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Abstract—Over the past decade, machine learning gained
considerable attention from the scientific community and has
progressed rapidly as a result. Given its ability to detect subtle
and complicated patterns, deep learning (DL) has been utilized
widely in neuroimaging studies for medical data analysis and au-
tomated diagnostics with varying degrees of success. In this paper,
we question the remarkable accuracies of the best performing
models by assessing generalization performance of the state-
of-the-art convolutional neural network (CNN) models on the
classification of two most common neurodegenerative diseases,
namely Alzheimer’s Disease (AD) and Parkinson’s Disease (PD)
using MRI. We demonstrate the impact of the data division
strategy on the model performances by comparing the results
derived from two different split approaches. We first evaluated
the performance of the CNN models by dividing the dataset at the
subject level in which all of the MRI slices of a patient are put into
either training or test set. We then observed that pooling together
all slices prior to applying cross-validation, as erroneously done
in a number of previous studies, leads to inflated accuracies by
as much as 26% for the classification of the diseases.

Index Terms—Parkinson’s Disease, Alzheimer’s Disease, Deep
Learning, Transfer Learning, VGG16, Resnet50, MRI, Neu-
roimaging

I. INTRODUCTION

Deep learning (DL) models have attracted a great deal of
research interest in medical imaging due to their advantages
and successes in various fields such as image and speech
recognition, automation, security, computer-aided diagnosis
(CAD), just to name a few. In particular, medical image
analysis using DL opened a new door into CAD. In recent
years, convolutional neural networks (CNNs) have been used
to detect and classify a range of diseases from cancer to
neurological disorders [2]–[5].

The CNN models used in these studies are mostly uti-
lized on well-known big datasets such as ImageNet [6] and
MNIST [7]. A sample CNN architecture used in medical
image classification can be seen in Figure 1. Model training
and testing are generally done by splitting the dataset into three
subsets: training, validation, and test. Training and validation
are used to learn parameters and decide whether training is
complete, whereas test data are used to evaluate model perfor-
mance on new previously unseen data. However, CNN models
may not perform well when presented with the new data as
well as previously believed [8]. A recent study in computer

vision has indicated that the true generalization performance of
even classic CIFAR-10 photograph classification CNNs to new
data are questionable and lower than previous results [9]. In
domains such as disease detection, that kind of mismatch can
cause serious problems as the researchers could design models
which perform well on the specific test set but are incapable
of generalizing, and fail when new data are presented [10].

It has been long known that having an appropriate data di-
vision is crucial to achieve a generalization performance [11],
[12]. There are various statistical sampling techniques such
as simple random sampling [13], deterministic methods [14],
DUPLEX [15], and stratified sampling [16] which may be
used in different types of data to decrease the variance of the
model performance.

In most image classification applications, the data are ran-
domly divided into training, validation and test sets. To mea-
sure the model’s ability to adapt properly to new, previously
unseen data, the ideal test set should be the reflection of the
data that could be encountered elsewhere.

However, in medical image classification, the accuracy on a
test set which is randomly sampled from the data may not re-
flect the model’s performance on new, previously unseen data
and may create a major bias which can be explained as data
leakage [17], [18]. Generally, data leakage is a phenomenon
caused by the presence of the same data both in the training
and testing processes. A more subtle version of this problem is
when the test data are disjoint from the training data but come
from a distribution that is more similar to that of the training
set than one would expect from new data [19], [20]. In 3D
medical imaging such as MRI or CT, dividing the overall data
randomly causing slices or patches from the same patient to be
in both training and test sets and leads to a biased assessment.

In this work, we assessed the generalization performance
of the networks on the classification of the two most com-
mon neurological disorders: Parkinson’s Disease (PD) and
Alzheimer’s Disease (AD). The contributions of this paper are
as follows:

• We proposed a framework for PD and AD classification
using CNNs and MR images;

• We utilized two state of the art convolutional neural
network models together with a smart data selection
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Fig. 1: The architecture of a convolutional neural network (CNN) model used in medical image classification. (Modified from
the Figure in [1])

algorithm and demonstrated the use of the proposed
framework on two public datasets: PPMI and OASIS;

• We demonstrated the impact of the data division strategy
on the model performances by comparing the results
based on two different split approach, one of which
affected by data leakage.

This paper is organized as follows: In Section II, there is
an overview on the related work. Section III describes the
steps of the proposed methodology in detail. Classification
results are presented in Section IV and discussed in Section V.
Finally, Section VI concludes the paper with some remarks and
indicates possible future directions.

II. RELATED WORK

PD is a neurological disorder caused by the progressive
death of dopamine producing cells in the brain [29], [30].
It is the second most common neurodegenerative disorder
after Alzheimer’s Disease (AD) [31]. An estimated 7 to 10
million people worldwide have been affected by PD and
related disorders in 2018 [32].

In recent years, several neuroimaging studies have uti-
lized machine learning (ML) algorithms for detection and
diagnosis of PD [33]–[35]. Various modalities like Magnetic
Resonance Imaging (MRI), Single Photon Emission Computed
Tomography (SPECT), Positron Emission Tomography (PET)
and functional Magnetic Resonance Imaging (fMRI) are used
within these research to diagnose PD [36], [37]. In 2018,
Esmaeilzadeh et al. [22] used 3D CNN for simultaneous
classification and regression of PD diagnosis based on MRI
and personal information (i.e., age and gender). They achieved
100% accuracy on both test and validation sets. In that study,
they reached to the conclusion that Superior Parietal part
on the right hemisphere of the brain is very critical in the
diagnosis of PD. Lei et al. [38] performed a multi-class
classification of three different clinical statuses: PD, SWEDD,

and healthy conditions (HC) via SVM. They concluded that
the classification performance with multi-modality features
(GCD) combined with cerebrospinal fluid (CSF) biomarkers
and clinical scores (DSSM) is always better than those without
additional features. Recently, Sivaranjini et al. [21] utilized
AlexNet to diagnose PD. The image dataset with 80% of the
input data are used for training, and the remaining 20% is
used for testing. Through TL, they achieved an accuracy of
88.9% on the classification of MRI slices. However, they did
not test their model with subjects that were not included in
the training data.

AD, on the other hand, is the most common neurodegener-
ative disorder [39]. It is predicted that by 2050, half (51%) of
all people 65 and older will be facing with AD [40].

Sarraf et al. [26] used a CNN model for AD diagnosis in
adults (above 75 years old) using fMRI and MRI. The data
was divided into three parts: training (60%), validation (20%),
and test (20%). They achieved 99.9% accuracy for functional
MRI data and 98.84% for MRI data, respectively. However,
data division was not done at the subject-level leading data
from the same subject to be in both the training and test sets.

In [28], Payan and Montana designed a classification system
that combines sparse autoencoders and convolutional neural
networks. They divided ADNI dataset into training set (1,731
samples), validation set (306 samples) and test set (228
samples) and achieved 95.39% classification accuracy with
both 2D CNNs and 3D CNNs. Again, they did not perform
subject level division. Lastly, Hon et al. [24] utilized two state-
of-the-art architectures, namely VGG16 and Inception V4 to
classify AD. They used 5-fold cross-validation to obtain the
results, with an 80% - 20% split between training and test.
By using a pre-trained model for transfer learning (TL), they
reported 92.3% accuracy with VGG16 model and 96.25% with
Inception model.

When we check the literature, we see that the phenomenon



TABLE I: Summary of the studies with potential of data leakage. Studies perform Parkinson’s Disease (PD) and Alzheimer’s
Disease (AD) classification using 2D or 3D convolutional neural networks (CNNs) with structural magnetic resonance imaging.

Disease Study No. of subjects No. of MRIs Data division method Accuracy (%)

PD Sivaranjini et al., 2019 [21] 182 7646 slices (2D) 4:1 train/test split by MRI slices 88.9
PD Esmaeilzadeh et al. 2018 [22] 452 452 volumes (3D) 8.5:1:0.5 train/development/test split by augmented patches from MRI 100

AD Jain et al.,2019 [23] 150 3000 slices (2D) 8:2 train/test split, by augmented MRI slices 95
AD Hon and Khan, 2017 [24] 200 6400 slices (2D) 4:1 train/test split by MRI slices, 5-fold cross-validation 92.3
AD Farooq et al., 2017 [25] 355 38024 slices (2D) 3:1 train/test split by MRI slices 98.8
AD Sarraf and Toghi, 2016 [26] n/a 90300 slices (2D) 3:1:1 train/validation/test split, 5-fold cross validation 96.85
AD Wu et al., 2018 [27] 457 21936 slices (2D) 2:1 train/test split, 5-fold cross validation 97.58
AD Payan and Montana, 2015 [28] n/a 100 volumes (3D) 8:1:1 train/validation/test split, by patches from MRI 89.47

known as data leakage, is indeed a serious problem. Still, many
papers published in the area are suffering from biased results
most probably caused by limited experience with medical
data. While working on this paper, we became aware of the
recent work by Wen et al. [41] that illustrated the presence
of data leakage across various studies which use ML in AD
classification. They performed a rigorous literature search on
AD and grouped the studies into three categorize: (a) studies
without data leakage; (b) studies with potential data leakage
and (c) studies with clear data leakage. They observed data
leakage in 42% of surveyed papers.

III. METHODS

In this section, we briefly describe the datasets we have
used, the pre-processing steps and finally, the model architec-
tures together with training protocols.

A. Data Splitting

Throughout the work, we realized that a common miscon-
ception occurs in many different papers which use machine
learning algorithms in 3D medical imaging. Performance of
the models was often determined by dividing the pooled slices
into training and test sets [21], [24]–[26], [42] (see Table I).
Thus, training and test sets included the different brain slices
of the same subjects. Unfortunately, in that case, the high
accuracies may stem from high intra-subject correlation. To
test our hypothesis, we employed two different data splitting
approaches. First, we divided the data by subject, in which all
of the MRI slices of a subject are placed either in the training
or in the test set. Then, in the second part, we pooled all slices
together and then split the overall set randomly, meaning that
the different slices of the same patient could appear both in
the training and test sets.

B. Datasets

In this study two datasets were used, namely Parkinsons
Progression Markers Initiative (PPMI) database [43] for PD
and Open Access Series of Imaging Studies (OASIS) [44] for
AD.

1) PPMI: The axial T2 weighted MRI slices used to clas-
sify PD in this work are from the PMMI database (Table II).
The reason behind using T2 weighted MRI for PD is that T2
weighted sequences are better at detecting changes in tissue
properties [45]. As a result, the data has the potential to

monitor the structural changes of the brain caused by PD,
such as the reduced volume of caudate and putamen [46].

The PPMI database is publicly available and helps re-
searchers to conduct research on identifying biomarkers of
PD progression. It consists of a set of three-dimensional brain
slices of 452 PD patients (292 males and 160 females) and
204 HC (134 males and 70 females). The average age of the
patients is 61, where the minimum age is 30, and the maximum
age is 89.

The PPMI subset used in this study consists of 408 subjects
with 204 HC and 204 PD subjects. It has 6569 MRI slices
derived from HC and 4467 slices from PD subjects. We
randomly picked 7030 slices in total for our slice-based PD
subset. Of these, 3515 slices were PD, and the remaining 3515
were HC. For the random division case, we used 80% of these
slices in the training process while the rest were assigned to
the test set. For the subject based case, we divide the data by
patient meaning that the MRI slices of 164 patients from each
class are placed in the training set and the slices of 40 AD
patients and 40 HC are assigned to the test set.

2) OASIS: For classification of AD, we used cross-
sectional, structural MRI data from the OASIS database (Ta-
ble III). For the random split tests, we have employed the
exact data set which were used in Hon et al.’s work [24] in
order to replicate their approach while avoiding bias.1 The
subset they have used in their work consists of cross-sectional
T1-weighted MRI scans. In their experiments, they randomly
picked 200 subjects, 100 of whom were chosen from the AD
group, while the other 100 from the HC group. The sample
MRI slices from OASIS data can be seen in Figure 2.

For the subject based case, we created a similar subset from
the OASIS database by picking 200 subjects, half of whom
were AD patients, while the other half was HC. MRI slices of
80 subjects from each class are used to train the model, while
the other subjects took part in testing process. MRI scans from
OASIS database are in hdr/img file format. To pre-process the
scannings, we first converted them into NIfTI format, then into
2D (jpg) format.

The decision criteria of AD is a variable called Clinical
Dementia Rating (CRD) with 0 suggests HC and any value
greater than 0 implies AD. OASIS-1 dataset includes two
different data: Raw and processed. Processed images are the

1The subset Hon et al. created from the OASIS data are accessible at
https://github.com/marciahon29/Ryerson MRP



(a) A sample magnetic resonance
imaging slice of a Alzheimer’s
disease patient

(b) A sample magnetic resonance
imaging slice of a health control

Fig. 2: Example of two Magnetic resonance imaging (MRI)
slices of an Alzheimer’s Disease (AD) subject and healthy
control (HC) from OASIS database.

TABLE II: Demographic information of PMMI dataset.

Classes No. of subjects Sex Age No. of MRI slices

PD 204 101 M, 103 F 30-89 3015
HC 204 134 M, 70 F 30-89 3015

TABLE III: Demographic information of OASIS-1 dataset.

Classes No. of subjects Sex Age No. of MR slices

AD 100 65 M, 35 F 18-96 3200
HC 100 38 M, 62 F 18-96 3200

brain-masked version of atlas registered image that are used
in both types of experiments.

C. Image Pre-processing

The input of the 2D CNNs that we utilized in our approach
is the set of 2D slices extracted from the MRI volume. Typi-
cally, each MRI volume contains many slices that correspond
to a different cross section of the brain. To increase the perfor-
mance of classication, we decided to pick the most informative
slices to train the network. It is known that a signicant grey
matter intensity loss with changes in the striatum region is
observed in PD when compared with HC [46]. By calculating
the image entropy for each slice, we aimed to select the
slices which can illustrate such degenerated structure [24].
Two sets of MRI slices that belong to a PD patient are shown
in the Figure 3. The slice on the left of the figure is not very
informative in terms of the amount of gray matter it reveals
when compared to the slice on the right.

Entropy is a measure of histogram dispersion which illus-
trates the variation in a slice. In the case of an image which
has been perfectly histogram equalized, all 256 such states are
equally occupied, and the entropy of the image is maximum.
On the other hand, if all of the pixels of an image have the
same value, the entropy is zero. Therefore, if the entropy of
the image is reduced, its information is reduced as well. Thus,
to obtain the most informative slices for network training,
an entropy threshold has been determined (4.5, based on our
empirical analysis).

(a) Non-informative slice in
terms of the amount of the gray
matter visible

(b) Informative slice in terms of
the amount of the gray matter
visible

Fig. 3: Example of two magnetic resonance imaging (MRI)
slices of a Parkinson Disease (PD) subject.

For a slice, the entropy can be calculated as follows:

H = −
M∑
i=1

pi log pi

where M is the number of gray levels (256 for 8-bit images)
and pi is the probability of a pixel having gray level intensity.

After eliminating the slices which fail to carry the necessary
information, normalization is performed on the remaining MRI
slices to obtain an unvaried contrast and intensity range. For
this reason, each MRI slice in the data set is normalized to the
range (0, 1). To be compatible with the pre-trained models of
VGG16 and Resnet50, the slices were resized to be 224×224.

We followed the same pre-processing structure for the AD
slices as well.

D. CNN Models

We utilized two different architectures (VGG and ResNets)
which are widely used in disease detection frameworks.

1) VGG16: VGG16 is a 16-layer network built by Oxfords
Visual Geometry Group (VGG) and presented in their paper
entitled “Very Deep Convolutional Networks for Large-Scale
Image Recognition” [47]. It won the ImageNet competition
in ILSVRC-2014 with the accuracy of 92.7%. It replaces
large kernel-sized filters (11 and 5 in the first and second
convolutional layer, respectively) in the Alexnet with multiple
33 kernel-sized filters.

The input to the first layer is a fixed-size 224 × 224
RGB image. The image is then passed through a stack of
convolutional layers as well as max pooling layers. Finally,
convolutional layers are followed by three Fully-Connected
(FC) layers and the soft-max layer for 1000-way ILSVRC
classification. The architecture of VGG16 is shown in the
Figure 4.

2) Resnet50: Residual neural network (ResNet) ranked first
in the ILSVRC 2015 classication competition with top-5
error rate of 3.57%. He et al. [48] ease the training process
of deep neural networks while making their model deeper
than those used previously. They reformulate the layers as
learning residual functions with reference to the layer inputs,
rather than learning unreferenced functions. Residual neural



Fig. 4: The architecture of the VGG16 model adopted for
magnetic resonance imaging (MRI) data.

Fig. 5: A building block of a regular learning (left) and a
residual learning (right) (from He, 2016 [48]).

networks solve the problem known as vanishing gradient.
When the network is too deep, the gradients of the loss
function approaches zero, making the network hard to train. As
a result, the weights are not updated, and thus learning cannot
be achieved. With ResNets, the gradients can flow directly
through the skip connections backward from latter layers to
initial filters. The building block of a sample residual neural
network structure is shown below in the Figure 5.

E. Training Protocols and Transfer Learning

Acquiring large sets of labeled data in medical imaging is a
hard task as it is mostly sealed due to privacy and institutional
policies, or expensive to label. To avoid the common problem
of overfitting which generally stems from small data set and
deep networks, transfer learning (TL) is employed to train a
model efficiently on a smaller data set.

The idea behind TL is that many deep neural networks
trained on images exhibit a common behavior: the first layers
extract generic features and perform general operations such

TABLE IV: Tested architectures and their corresponding av-
erage accuracy on two dataset (PPMI and OASIS) using
two data divisions (RD-Random Division, SbD-Subject-based
Division).

PD (Data 1: PPMI) AD (Data 2: OASIS)
RD SbD RD SbD

VGG16 82.8% 61.2% 90.47% 64.3%
Resnet50 88.6% 67.3% 92.5% 67.1%

as edge detection or color blob detection [49]. Such low level
features might be applicable to many datasets and tasks. Thus,
when a network is pre-trained on an extremely large dataset,
such as ImageNet, comprising 1.4 million images with 1000
classes, knowledge extracted from there can be applied to
the given task of interest. Even for cross-domain application,
such as networks trained on natural images used with medical
images, TL has been proved to be robust [50].

For transfer learning, we follow the fine-tuning approach,
where the last three layers of the pre-trained model are
modified. The weights of the other layers of the model were
frozen during fine-tuning to prevent overfitting. For VGG16,
50 epochs were used with a batch size of 40. The stochastic
gradient descent and Adagrad optimization algorithms were
used to minimize cross-entropy type of error. For Resnet50,
100 epochs with batch size of 32 were used. The optimization
model was stochastic gradient descent. The loss function was
categorical cross-entropy.

Data selection method and pre-processing part mentioned
in Section III are implemented in MATLAB [51]. Then,
deep learning methods are executed using Keras [52] with
a TensorFlow [53] backend. Architectures as well as the pre-
trained weights were available to download in open source
repositories of the models.

IV. EXPERIMENTAL RESULTS

The main aim was to differentiate AD and PD patients
from HC by analyzing MRI data derived from two different
databases via the CNN models and to show the importance of
data division method on the generalization performance of the
models. Table IV illustrates the accuracy results of the two
models across two separate datasets using subject-level data
splitting and random splitting after pooling all slices.

As it can be seen from the Table IV, both VGG16 and
Resnet models can classify PD from HC with more than
82% accuracy when data are randomly split (biased split).
However, on subject based split (unbiased split), we observed
a large drop in accuracy (17% to 25%) for classification of the
disease. Again, for AD classification, the same pattern can be
detected. When data are divided at subject level, classification
accuracy of VGG16 model is 64.3% whereas Resnet50 model
achieves 67.1%. Alarmingly, pooling then splitting at slice
level can inflate the classification accuracy by 26.1 percent
points compared to the subject level split.



V. DISCUSSION

Comparison of classification performances across studies
is an arduous task as each study has various pre-processing
stages, validation approach or hyperparameter selection. In
studies which create subsets from publicly available datasets,
the selection of the subset is often a random process, which
makes it impossible to replicate the work accurately [24].
Moreover, some of the studies do not provide sufficient imple-
mentation details, especially about the validation procedures
adopted, with the risk that the reported performances are
affected by significant bias. Dividing the data at the slice-level
in medical image classification is a significant problem which
is currently widespread in the field. Our results show that this
may artificially inflate the accuracy of classifiers by as much
as 26 percentage points.

To evaluate prospective clinical feasibility of automated
diagnosis, unbiased and accurate assessment of the model
performances is crucial. We argue that despite the impressive
accuracies of the previous works, there still exist some serious
issues that must be resolved and much room for improvement
in medical image classification and automated diagnosis.

VI. CONCLUSION

In this paper, we utilized a transfer learning-based method to
detect two most common neurological diseases from structural
MRI images. We employed two state-of-the-art architectures,
namely VGG16 and Resnet, to classify PD subject from HC
and AD subjects from HC. We test our models on MRI slices
from the PMMI and OASIS brain imaging datasets, where
MRI slices of more than 300 patients are used to train the
models. We compared the results of two data split approaches
across separate data sets, and showed that there is a large
overestimation in accuracy when slices from all subjects are
pooled together prior to validation.

The large discrepancy of accuracies between two types of
data division suggests that the test accuracy from the random
division approach is not a valid measure of performance on
new subjects. Subject level tests are required to show the
accurate performance of the classification model.

While we are confident that most researchers are well aware
of the issue and would never split data from the same subject
into test and training data, we have found that this is still a
serious problem in the literature. With the recent advances in
machine learning and AI, more and more people are becoming
interested in applying these techniques to biomedical imaging
and there is a real and growing risk that many of them will not
be familiar with the possible issues and the good practices.

In the future, we will investigate other state of the art models
as well as the effect of deep fine tuning on performance.
Optimizing the hyperparameters of the models and expending
the datasets via collaborations may be crucial to achieve better
results. With these efforts, we aim to solve the problem behind
the low accuracy of subject level tests. We hope to achieve
better patient group classication and ease the diagnosis of
neuro-degenerative disorders in the near future.
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