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Abstract—Fungal Biosynthetic Gene Clusters (BGCs) of sec-
ondary metabolites are clusters of genes capable of producing
natural products, compounds that play an important role in the
production of a wide variety of bioactive compounds, including
antibiotics and pharmaceuticals. Identifying BGCs can lead to
the discovery of novel natural products to benefit human health.
Previous work has been focused on developing automatic tools
to support BGC discovery in plants, fungi, and bacteria. Data-
driven methods, as well as probabilistic and supervised learning
methods have been explored in identifying BGCs. Most methods
applied to identify fungal BGCs were data-driven and presented
limited scope. Supervised learning methods have been shown
to perform well at identifying BGCs in bacteria, and could
be well suited to perform the same task in fungi. But labeled
data instances are needed to perform supervised learning.Openly
accessible BGC databases contain only a very small portion
of previously curated fungal BGCs. Making new fungal BGC
datasets available could motivate the development of supervised
learning methods for fungal BGCs and potentially improve
prediction performance compared to data-driven methods. In this
work we propose new publicly available fungal BGC datasets
to support the BGC discovery task using supervised learning.
These datasets are prepared to perform binary classification and
predict candidate BGC regions in fungal genomes. In addition we
analyse the performance of a well supported supervised learning
tool developed to predict BGCs.

Index Terms—Dbiosynthetic gene clusters, secondary metabo-
lites, supervised learning, BGC, fungi, dataset

I. INTRODUCTION

Natural products (NPs) are specialized bioactive compounds
primarily produced by plants, fungi and bacteria. NPs are
a vital source for drugs: from anti-cancer, anti-virus, and
cholesterol-lowering medications to antibiotics, and immuno-
suppressants [[1]]-[3]]. Unlike those in plants, genes involved in
the biosynthesis of many NPs in bacteria and fungi are co-
localized in the genome of organisms and usually organized
as clusters of genes [4]. Gene clusters capable of producing
NPs are known as Biosynthetic Gene Clusters (BGC).

The task of identifying new BGCs could potentially lead to
the discovery of novel NPs to benefit human health. However
this task involves complex and costly processes, as well as the
analysis of large amounts of biological data. Development of
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automatic tools that can support the identification of BGCs
is therefore highly relevant. Various approaches have been
used to develop such tools, such as data-driven methods,
probabilistic methods, and supervised learning methods. In
supervised learning the BGC discovery task can be represented
as binary classification task. The goal in a binary classification
task is to classify data instances as belonging to one out of
two different categories. A binary classification BGC dataset
would therefore be composed of positive and negative BGC
instances.

Supervised learning has been previously used to predicting
bacterial BGCs [3]], [[6] and shown to perform well. Supervised
learning methods however are developed primarily based on
annotated datasets, for which all instances are labeled as
belonging to a specific class. Unlike for bacteria, the number
of known fungal BGC data previously validated by curators is
rather limited. The Minimum Information about a Biosynthetic
Gene cluster (MIBiG) [7 repository is one of the largest
freely available BGC databases.

As an example of the disparity between known available
BGC from bacteria versus fungi that has been annotated by
curators,MIBiG holds over 1,196 bacteria BGCs, while only
206 are fungal BGC{Y

Generating fungal BGC datasets for supervised learning
approaches imposes a few challenges. For instance, negative
samples are needed for binary classification, and they are not
directly provided by BGC databases just as annotaded BGC
data. To be able to support a robust classification approach,
fungal BGC datasets used as input should include a variety
of organisms and BGC types to properly represent fungal
genomic profiles.

The availability of fungal BGC datasets could leverage the
development of new supervised learning approaches to tackle
BGC discovery in fungi. This work presents new datasets pre-
pared to tackle fungal BGC discovery as a binary classification
task. These datasets are constructed in such way that they
include most variety of BGC types from different organisms,
attempting to represent fungal genomic profiles to better suit

Uhttp://mibig.secondarymetabolites.org/
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the fungal BGC classification task. Finally we also analyse
the usage of fungal BGC datasets with one of the state-of-the-
art supervised learning methods developed for BGC discovery,
DeepBGC [6].

II. PREVIOUS WORK

In this section we present previous work on the availability
of BGC data previously predicted or annotated by curatorsthat
can support BGC discovery, and previous work conducted
towards developing automatic approaches to identify fungal
BGCs. BGC databases and some of their characteristics are
discussed in Section Previous work on predicting BGCs
in fungi is presented in Section [[I-B

A. BGC Databases

Only a small number of open access BGC databases is
currently available to support research on automatic tools to
identify BGCs. The majority of entries in these databases
corresponds to bacteria data, while only a small portion are
fungal BGCSE] MIBIiG is a BGC repository in which curated
entries are submitted by curators, and added to the database in
a format compliant with the Minimum Information about any
Sequence (MIxS) framework data standard. It holds 206 fungi
BGCs and 1,196 for bacteria. Clustermine360 [[8]] contains mi-
crobial polyketide synthases (PKS) and non-ribosomal peptide
synthetases (NRPS) biosynthesis. It holds a total of 29 fungal
BGCs, while over 900 are from bacteria. Clustermine360
entries are curated and submitted by curators, enriched with
information from the National Center for Biotechnology Infor-
mation (NCBIﬂ and analysed with the antiSMASH [9] tool.
The antiSMASH database [10] has 24,773 microbial BGCs
predicted based on its homonymous tool. Unlike its bacteria
version, the fungal version of antiSMASH does not provide a
database of fungal BGCs to the best of our knowledge.

The Integrated Microbial Genomes: Atlas of Biosynthetic
Gene Clusters [11] (IMG/ABC) database contains BGCs pre-
dicted using the ClusterFinder algorithm [[12]. IMG/ABC holds
127 fungal BGCs and 1,025 from bacteria.

These databases are not connected. Since it is likely that
there are overlaps among the different databases, the number
of unique fungal BGCs could be even smaller. The small
proportion of fungal BGCs across databases is an example
of the challenges in developing automatic tools to tackle BGC
discovery in fungi. This work proposes new publicly available
datasets to be an input of supervised learning tools to predict
fungal BGCs, based on MIBiG and orthologous genes. The
details on our datasets and their analysis are discussed in
Section

B. BGC discovery in Fungi

Significant effort has been put towards developing ap-
proaches to discover BGCs [2], [3]. The majority of ap-
proaches focused on processing bacterial data, while some of
them are specially focused on fungi. Identifying BGCs remains

3Number of entries for databases are reported as of July 2019.
“https://www.ncbi.nlm.nih.gov/

a challenging task specially in fungal genomes, due to the
diversity of clusters [13]].

Previous work on fungal BGC discovery made use mostly
of data-driven methods, which are heavily based on the
analysis of the input or output data and require fine parameter-
tuning. These methods required as input the genome sequence
combined with transcription data [14], [[15], or gene functional
annotations [[16], as well as both nucleotide and amino acid
sequences [17]. [14] and [15] focused on analysing similar
gene expression levels, while [[15]] used virtual clusters. [[14]]
looked at motif co-occurrence in promoters around anchor
genes, and [17] analysed homologous genes through a com-
parative genomics approach.

Such data-driven methods are less dependent on curated-
BGC data, which are time consuming to obtain, but they all
present limitations. [16] requires gene functional annotations,
which may not be available, and [14] relies heavily on manual
curation of output to achieve the expected results. A very
limited BGC prediction scope is considered in [18] and [[17].
Both approaches are developed based on biological sequences
from a single species, and they also require fine parameter-
tuning. Such limitations of data-driven methods can restrict
their ability to generalize to new data, and as a consequence
compromise the discovery of novel BGCs.

Likely due to the larger availability of curatedBGC
data, probabilistic [9], [[12f, [19] and machine learning ap-
proaches [S], [6] have been more explored in bacteria com-
pared to fungi, and shown to perform well. Probabilistic and
machine learning approaches could be beneficial for BGC dis-
covery, since by nature they are more capable of generalizing
given new data, and will likely perform better at identifying
data patterns and discovering novel BGCs, when compared
to data-driven methods. In this study we also analyse the
performance of a supervised learning approach developed to
tackle BGC discovery using the fungal BGC datasets proposed
by our work. The details on our experimental setup are further
discussed in Section [

III. METHODOLOGY

Some of the challenges in generating fungal BGC datasets
for binary classification are the need of negative instances,
which are not directly provided in BGC databases; and ac-
counting for a variety of organisms, BGC types, and also
fungal genomic profiles. The availability of new fungal BGC
datasets however could potentially motivate the development
of supervised learning approaches to tackle fungal BGC dis-
covery.

In this work we propose new publicly available fungal BGC
datasets to support supervised learning approaches tackling
BGC discovery as a binary classification task. We present here
the methodology adopted to prepare fungal BGC datasets and
their analysis using a supervised learning method, with the
goal of analysing the method performance in fungal BGC data.

Details on our proposed fungal BGC datasets are presented
in Section Section presents the test datasets with
which we analysed the performance of classification models



built on fungal BGC datasets. In Section we provide
details on the parameters considered in our analysis based
on a supervised learning method, as well as the classification
models considered.

A. Proposed Datasets

Supervised learning was shown to perform well at BGC
discovery in previous work that focused on handling bacteria
data [5[], [6]. Given that annotated data are needed to perform
a supervised learning approach, we propose here fungal BGC
datasets to support the development of this approach for fungi.

As mentioned in Section |} positive and negative instances
are needed to perform fungal BGC discovery as a binary
classification task using supervised learning. To create our
fungal BGC datasets, we extracted and filtered positive in-
stances from the MIBiG [7] repository, previously presented
in Section MIBiG has the highest number of unique
fungal BGCs among the BGC databases previously presented.
Additionally, MIBiG BGCs were annotated and submitted by
the research community, unlike BGCs in other databases that
were automatically predicted.

From all MIBIiG instances, we have selected only the fungal
BGC subset, excluding BGCs belonging to Aspergillus niger
(A. niger) to avoid overlaps during the test phase, resulting in
a total of 200 positive instances.

We generated synthetic negative instances collecting and
integrating orthologous genes from OrthoDBE] [20]. Orthologs
are homologous genes descendants from a single gene of a last
common ancestor. The OrthoDB database contains protein-
coding genes that represent the last common ancestors given
a specific phylogeny radiation of a species, and are therefore
known to retain ancestral function [20]]. Orthologs represent
regions conserved across species. They can correspond to a
relevant negative instances for BGC discovery. this is due
to the fact that fungal BGCs are known to have opposite
characteristics and show large genomic diversity even in
otherwise closely-related or same genus species [13[]. Genes
belonging to fungal BGCs have been previously referred to as
“species-specific” [21]], unlike orthologs.

Orthologous genes have been previously used to discover
BGCs in fungi. In [17], the authors presented an alignment-
based approach focused on identifying syntenic block regions,
which are more likely to contain orthologs and less likely to
contain BGCs. Non-syntenic blocks were then used to search
for candidate BGCs and to better define candidate cluster
boundaries. The approach in [17] was explored in small set of
10 filamentous fungi. The results showed good performance,
predicting correctly 21 out of 24 fungal BGCs.

In this study we selected the fungal OrthoDB subset to
construct the synthetic negative BGC instances. The OrthoDB
fungal subset contains a total of 5,083,652 non-redundant
orthologs. To avoid potential overlaps, we performed a BLAST
analysis between the fungal subsets of both OrthoDB and
MIBiG. We discarded 11,000 ortholog matches found using
the BLAST parameter evalue (expected value) set to le — 60.

Shttp://orthodb.org/

To generate synthetic negative instances, we then concate-
nated the amino acid sequence of fungal orthologs using a
fixed length of 7,000 amino acids to create synthetic gene
clusters. The 7,000 amino acid length is chosen since it
corresponds to the average length of fungal BGC amino
acid sequences in MIBiG. Figure [I] shows an example of
positive instances in our datasets and negative instances being
generated from OrthoDB orthologs. After processing OrthoDB
fungal orthologs a total of 693,195 synthetic negative clusters
were generated.

[ ]
MIBIG fungal BGCs

==
>BGC0000037

MAPAPSALVFGSQTTLPSVEAASRLRAALLLDPRLYRM. . .

>BGC0000039 .
MAPSIDVIPTAASTAAGMISDMEAAFKSAVKLKOIPGA. .. \ Positive
>BGC0000045 instances

MDSNRPAVLLFGDVTDPWVDGIDYVYSQAATTPWLRSE . . .

OrthoDB fungal orthologs
>1279043.1:001586 >321614.1:00188f

MMRLRRYRLFLVVALCAV... MMSLVPTRKRKDAHNOQRW. . .
>1279043.1:001587 >321614.1:001890
MATAHDEDMYLFQTGLGQ... MSPPSPTLTFNFDISCPF. ..
>1279043.1:001588 >321614.1:001891
MPYKSRWTVPIPDCSLQT... MTSKPPSLLPRFLLARRL. ..

|

Concatenated orthologs

>1279043.1:00158611279043.1:00158711279043.1:0015881321614.1:00188fl
321614.1:0018901321614.1:001891...

MMRLRRYRLFLVVALCAV. . .MATAHDEDMYLFQTGLGQ. . .
MPYKSRWTVPIPDCSLQT. . . MMSLVPTRKRKDAHNORW. . .
MSPPSPTLTFNFDISCPF. . .MTSKPPSLLPRFLLARRL. . .

|

Synthetic clusters
>1279043.1:00158611279043.1:00158711279043.1:001588

MMRLRRYRLFLV. . . MATAHDEDMYLF . . . MPYKSRWTVPIP. . . .
>1279043,1:001588/321614.1:00188{1321614.1:001890 Negative
MPYKSRWIVPIP. . .MMSLVPTRKRKD. . .MSPPSPTLTENF. .. | Instances
>321614.1:00188f1321614.1:0018901321614.1:001891
MMSLVPTRKRKD . . .MSPPSPTLTFNF . . . MTSKPPSLLPREF . . .

Fig. 1. Example of positive instances and the process to generate synthetic

negative instances from orthologs

The MIBIiG fungal subset and the pool of OrthoDB synthetic
negative clusters were then considered to generate fungal BGC
datasets with different distributions of positive and negative
instances. Among the MIBiG fungal subset the annotated BGC
regions corresponded in average to ~1% of the total genome
length of an organism, which provides a hint on the imbalance
in class distribution that can be seen in a real test case scenario.
Due to the natural imbalance of BGC regions versus non-
BGC regions in a genome, we are interested in analysing
the performance of a supervised learning approach based on
datasets with various distributions of positive and negative
instances. To analyse this aspect, we generated fungal BGC
datasets with varying distributions by increasing the number
of synthetic negative instances randomly selected from the
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OrthoDB synthetic negative clusters pool. Table [I] shows the
positive vs. negative distributions in each dataset.

TABLE I
DISTRIBUTION OF INSTANCES ACROSS FUNGAL BGC DATASETS
Train Validation
Dataset Pos Neg | Pos Neg
50%-50% | 160 160 40 40
40%-60% | 160 240 40 60
30%-70% | 160 373 40 93

20%-80% | 160
10%-90% | 160
05%-95% | 160
01%-99% | 160

640 40 160
1,440 40 360
3,040 40 760

15,840 40 3,960

To generate classification models based on a supervised
learning method, we extracted Pfam [ZZE] IDs from the
positive and negative instances. All datasets were converted
into pfamtsv format [6]], which is required as input in the
supervised learning approach applied in this work. For each
dataset, 80% were randomly selected for the training phase,
while 20% were held out for the validation phase, as shown
in Table [l

B. Test Datasets

To analyse the performance of classification models built
based on fungal BGC datasets, we selected a fungal genome
from the Aspergillus genus to represent a real test case
scenario. Aspergillus is the most frequent genus among fungal
species in MIBIiG, together with Penicillium. For this eval-
vation we focused specifically on the A. niger species. A.
niger is a genome of interest due to its biological diversity
and major relevance to industrial processes [23]. In [24]] the
authors present manual annotation of BGCs in Aspergilli,
among which a total of 79 BGCs are found in A. niger.

To generate candidate clusters for the test phase, we col-
lected a manually curated A. niger genome sequence made
publicly available through the Genozymes projeclﬂ We gen-
erated test candidate clusters by considering a sliding window
of 30,000 nucleotides in the A. niger genome. The 30,000
sliding window length is defined based on the average length
of the nucleotide sequence of MIBiG fungal BGCs. A similar
approach was previously applied in fungal BGC discovery to
generate virtual clusters [[15].

The 30,000 sliding window was shifted along the genome
using either a 50% or a 30% overlap. The overlaps in a sliding
window mean that each test candidate cluster will contain the
last 15,000 nucleotides (if a 50% overlap) or the last 9,000
nucleotides (if a 30% overlap) of the immediate previous
candidate cluster. With the strategy of generating candidate
clusters using overlaps, we are more likely to cover regions
in between two or more genes. Figure [2] shows an example of
candidate clusters being generated from A. niger genes using
overlaps. The test datasets based on a 50% overlap contains a
total of 1,184 candidate clusters, while the test datasets based
on a 30% overlap contains a total of 846 candidate clusters.

Shttp://pfam.xfam.org
https:/gb.fungalgenomics.ca/portal/

A. niger genes

>NRRL3_00010
ATGGCAGCAGATCAGAACGAGTCATCAACTGTTGATGCAGTCAC. . .
>NRRL3_00011
ATGCCACCTATCACCAGAGCGCAAGCCAAACACAAATTCCCCGG. . .
>NRRL3_00012
ATGACCTGGCCCGAAACAGTCCGTTCCATCCTCTGTGAAGAGGC. . .
>NRRL3_00013
ATGGCTGATAACGTAGCCACGTTGACCTCTGCCATCAACACCGC. . .

>NRRL3_04268
ATGGGCCCACCCCGACCGTTTACCGTCACCATCATCGGTGGAGG. . .
>NRRL3_04269
ATGCTGCTCTGGATACGGGCGGTTGACGACAATGCCTCCCAGGC. . .
>NRRL3_04270
ATGCGCTGCTCCCTCATCTCCCTTCTAGGCCTGGCGGCCGTCCC. . .

|

Candidate clusters

>NRRL3_00010INRRL3_00011INRRL3_00012
ATGGCAGCAGATC. . .ATGCCACCTATCA. . .ATGACCTGGCCCG. . .
>NRRL3_00011INRRL3_00012INRRL3_00013
ACACAAATTCCCC. . .ATGCCACCTATCA. . . ATGACCTGGCCCG. . .

>NRRL3_04268INRRL3_04269

ATGGGCCCACCCC. . .ATGCTGCTCTGGA. . . ATGCGCTGCTCCC. . .
>NRRL3_04269INRRL3_04270

CAATGCCTCCCAGGC. . . ATGCGCTGCTCCC. . .

Fig. 2. Example of A. niger candidate clusters generated for test phase

C. Classification Models

In this section we describe the methods applied to analyse
the performance of a supervised learning approach using the
fungal BGC datasets presented in Section and the test
data presented in Section To generate classification
models with our fungal BGC datases, we utilized the Deep-
BGC system [6]. DeepBGC executable, source code and other
resources are openly availableﬂ Among these resources, there
are pre-built BGC classification models and word2vec-based
embeddings built using Pfam IDs, referred to as pfam2vec
embeddings. In [[6] the authors explained that pfam2vec em-
beddings were trained based in a skipgram architecture with
100 dimensions and over 15,686 unique Pfam IDs. DeepBGC
classification is based on a Bidirectional Long Short Term
Memory (BiLSTM) neural network, for which the input are
pfam2vec embeddings. In [6] DeepBGC hyperparameters are
described as a BiLSTM layer size of 128, dropout of 0.2,
sigmoid activation, batch size of 64, 256 timestamps over 328
epochs, using Adam optimizer at a learning rate of le-4, with
weighted binary cross-entropy loss. To generate classification
models using fungal BGC datasets on the DeepBGC system
we adopted the same hyperparameters described in [6], as
well as the pfam2vec embeddings as input for training. For
each fungal BGC dataset, we have generated a different

8https://github.com/Merck/deepbgc
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classification model using DeepBGC. Fungal BGC models are
named by their positive instance percentage:

e pos50 (50%-50%)
e pos40 (40%-60%)
e pos30 (30%-70%)
e P0s20 (20%-80%)
e p0sl10 (10%-90%)
e pos05 (05%-95%)
e pos01 (01%-99%)

To complement our analysis, we also analysed the perfor-
mance of our test datasets using the four bacteria-based models
made available at the DeepBGC repository:

¢ deepbgc

e cf_o (clusterfinder_original)

e cf_r (clusterfinder_retrained)

o cf_g (clusterfinder_geneborder)

According to the models description at the DeepBGC re-
leases pageﬂ and [6]], the deepbgc model is based on the BiL-
STM DeepBGC architecture and trained on a MIBiG dataset.
The other models are built based on ClusterFinder [12]], which
is a Hidden Markov Model (HMM). cf_ o is a ClusterFinder
HMM using original parameters; cf_r is also a ClusterFinder
HMM but trained on a MIBiG dataset; and cf_g is a
ClusterFinder HMM that switches stages only on gene borders,
and trained on a MIBiG dataset.

IV. RESULTS AND DISCUSSION

We present here statistics and further details on the publicly
available fungal BGC datasets proposed in this study. We
also present results of validation and test phase obtained with
classification models based on fungal BGC datasets and built
using DeepBGC. Section has further information and
statistics on the fungal BGC datasets proposed in our work.
In Section [IV-B| we present results obtained at validation of
training DeepBGC using the models pos50, pos40, pos30,
pos20, posl0, pos05, and pos01. In Section [[V-C| we
present results obtained at test phase. For the sake of com-
parison, we also report the results on test data using BGC
classification models provided by DeepBGC and built based
on bacteria data, as listed in Section All performance
metrics are reported on the positive class only.

A. Fungal BGC datasets

The fungal BGC datasets proposed in this work are com-
posed of positive and negative instances, as mentioned in Sec-
tion These datasets are suitable for performing binary
classification to predict fungal BGCs, and are made publicly
available at https://github.com/bioinfoUQAM/fungalbgcdata.
The availability of such resource can potentially motivate the
development of supervised learning approaches to tackle BGC
discovery in fungi.

Positive instances in our datasets represent fungal BGCs
from 52 different fungal genera. The variety of fungal genus

%https://github.com/Merck/deepbgc/releases

is relevant to provide a large representation of BGC occur-
rence through different organisms. Additionally, the positive
instances contain samples of over 10 different BGC types.
Table [ shows the different BGC types and a summary of
fungal genera in our datasets. As the table shows, the most
common BGC type is Polyketide synthase (PKS), followed by
Non-ribosomal peptide synthase (NRP) and Terpene synthase
(TC). The presence of different fungal genus and BGC types
in the datasets are important for representing a wide variety of
BGC occurrences, and therefore contribute to building more
robust supervised learning approaches.

Lecanicillium
Leptosphaeria
Malbranchea

Tolypocladium
Trichophyton
Ustilago

BGC fungi genus # BGC fungi genus #

Acremonium 1 Metacordyceps 1

Alternaria 5  Metarhizium 1

Armillaria 1 Monascus 3

Aspergillus 9  Mycosphaerella 1

Aureobasidium 1 Myrothecium 1

BGC types # Beauveria 1 Neosartorya 1
- Bipolaris 3 Neotyphodium 2
Alkaloid 3 Botrytis 1 Nodulisporium 1
Alka]c)}d/ NRP 3 Byssochlamys 1 Paecilomyces 1
Alkaloid/TC 1 Cercospora 1 Parastagonospora 1
Alkaloid/NRP/TC L' Chaetomium 2 Penicillium 13
NRP 41 Cladonia 2 Pestalotiopsis 1
NRP/PKS 19 Claviceps 2 Phoma 2
PKS 90 Diaporthe 1 Phomopsis 1
PKS/ TC 5 Elsinoe 1 Purpureocillium 1
RiPP 3 Epichloe 2 Sarocladium 1
Saccharide 1 Fusarium 8  Shiraia 1
TC 23 Glarea 1 Sordaria 1
Other 10 Glycomyces 1 Sphaceloma 1
Total 200 Hypholoma 1 Stachybotrys 1
Hypomyces 1 Starmerella 1

Isaria 1 Talaromyces 3

Lasiodiplodia 1 Tapinella 1

1 2

1 1

1 1

TABLE 11
FUNGAL GENERA AND BGC TYPES IN POSITIVE INSTANCES OF DATASETS

Negative instances in our datasets represent synthetic gene
clusters composed of fungal orthologs. By using fungal or-
thologs as source for the negative instances, we can generate
synthetic gene clusters that depict the genomic profile of
fungi. A total of 549 fungal species are present in orthologs
composing our negative instances. The main fungal groups
to which the orthologs belong to are shown in Table
according to their taxonomy level. In this table we show the
number of species clustered under different taxonomy levels
(genus, family, order, or class), and the corresponding total of
non-redundant orthologous genes for each group.

The 52 fungal genera in positive instances together with the
549 fungal species in negative instance orthologs contribute to
represent the genomic diversity in fungi, and therefore support
the development of more robust classification models.

B. Validation performance

Table shows validation metrics obtained with fungal
BGC datasets. During training phase, all models using fungal
BGC datasets had early stopping before completing the total
328 epochs. This could be a sign that the models were
overfitting, a possible consequence due to the size of the
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datasets, with overlaps of respectively 50% and 30%. These
results were obtained using classification models built with the
fungal BGC datasets described in Section

TABLE V
PERFORMANCE FOR A. niger TEST DATA USING MODELS BUILT ON
FUNGAL BGC DATASETS USING 50% OVERLAP

Gene metrics Cluster metrics
Model P R F P R F
pos50 | 0.049 1.0 0.094 | 0.072 0.988 0.134
pos40 | 0.048 0962 0.091 | 0.073 0988 0.136
pos30 | 0.044 0.867 0.083 | 0.073 0977 0.136
pos20 | 0.039 0.694 0.074 | 0.079 093 0.146
posl0 0 0 0 0 0 0
pos05 0 0 0 0 0 0
pos01 0 0 0 0 0 0
TABLE VI

PERFORMANCE FOR A. niger TEST DATA USING MODELS BUILT ON
FUNGAL BGC DATASETS USING 30% OVERLAP

Group Taxonomy # Species # Genes
level
Aspergillus Genus 30 309,629
Cryptococcus Genus 7 44,028
Exophiala Genus 7 67,291
Metarhizium Genus 5 45,563
Penicilium Genus 21 208,580
Phytophthora Genus 6 89,378
Hypocreaceae Family 7 66,815
Pleosporaceae Family 9 94, 817
Polyporaceae Family 6 61,584
Saprolegniaceae Family 6 81,114
Trichocomaceae Family 6 52,941
Agaricales Order 25 293,149
Eurotiales Order 60 608,401
Helotiales Order 14 162,251
Hypocreales Order 50 512,282
Mucorales Order 15 164,081
Polyporales Order 17 169,368
Sordariales Order 8 66,549
Agaricomycetes Class 77 912,187
Eurotiomycetes Class 103 1,002,099
Microbotryomycetes  Class 9 59,326
Pucciniomycetes Class 6 64,018
Saccharomycetes Class 76 390,808
Tremellomycetes Class 18 121,702
Ustilaginomycetes Class 9 55,465
TABLE III

MAIN FUNGAL GROUPS PRESENT IN NEGATIVE INSTANCES OF DATASETS

datasets and the imbalanced distribution between the two
classes.

The best performing model pos50 is the one with the
most balanced distribution of positive and negative instances.
It yield Precision (P) of 0.598, Recall (R) of 0.995, and F-
measure (F) of 0.747. Models pos10, pos05, and pos01,
the ones with the most imbalanced distributions, had the lowest
validation loss but also the lowest P, R and F.

Gene metrics Cluster metrics
Model P R F P R F
pos50 0.05 1.0 0.096 0.1 0988 0.182
pos40 | 0.048 0951 0.092 | 0.099 0953 0.179
pos30 | 0.045 0.865 0.085 0.1 0942 0.18
pos20 | 0.039 0.669 0.073 | 0.105 0.884 0.188
posl0 0 0 0 0 0 0
pos05 0 0 0 0 0 0
pos01 0 0 0 0 0 0

TABLE IV
VALIDATION PERFORMANCE USING MODELS BUILT ON PROPOSED
DATASETS
Model | Epochs Loss P R F
pos50 91 0.683 0.598 0.995 0.747
pos40 52 0.719 0.407 1 0578
pos30 108  0.667 0.536 0.743  0.623
pos20 97 0.758 0230 0991 0.373
posl0 70  0.389 0 0 0
pos05 73 0.240 0 0 0
pos01 57 0.062 0 0 0

C. Test performance

The test phase show how the models would perform in a real
case scenario, when a complete genome is being processed
to predict candidate BGC regions. The dataset inputted in
the test phase is composed of candidate clusters from the A.
niger genome sequence, as described in Section The
performance on the test data is presented in two ways: gene
metrics and cluster metrics. Gene metrics show P, R, and F for
genes that belong to knownBGCs. Cluster metrics show P, R,
and F for knownBGCs where a minimum of one cluster gene
must be correctly classified for the cluster to be predicted as
positive. Tables [V] and show the results on A. niger test

Results in the test phase show an important decrease in per-
formance compared to the validation phase metrics. However
the behaviors observed at the validation step also appear in
test. Similarly to the validation phase, the more imbalanced
models pos10, pos05, pos01l did not predict any can-
didate cluster as positive. This behavior happened with both
test datasets of 50% or 30% overlap, and it could indicate that
the model is sensitive to an imbalanced distribution of classes.

Also similarly to the validation phase the more balanced
models pos50, pos40, pos30, pos20 tended to pre-
dict most of candidate clusters as positives, leading to high
recall but very low precision. Table shows slightly better
performance for P, R, and F compared to table [V] This
behavior could indicate that using a 30% overlap in the test
data is better suited for the task.

Following the results obtained with models based on fungal
BGC datasets, we would like to also analyse the performance
of DeepBGC models built using bacteria data on A. niger test
datasets. Tables [VII and [VIII show the results obtained on
A. niger data with respectively 50% and 30% overlap using
DeepBGC bacteria models.

Among all DeepBGC bacteria models, deepbgc
performed best at both gene and cluster metrics, either
using 30% or 50% overlap, with 0.273 F. The model cf_o
showed the lowest performance, with 0.138 F. Models cf_r
and cf_g showed in both cases better performance than
cf_o. The results using DeepBGC trained models yield a
similar tendency than that of the fungal BGC models: high



TABLE VII
PERFORMANCE FOR A. niger TEST DATA WITH 50% OVERLAP USING
MODELS PROVIDED BY DEEPBGC

Gene metrics Cluster metrics
Model P R F P R F
deepbgc | 0.074 0972 0.138 | 0.114 0.988 0.205
cf_o 0.05 1.0  0.096 | 0.074 0988 0.138
cf_r 0.056 0.997 0.106 | 0.083 0988 0.153
cf_g 0.06 0989 0.113 0.09 0.983 0.166
TABLE VIII

PERFORMANCE FOR A. niger TEST DATA WITH 30% OVERLAP USING
MODELS PROVIDED BY DEEPBGC

Gene metrics Cluster metrics
Model P R F P R F
deepbgc | 0.074 0954 0.138 | 0.159 0988 0.273
cf_o 0.051 0984 0.096 | 0.103 0988 0.187
cf_r 0.058 0994 0.109 | 0.118 0988 0.211
cf_g 0.061 0992 0.116 | 0.126 0988  0.223

recall but very low precision.

A loss in performance between validation and test results
is evident, either when using fungal BGC based models or
DeepBGC bacteria models.

As mentioned in Section fungal BGCs seem to
show larger genomic diversity, which possibly makes it more
complex to perform BGC discovery in fungi if compared
to bacteria. Therefore, performance is expected to be some-
how affected by performing fungal BGC classification using
bacteria-based models.

The dataset size at training time could also have had
an impact on training pos50, pos40, pos30, pos20,
posl0, pos05 models, given DeepBGC classification ap-
proach. As the authors in [25] explained, the suitability of
deep learning approaches varies according to the problem at
hand; and in cases when available data is limited conventional
approaches could be relevant and more advantageous. As
discussed in Section the number of known fungal BGC
data previously validated by curators israther limited, which
as a consequence will limit the size of fungal BGC datasets. It
is possible and worth investigating that different classification
methods, apart from a BiLSTM neural network as adopted
in DeepBGC, will be better suited for handling fungal BGC
discovery.

V. CONCLUSION

NPs are bioactive compounds that play a vital role in the
production of a large variety of drugs, and the discovery
of novel NPs can potentially benefit human health. Great
effort has been put on identifying BGCs that are capable of
producing NPs in plants, bacteria and fungi. Identifying BGCs
is a challenging task, specially in fungi given the clusters
genomic diversity.

Previous work on identifying BGCs in bacteria have resulted
in a large variety of approaches and annotated data available.
In fungi most previous approaches are based on data-driven

methods and present a limited scope, such as covering only
certain types of BGCs, or have been developed based on
a single species data. The availability of new fungal BGC
datasets could potentially motivate the development of new
methods to identify BGCs in fungi. One example is supervised
learning, a method that have shown to perform well in bacteria
data.

In this work, we present new fungal BGC datasets to
leverage supervised learning in the fungal BGC discovery
task. These datasets are made publicly available at https:
//github.com/bioinfoUQAM/fungalbgcdata. The availability of
such fungal BGC datasets can potentially motivate the de-
velopment of binary classification approaches to tackle the
BGC discovery task. We have shown results obtained on these
fungal BGC datasets using a supervised learning approach de-
veloped for bacteria BGCs. We also analysed the performance
of bacteria-based classification models applied on a fungal
genome. The test performance on both fungal-based generated
models or bacteria-based models was similar given precision
(low) and recall (high) metrics using the same supervised
learning method. This points to an opportunity to explore
different supervised learning approaches than the one adopted
by the DeepBGC system, that might be more suitable to handle
fungal BGC datasets.
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