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Abstract—Agent Based Modelling (ABM), is an approach for
modelling dynamic systems and studying complex and emergent
behaviour. ABM approach is a very common technique in
biological domain due to high demand for a large scale analysis
tool to collect and interpret information to solve biological
problems. However, simulating large scale cellular level models
(i.e. large number of agents/entities) require a high degree of com-
putational power which is achievable through parallel computing
methods such as Graphics Processing Units (GPUs). The use of
parallel approaches in ABMs is growing rapidly specifically when
modelling in continuous space system (particle based). Parallel
implementation of particle based simulation within continuum
space where agents contain quantities of chemicals/substances is
very challenging. Pair-wise interactions are different abstraction
to continuous space (particle) models which is commonly used
for immune system modelling.

This paper describes an approach to parallelising the key
component of biological and immune system models (pair-wise
interactions) within an ABM model. Our performance results
demonstrate the applicability of this method to a broader class
of biological systems with the same type of cell interactions and
that it can be used as the basis for developing complete immune
system models on parallel hardware.

Index Terms—Agent Based Modeling, GPGPU, High-
Performance Computing, Cellular Modelling, Computational
modelling, Parallel simulation, FLAME GPU

I. INTRODUCTION

To study and investigate biological systems, a hybrid ap-

proach that is the integration of experimental and computa-

tional research, is required. This hybrid approach has helped

shaping novel hypotheses in research. In silico experiments,

a.k.a simulation, attempts to capture the dynamics of the

system as an alternative for studying biological systems. With

the hybrid approach, the experiments that are not easily do-

able in a laboratory are achievable [1], [2].

Simulation and modelling has been used by researchers in

various scientific domains as a tool to better understand and
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predict the behaviour of a system. Based on the characteristic

of the model, a system can be represented using different

design methods. A complex system can be represented as

top-down by using sets of equations to model system level

behaviour or bottom-up by modelling the individuals with the

system as agents. Typically, an Agent Based Model (ABMs)

contains an environment with a number of agents (self con-

tained entities) and a set of rules describing their behaviours

and interactions. Agent Based Modelling (ABM) is a method

of studying behaviours of complex systems [3]. Multi-Agent

Simulation (MAS) provides a natural modelling approach as

often the individual levels behaviour are well understood.

MAS is a common approach to simulate biological systems

as it allows individual cells to be tracked throughout the

simulation. Within ABM different levels of abstraction can be

also applied. Agents such as cells may be modelled as points

in continuous space or agents may represent discrete spatial

areas containing quantities of chemicals and cells arranged

in regular structures (e.g. as a square or hexagonal lattice).

Hybrid approaches where discrete spatial areas perform re-

action diffusion modelling but have well mixed collections

of directly interacting individual cells with monte-carlo (pair-

wise interaction) are also common within immune system and

more general biological modelling.

Simulating a complex system, such as biological cellular

system, as an ABM is computationally expensive when com-

pared with a top down approach . Increasing the scale of the

model to achieve natural sizes places a further computational

burden which can impede modellers. A feasible solution

would be the use of parallel computing resources to contain

these requirement and achieve sensible simulation times when

scaling complex systems.

Graphics Processing Units (GPUs) are specialised massively

parallel processors containing hundreds of arithmetic process-

ing units that can be utilised to achieve significant acceleration

for computationally intensive scientific applications. GPUs al-



low a personal computer to be transformed into a personal su-

percomputer, providing up to 15 Trillion Floating Point Oper-

ations per Second (TFLOPS) in consumer hardware (NVIDIA

TITAN V). While GPUs are computationally powerful, their

hardware design is significantly different from modern CPUs.

GPUs are known to be hard to program. One of the challenges

of utilising high level of parallel performance using GPUs is

the need for the programmer to have considerable knowledge

of data parallel algorithm design as well as optimisation skills.

GPUs have been widely used in many scientific research

domains to accelerate applications and showed significant

computational performance improvements [4]. There are sev-

eral domain specific studies that use GPUs to implement

various complex multi-agent systems [5], [6], [7]. In the

majority of these cases GPUs have been used for simulating

continuous or discrete space abstractions as apposed to hy-

brid approaches which are desirable for large scale immune

systems simulations.

This paper describes and demonstrates the implementation

of hybrid space biological models with parallel monte-carlo

pair-wise interactions executing on a GPU architecture. The

paper demonstrates performance characteristics for a simpli-

fied large scale biological cellular system simulation through

a case study of interacting cells which form the basis of many

immune system models. Immune system models are a form of

a complex biological system which consists of a large number

of agents (cells) communicate indirectly through diffusion

of chemical substances or directly through connection of

chemical receptors [6]. Types of interactions between agents

and governed rules makes the model complex enough to be

used as a case study to show the viability of using GPUs for

other cellular level biological system with the same type of

mechanism and complex behaviours.

Within the context of this paper, the model is implemented

using the FLAMEGPU framework [8], a flexible large scale

Agent Based Modelling environment that enables modeller

from diverse scientific domains such as economics, biology

and social sciences to easily write agent based models target-

ing GPUs [9].The model described within this paper consists

of a specific approach for describing pair-wise interactions

which can be applied more broadly to general cell-cell or cell-

environment interactions within an immune system model.

Our case study model is based on an existing work that

was implemented by the Universal Immune System Simulator

(UISS) framework [10]. The UISS framework models and

simulates immune system related pathologies on CPU and in

order to demonstrate how conveniently biological cellular level

models can be simulated on GPUs, we decided to implement

a very common and necessary biological cell behaviour in

FLAME GPU. Result from this study shows the applicability

of the technique to a broader class of multi-cell biological

system.

The rest of this paper is organised as follows: Section II

surveys previous studies on the application of GPU in Agent

Based Modelling simulation, specifically in the field of bio-

logical cell modelling. Section III presents design considera-

tions required to implementing the model with high degrees

of model parallelism. Section IV, reports the result of our

experimental evaluation. Finally, we draw our conclusions in

Section V.

II. RELATED WORK

An immune system is an example of a complex system

comprising different types of interactions between a variety

of cell types. There are various ways to model immune

systems. The most common approach is the use of differential

equations [11], [12], [13]. Equation based models track the

concentration of immune system entities over the time. The

equations are sometimes mathematically sophisticated and

cannot capture particular aspects of immune system modelling

such as locality of responses.

Agent based methods provide ways of representing the

heterogeneity of the entities as well nonlinear interactions

among agents [14], [15], [16], [17]. In ABM, mobile agents

interact with environment or other individuals in continuous or

discrete space. There are various existing works on agent based

immune system models implemented using different levels of

abstractions (continuous space, continuum or hybrid). Agent

based Artificial Immune System (AbAIS) [18] framework uses

a hybrid architecture where heterogeneous agents evolve over

a cellular automata environment. In this framework, agents are

modelled using a genetic approach. CAFISS [19] models cell-

cell interactions in a grid where each cell has bit string . The

scalability of the model using this approach is questionable due

to the large overhead caused by the use of separate thread for

each cell. Each immune system cell in this approach runs its

own thread. Cell-cell communication is done through events.

ImmSim [20] is a framework based on cellular automata

where entities interact with other and diffuse through lattice

site. In this mode, individuals consider possible interactions

based on the given probability rule. The framework has

been developed using an interpreted language which limits

the system size resulting in small size simulations. Later,

parallel version of ImmSim, C-ImmSim [21] was developed

with the focus on scalability and performance. C-ImmSim is

an advanced immune system simulation based on ImmSimm

with added features that allows simulations at the cells and

molecules levels.

ImmunoGrid [22] uses C-ImmSim as an underlying frame-

work. It uses grid technologies which allows very large and

complex simulation size matching a real size immune system.

Simmune [23] is a framework to model cell-cell and cell-

molecule interactions where similar to ImmSim, cells do

not have states. Simulating complex and detailed interaction

using Simmune framework is very computationally expensive.

Sentinel [24] is another framework based on the principles of

ImmSim with environment is divided to grids and individuals

can move between locations.

Jacob, Litorco and Lee [16] presented a swarm agent based

3d model of immune system in continuous space using Breve

simulation [25]. Agents move randomly in the continuous



space and only interact with those within their specific dis-

tance. Note this model is different from all other mentioned

above due to the fact that is continuous based. The visualisa-

tion and continuous space approach impose constraints on the

simulation size [26] which could be improved by employing

parallel processing techniques [27]. Generally, simulating large

scale complex models is computationally expensive. GPUs

have been used to accelerate scientific application and proven

to achieve significant performance for computationally prob-

lematic cases. There are several studies on the application

of GPUs to biological systems [28], [29], [30], [31]. There

are several existing works on parallel implementation of the

immune system model simulation in continuous space [6], [7],

[32]. PI-FLAME [32] uses GPUs to simulate immune system

models in continuous space which is less ideal for reaction

diffusion modelling and requires detailed modelling on agent

space.

In this paper, we are replicating an immune system model

previously implemented by UISS [10]; a universal immune

system simulator framework. UISS is a hybrid simulator based

on the Monte Carlo approach in discrete space where pairwise

cell interactions are done based on the probability within the

site of interaction and not the actual physical space. The

simulator is more computationally efficient than continuous

space, however it is inherently serial. Parallelising the model

using Monte Carlo approach is challenging due to pairwise

interactions.

Note the term hybrid (continuum and agent-based) approach

has several meaning in the existing literature [33]. In this

context, hybrid approach is where we have particles within

continuum.

III. A GPU IMPLEMENTATION OF CELL-CELL

INTERACTIONS WITHIN CONTINUUM

We implement a simplified version of the pairwise interac-

tion that exists in human immune systems and almost all of the

biological systems. An example of this interaction can be seen

between B cells (an immune system cell type that is part of

the adaptive immune system and is responsible in production

of antibodies) and antigens. Our model uses the FLAME GPU

library to map our model description to GPU executable code.

Developed since 2008, FLAME GPU framework is a gen-

eralised large scale ABM framework that employs the parallel

architecture of Graphic Processing Unit (GPU) to enable

real time model interaction and visualisation. FLAME GPU

abstracts away the complexity of the GPU architecture from

the users (modellers) by providing a high-level modelling

syntax-based on a formal state-machine representation. In

other words, it allows modellers from any domain to write a

model to target GPUs capable of simulating millions of inter-

acting agents/individuals without the need to obtain specialist

knowledge typically required to program GPU architectures.

FLAME GPU is a template-based simulation environment

that maps formal description of agents into simulation code.

Agent representation is based on the concept of a commu-

nicating X-Machine which the communication is done via

messages. An overview of the features and capabilities of

the FLAME GPU simulation platform has been demonstrated

through an example in [9].

Fig 1 shows FLAME GPU code generation process which

automatically translates a high level model description to

optimised GPU code described in a series of code generation

templates.

Fig. 1. The FLAME GPU Modelling Process. An XSLT template processor
translates a user defined XMML model into simulation code to be linked with
the behavioural function scripts to produce a custom simulation executable.

Previous works using FLAME GPU framework, demon-

strated that performance gains are easily achievable in large-

scale models of continuous space (particle like) agents when

compared to the traditional CPU based simulators [34], [35].

In this work, we implement a simplified version of pairwise

cell interactions in Immune system models in FLAME GPU.

In the simplified version, we are only considering a the

complex problem of behaviour within a single lattice site

(representing a continuum of well mixed cells) where cells

are represented within the continuum as individuals with

tracked states (i.e. a hybrid approach). As such no movement

between sites has been taken into account however this can

be achieved using features of FLAME GPU which have been

described extensively in previous publications. In the proposed

model, we have two cell types (cell_A and cell_B), each

having a unique identifier and lattice site identifier. cell_A

agents keep track of their interactions with cell_B agents by

storing the unique identifier of a cell_B agent which they

have interacted. Moreover, cell_B agents have a quantity

variable that holds the total number of that type of cell_B

at the given lattice site.

The two cell types interact based on a probability (i.e. a

monte-carlo approach) which is in this case is determined

globally rather than per cell type pair based on the hamming

distance (or within a fixed radius). During the simulation, each

cell_A tries to interact with cell_B until it successfully

interacts within a given iteration (Algorithm 1).

In the FLAME GPU implementation of the model,

cell_B have two agent functions, called output and

update_from_message and cell_A has a single agent

function a_interact_b. To further simply the model, both



Algorithm 1 Pseducode for pairwise cell interaction imple-

mentation

for each cell A do

cell A → interactionTarget = MAX

for each cell B do

if cell B → Quantity > 0 then

for each cell B → Quantity do

p = interaction probability

r = rand()
if r < p then

cell B → Quantity −−

cell A → interactionTarget = cell B → id

break

end if

end for

end if

if cell A → interactionTarget 6= MAX then

break

end if

end for

end for

cell agent types have only a single state (which can be trivially

extended with FLAME GPU).

Figure 2 shows the process for a single iteration of the

simulation. Horizontal dashed line rectangles demonstrate the

FLAME GPU function layers. Vertical arrows lines show

the process for a single agent state list, beginning at the

top and proceeding downwards. Green arrow lines show

the relationship between messages lists (diamond shape) and

agent functions (rectangle shape). The total number of function

layers in this model is 3.

Fig. 2. FLAME GPU state diagram for pairwise cell interaction model. The
diagram shows the agents (CELL_A and CELL_B) functions per layer (shown
in blue dashed rectangle) and the message type MESSAGE_LIST

In FLAME GPU, the pair-wise interactions between the two

agent types are implemented using multiple agent functions

(Figure 2) which preserves correct system level behaviour

compared to the serial implementation. Below is the list

of events happening per simulation step. Within each layer

behaviour is parallel, each layer is executed sequentially in

turn with a global synchronisation ensuring previous layers

have completed:

• Layer 1: Each of the cell_b agents execute the

output agent function, which outputs a message of

type message_list containing information about the

cell_b agent, including the id, latticeSite and

quantity. These information are required by cell_a

to complete the pairwise interaction.

• Layer 2: Each of the cell_a agents execute the

a_interact_b agent function, which reads in the

message_list messages. Each agent iterates over the

list of messages and for each message (contains infor-

mation of each cell_b agent), the cell_a attempts

to interact with the cell_b, only if it has not yet had

a successful interaction. Moreover, the message_list

will be updated upon any successful interaction.

• Layer 3: Each of the cell_b agents execute the

update_from_message agent function, which reads

in the modified message_list variables to update

their quantity value.

The serial implementation of the pairwise interaction be-

tween cell_a and cell_b is normally performed using

a simulated dice roll per cell_b quantity. In our imple-

mentation, we performed a single dice roll per cell_b

type and compared it to a probability value which at the

system level is observed to produce the same (statistically

evaluated) behaviour as the serial implementation. This is cal-

culated based on the per_interaction_probability

and the quantity of cell_b: p = 1 − ((1 −

per interaction probability)quantity). For example, if the

per_interaction_probability is equal to 0.1 and

quantity = 5, then the probability of at least one interac-

tion occurring is 1− (0.95) = 0.4095.

The probability test is performed in layer 2 within the

a_interact_b agent function. If the test passes, then

cell_a agent will attempt to claim a unit of cell_b quan-

tity. However, as many cell_a agents may be attempting

to interact with the same cell_b agent at the same time

(due to the parallel nature of the FLAME GPU simulator),

conflicts in terms of deciding priority of which cells should

interact must be resolved by using an atomic function which

attempts to decrement the quantity value of the cell_b in

a single transaction. The additional of this atomic operation

is an extension to FLAME GPU for hybrid modelling and

ensures race conditions are prevented by directly modifying

the message data.

Note the atomic function returns the previous quantity. The

non-zero value indicates the successful interaction between

cell_a and cell_b. Upon successful interaction, cell_b



will no longer attempt to interact. However, the cell_a

agent which were unsuccessful in interaction, will continue

to attempt to interact until there are no more cell_b agent

to consider.

Atomic instruction to modify the message data is a novel

addition to FLAME GPU to allow pair-wise interactions in

FLAME GPU. The use of the atomic function to resolve con-

flicts between competing parallel agents is non-deterministic,

and depends on order of execution on the hardware. Although,

there are other approaches to resolve this sort of conflicts in a

deterministic way. e.g. Using a series of recursive message

transactions where agents bid to interact [36], the atomic

approach is statistically equivalent, simpler in methodology

and computationally more efficient.

IV. RESULTS AND DISCUSSION

In order to show the feasibility of using GPUs for simulating

complex biological cellular level models, we designed a model

comprising a subset of common, yet necessary cell interactions

in the immune system model that is applicable to a broader

class of complex biology model with the same mechanism

and type of cell behaviour. More specifically, we chose to

model pair-wise interactions between cells in human immune

system model and these interactions are difficult to parallelise

due to it nature that is a probability based interactions. We

have implemented a simplified version using FLAME GPU

framework. Additionally, a reference serial CPU version of the

same model has been produced to ensure comparable results.

The serial implementation has not been optimised (e.g. using

vector instructions) but relevant compiler flags were used. The

sequential implementation of the model was used as a base line

and the overall performance was measured against its serial

implementation at varying population sizes. The results are

indicative of the performance differences between serial UISS

simulator and a FLAME GPU implementation.

Experiments were conducted using NVIDIA Pascal-based

GPUs to evaluate our technique. More specifically, all the

experiments were performed on a single PC with an Intel i7-

4770k quad core hyper-threaded processor (3.50 GHz), 16GB

RAM and an NVIDIA TITAN X (Pascal) GPU with 3840

CUDA cores and 12GB of memory. The generated CUDA

programs by FLAME GPU1 are compiled using NVIDIAs

CUDA 9.1 compiler, nvcc.

Throughout the simulation, the number of cell interactions

is recorded, to be aggregated and summarised after the simu-

lation iterations have completed. This is used to verify that the

model is behaving as intended and to compare the GPU and

CPU implementations. For runs with interaction probabilities

less than 1, we do not expect to achieve the exact same

number of interactions per run, due to differences in the ran-

dom number generators used. Instead the average value over

many runs are compared to check for statistically equivalent

behaviour. Moreover, the same input parameters were used

1The latest FLAME GPU 1.5.0 release has been used as a base for the
FLAME GPU implementation.

for both implementations (serial and parallel versions of the

model).

Each simulation was performed for 50 iterations, and was

repeated 3 times to capture average execution times. The time

per iteration and time for all iterations are captured and output

as a number of milliseconds. In order to demonstrate how

the scaling affect the ratio of cell populations, we varied the

number of agents for each simulation. The performance of

computing the updates (i.e. excluding input and output) was

averaged over the 9 runs for the same agent populations.

Figures 3 and 4 show the performance and population

results for runs. The X-Axis shows the simulation number

representing the unique model parameters over which perfor-

mance results are averaged. Simulation populations generally

increase as x increases (2d data). In other words, simulation

number is the different configuration for initial population

count of cell_A and cell_B agents. Figure 3 shows popu-

lation number for both cell_A and cell_B agents (left and

right Y-Axis) for various simulations. Figure 4 shows the total

population (right Y-Axis) and the speedup relative to serial

implementation (left Y-Axis). Figure 5 shows the average

simulation runtime for both parallel and serial implementa-

tions. For lower number of agent population, the CPU (serial

implementation) outperforms GPU (parallel implementation)

due to device under utilisation.

Fig. 3. Agent population per simulation

Across all of the simulation runs, the GPU simulations are

on average 28.8x faster than the CPU equivalent, ranging

between 0.06x the speed of the CPU simulation and up to

210x. The broad range of performance is attributed to the

scale of the simulation. Larger population counts show greater

performance improvements, which are naturally more suited to

the GPU. This trend continues until the GPU is fully saturated

(which can be hundreds of thousands of individuals on modern

GPUs).

The saw-tooth nature/pattern seen in the figures is from

the varying population sizes. The trend per-saw-tooth is due

to overall population, meaning the more cell_A agent, the



Fig. 4. Speedup relative to serial implementation

Fig. 5. Average simulation runtime (Log scale)

better device utilisation for the most-computationally expen-

sive task (cell_A kernel function (A_INTERACT_B) which

includes message iteration), amortising the over-head cost of

data transfer and kernel launch overhead.

The increasing trend across the pattern of saw-tooths is due

to the increase in cell_B population (gradually to right). This

both increases device utilisation in cell_B kernels, and also

increases the amount of work done in the interaction kernel

(i.e more cell_B means more total quantity and therefore

more interactions).

V. CONCLUSION

This paper aimed to prove the feasibility of applying GPU to

implement a hybrid pair-wise interaction model representative

of an agent based immune system model. We implemented a

specific type of cell interactions known as pairwise interaction

that is very common in biological cellular level systems. Using

FLAME GPU to simulate the simplified model with only

two cell agent types with pairwise interactions, we demon-

strated that the technique is computationally more efficient

than the serial counterpart and demonstrated the addition of

a novel atomic based approach for reproducing equivalent

serial behaviour. The model demonstrated is applicable to a

broader class of biological systems with the same type of

cell interactions and can be used as the basis for developing

complete immune system models on parallel hardware.
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