAD TrIS TrWS TrCS

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±)

CNN 53.7 39.6 45.6 53.4 28.9 37.5 62.0 70.0 65.8 50.6 43.7 46.9 71.5 69.0 70.2 69.0 20.2 31.3

5.4 4.7 4.5 11.7 7.6 8.4 3.1 3.2 2.6 3.0 3.0 2.6 2.5 2.7 2.0 5.5 2.7 3.5

C-BGRU-Max 53.7 39.1 45.3 56.6 44.4 49.8 62.3 74.7 67.9 54.3 42.0 47.3 75.3 70.5 72.8 57.5 27.7 37.4

5.4 4.4 4.2 9.5 8.6 8.0 2.9 3.0 2.4 3.4 3.0 2.7 2.5 2.6 2.0 4.7 2.9 3.3

C-BGRU-Att 57.9 40.7 47.8 58.7 40.0 47.6 63.5 71.7 67.3 58.8 50.0 54.1 75.8 69.5 72.5 66.4 26.2 37.6

5.5 4.6 4.4 10.4 8.4 8.1 3.1 3.1 2.6 3.2 3.0 2.7 2.5 2.6 2.1 5.0 2.9 3.4

TrAS TeRD TeRS TeAS DCS SID

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±) CI(±)

CNN 50.2 60.3 54.8 90.1 90.7 90.4 88.8 84.1 86.4 82.9 35.0 49.2 56.6 63.2 59.7 77.0 88.4 82.3

2.6 2.8 2.3 1.7 1.7 1.2 1.2 1.3 0.9 2.1 1.8 1.9 3.1 3.2 2.6 1.4 1.2 1.0

C-BGRU-Max 51.1 68.3 58.5 91.7 92.0 91.8 85.4 84.7 85.1 85.6 45.4 59.4 56.3 69.0 62.0 79.1 89.4 83.9

2.4 2.7 2.1 1.6 1.5 1.1 1.4 1.4 1.0 1.7 1.9 1.7 2.8 3.0 2.4 1.3 1.1 0.9

C-BGRU-Att 58.6 67.7 62.8 91.6 93.6 92.5 80.6 86.0 83.2 86.2 50.7 63.9 58.7 61.7 60.2 79.6 86.4 82.9

2.6 2.6 2.2 1.6 1.4 1.1 1.4 1.3 1.0 1.6 1.9 1.7 3.2 3.2 2.7 1.4 1.3 1.0

CI(±) is confidence interval for P, R, and F1. The bold item is the best result. Compared with CNN, the underlined item is statistically significant.

trend of the F1 score as the distance increases. The F1 score

is the average value of the relation samples belonging to the

distance window [d − 2, d + 2]. In order to ensure the reli-

ability of the evaluation, the maximum distance value with a

statistic greater than 20 is selected as the truncation of the dis-

tance value. On the 2010 i2b2/VA relation dataset, C-BGRU-

Max and C-BGRU-Att outperform the baselines over all dis-

tances. On the WI relation dataset, C-BGRU-Max and CNN do

not show significant differences when the distance is less than

20, but as the distance increases, the performance gap gradually

expands. These results verifies that our model has the ability to

learn long-term dependencies and this information works in the

relation classification task.
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Fig. 3. The frequency distribution of the distance between concepts in the 2010 i2b2/VA relation dataset (a) and F1 score comparisons over different distances (b).

The “distance” means the difference in word position between two concepts in the relation sample.

Fig. 4. The frequency distribution of the distance between entities in the WI relation dataset (a) and F1 score comparisons over different distances (b). The

“distance” means the difference in word position between two entities in the relation sample.

4. Related Work

Before deep learning research became popular, statistical

machine learning methods were the main approaches in the re-

lation classification task. Most of the researchers in the general

and clinical domain focused on feature-based and kernel-based

methods [35–39].

In recent years, researchers have gradually tried the effect

of deep learning methods in the relation classification task and

achieved satisfactory results. A variety of deep architectures

have been proposed to classify the relations, such as recurrent

neural network (MV-RNN) [17], CNN with softmax classifica-

tion [21], factor-based compositional embedding model (FCM)

[18], and word embedding-based models [40]. Next, there exist

many RNN-based and CNN-based variants. Because the max-

pooling operation in CNN models will lose significant linguistic

features in a sentence, some researchers introduced dependency

trees for this work, e.g., bidirectional long short-term mem-

ory networks (BLSTM) [2], dependency-based neural networks

(DepNN) [3], shortest dependency path-based CNN [4], long

short term memory networks along shortest dependency paths
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(SDP-LSTM) [5], deep recurrent neural networks (DRNN) [6],

and jointed sequential and tree-structured LSTM-RNN [7]. Al-

though the above studies achieved solid results, further research

was devoted to eliminating the dependence on the NLP parser

because of its limited performance. dos Santos et al. [19] pro-

posed a new pairwise ranking loss function, and only two class

representations were updated in every training round. Similarly,

Wang et al. [8] introduced a pairwise margin-based loss func-

tion and multi-level attention mechanism and achieved the new

state-of-the-art results for relation classification.

More recently, neural network methods have show promis-

ing performance for relation classification on clinical records.

Sahu et al. [29] proposed a multiple-filter CNN with some lin-

guistic features, and experiments on the 2010 i2b2/VA relation

dataset verified the effectiveness of the neural network model

for medical relation classification. Raj et al. [12] trained a two-

layer model by feeding short phrase features extracted by a

bidirectional LSTM layer into CNN, and the model performed

better than CNN on relation samples where the distance be-

tween the medical concepts are large. Different from Raj et al.

[12]’s study, we think n-gram features and sequential correla-

tions among them are the key to relation classification, so we

explore another unified architecture that utilizes the strengths

of CNN and RNN simultaneously.

5. Conclusion

In this paper, we present a unified architecture based on the

combination of CNN and RNN to classify medical relations

in English and Chinese clinical records. Our model captures

long-term dependencies of phrase-level features through a bidi-

rectional GRU layer and this information improves model per-

formance. To the best of our knowledge, this is the first time

that neural network methods have been used to classify rela-

tions in Chinese clinical text. Experiments show that the pro-

posed model achieves a significant improvement over compa-

rable methods on the 2010 i2b2/VA relation dataset and the WI

relation dataset.
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