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Abstract—The advent of the Internet era has led to an explosive
growth in the Electronic Health Records (EHR) in the past
decades. The EHR data can be regarded as a collection of
clinical events, including laboratory results, medication records,
physiological indicators, etc, which can be used for clinical
outcome prediction tasks to support constructions of intelligent
health systems. Learning patient representation from these clin-
ical events for the clinical outcome prediction is an important
but challenging step. Most related studies transform EHR data
of a patient into a sequence of clinical events in temporal order
and then use sequential models to learn patient representations
for outcome prediction. However, clinical event sequence contains
thousands of event types and temporal dependencies. We further
make an observation that clinical events occurring in a short
period are not constrained by any temporal order but events
in a long term are influenced by temporal dependencies. The
multi-scale temporal property makes it difficult for traditional
sequential models to capture the short-term co-occurrence and
the long-term temporal dependencies in clinical event sequences.
In response to the above challenges, this paper proposes a Multi-
level Representation Model (MRM). MRM first uses a sparse
attention mechanism to model the short-term co-occurrence,
then uses interval-based event pooling to remove redundant
information and reduce sequence length and finally predicts
clinical outcomes through Long Short-Term Memory (LSTM).
Experiments on real-world datasets indicate that our proposed
model largely improves the performance of clinical outcome
prediction tasks using EHR data.

Index Terms—Electric Health Record, Deep Learning, Ma-
chine Learning

I. INTRODUCTION

In the past decades, the scale of Electronic Health Records

(EHR) has exploded because of the advent of the Internet

era, which makes the construction of electronic medical record

systems possible.

We focus on clinical event outcome prediction based on

patient representation sequence learning.[1, 2] The electronic

medical record data can be considered as a collection of

clinical events, including thousands of event types such as di-

agnosis, laboratory tests, medication records, activity records,

and physical signs. The clinical outcome prediction based

on patient representation sequence learns the low-dimensional

representation of the patient from the electronic medical record

data and predicts the results of the specified clinical events,

which can assist the medical experts to make correct clinical

decisions.

∗The two authors have equal contribution.

Some of the related works sort the clinical events in the

electronic medical record data according to their time of

occurrence and converted the electronic medical record data

into a sequence of clinical events. On this basis, the embedded

layer is used to represent the clinical events and then the

sequence model is used to capture the temporal dependencies

between events and predict the results of the specified clinical

events. However, the clinical event outcome prediction model

under this framework has several challenges:

• Clinical events in electronic medical records contain rich

and complex high-dimensional information, which have

thousands of types.

• Events in a small neighborhood is out-of-order but the

interaction of these events are also predictive.

• The sequence is too long for sequence model like long

short-term memory neural networks (LSTM) to capture

the long-term dependency.

To gently solve the above challenges, we propose a Multi-

level Representation Model (MRM). MRM uses the attention

mechanism to capture the short-term co-occurrence of the

events and obtain a low-level neighborhood representation of

events. The pooling mechanism is then used to reduce the

length of the clinical event sequence based on the short-

term out-of-order clinical events. Finally, MRM uses LSTM

to capture long-term temporal dependencies between events,

obtain final patient representation and predict the outcome of

a given clinical event.

The main contributions of this paper are as follows:

• Compared to studies only using medical code or dozens

of event types, this paper make use of nearly a thousand

event types and events’ features to make predictions.

• This paper proposes a multi-level representation model

for patient medical records to capture the short-term

co-occurrence and long-term temporal dependencies be-

tween clinical events. The effect was verified in experi-

ments with actual data.

• The interval-based event pooling mechanism proposed in

this paper preserves the integrity of information while

removing redundant information and reducing sequence

length.

II. RELATED WORKS

A. Patient Representation from EHR

One general patient representation method to make direct

use of high-dimensional EHR data is to use a vector that
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records the number of each type of clinical events to represent

EHR data[3–5]. However, it is obvious that it ignores the

relative order of clinical events and lacks a more detailed

description of the features of clinical events.

Another method is to use a matrix in which the rows of

the matrix represent different time intervals and the columns

of the matrix represent a type of event[6, 7]. Wang et al. use

the convolutional non-negative matrix factorization to resolve

the matrices[6]. Zhou et al. decomposed the matrix into the

product of Latent Medical Concept Matrix and Concept Value

Evolution Matrix[7]. These method depend on the time span

which is set ahead and still only uses the event occurrence

information and lacks more detailed features.

The Temporal Phenotyping proposed by Liu et al. converts

the EHR data into a sequence diagram where the nodes

represent clinical events and the edge weights represent the

correlation of the connected nodes[8]. Such method focuses

on capturing the short-term co-occurrence of events and ig-

nores the long-term temporal dependencies between important

events.

B. Deep Sequential models for EHR

Some related works introduce the time information or the

interval information of the events into the model to solve

the problem of inconsistent sampling frequency[9–12]. For

example, Che et al. multiply the hidden state by a time decay

factor before calculating the next hidden state in Gated Recur-

rent Unit (GRU)[10]. Zheng et al. balance the inheritance and

update of hidden states based on the time decay function when

updating the hidden layer state of GRU[11]. Bai et al. propose

the Timeline model to model the decay rate of different events

affecting patients[9]. These efforts use time decay factors to

solve inconsistencies in clinical event sequences but do not

consider the short-term out-of-order in clinical event sequence

in EHR data.

Choi et al. propose a model RETAIN[13] that combines

RNN with attention mechanisms. RETAIN divides the se-

quence into several visits, and then uses attention mechanism

to generate patient representation based on the visits. However,

RETAIN uses only medical code information for clinical

events.

III. METHODOLOGY

This chapter shows the Multi-level Representation Model

(MRM) proposed in this paper in detail. This chapter formal-

izes the problems studied in this paper, and then introduces

the mechanisms of the model showed in figure 1.

A. Notations

A clinical event e can be formalized as a quadruple

(code, t, catFea, numFea). We use e.code, e.t, e.catFea,

e.numFea standing for the encoding of the event, occurrence

time, category feature and numerical feature.

Fig. 1. The architecture of MRM: Event ei is encoded as a representation xi.
The short-term co-occurrence mechanism gather the neighborhood informa-
tion and generate the event representation vi. Then the interval-based event
pooling mechanism divide the event sequence into groups and generate the
group representation gi. Finally the event group representation sequence is
fed to LSTM and generate the output ŷ.

B. Multi-level Representation Model

1) Short-term Co-occurrence Modeling: Our method uses

attention mechanisms to model the short-term co-occurrence

of events. For an event representation xi, we generate an

event neighborhood representation vi based on the attention

mechanism and its neighborhood event representations.

We assume that events occurring in a short period are out-of-

order, so the short-term co-occurrence between events can be

captured using the attention mechanism that does not consider

the order.

Then we introduce the short-term co-occurrence modeling

mechanism in detail. For the event ei, we consider that the

events occur within the time interval (ei.t−Tr, ei.t+Tr) have

a short-term co-occurrence with ei. We use Ne(i) to represent

the index set of these events. Ne(i) is defined as follows:

Ne(i) = {j| |ej.t− ei.t| ≤ Tr} (1)

Referring to the attention mechanism in related works[14], out

method calculates vi as follows:

vi = Attention(i, Ne(i)) =
∑

j∈Ne(i)

aij(Wvxj) (2)

aij = Softmaxj(sij) =
exp(ŝij)

∑

j∈Ne(i) exp(ŝij)
(3)

ŝij =







sij , if sij is greater than the topk-th

greatest number in {sij |j ∈ Ne(i)}
−∞, otherwise

(4)

where sij = qTi kj , qi = Wqxi, kj = Wkxj .

Wv,Wq,Wk ∈ R
Da×Dm , where Da is the dimension of the

attention mechanism.

As |Ne(i)| could be quite large in real data, it is difficult

to capture all of the co-occurrences. Thus for an event ei, we

only capture topk events which are the closest.

Our method also use a multi-head attention mechanism. The

final representation vi is as follows:

vi = Concat(head1, head2, · · · , headNh
) (5)



Where headj = Attentionj(i, Ne(i)) is defined above.

And each Attentionj shares the same structure but has sepa-

rate parameters W j
v ,W

j
q ,W

j
k . We guarantee that Da ×Nh =

Dm.

2) Interval-based Event Pooling: vi contains neighborhood

information around ei. If the event ei is very close to ej , the

information contained in vi and vj will be quite similar. Due

to the similarity of the neighboring element information, it is

difficult to directly process the sequence [v1, v2, · · · , vL] with

RNN.

So we propose a pooling mechanism based on event interval

to solve the above problems. In this paper, the clinical event

sequence is first divided into several non-overlapping event

groups according to the distribution density of events, and then

each group goes through a max-pooling layer separately. The

division should satisfy two conditions: 1) the period covered

by an event group must be as small as it can; 2) the number

of event groups should not be too large.

Let Gi = {k|ek ∈ Groupi} be the index set of the events

contained in the i-th event group, {Gi} is the set of all event

groups.

M is the group number limit and LG is the limit number

of events in a group.

To make each group’s time span as small as it can, we define

time span function as follows:

span(Gi) = max
j,k∈Gi

{ej.t− ek.t} (6)

The optimal partition of the sequence can be obtained by

minimizing the maximum time span of the partition:

argmin{Gi} max
Gi∈{Gi}

span(Gi) (7)

We can get the optimal partition with dichotomy and greed

algorithm.

After the max-pooling in each event group, the representa-

tion of the event group g can be obtained. The representation

gi of the i-th event group can be calculated as follows:

gi = max
i′∈Gi

vi′ (8)

3) Long-term Temporal Dependency Modeling: We use

LSTM to deal with event group representation sequence. In

t-th iteration, LSTM cell takes former output ht−1, state ct−1

and the event group representation sequence input gt as input

and generate ht as output.

ht = LSTM(ht−1, ct−1, gt) (9)

LSTM(·) represents an iteration.

The last output hM is the representation for the clinical

event sequence as well as the patient.

We use a sigmoid function to get the prediction ŷ from the

patient representation hM :

ŷ = σ(WphM + bp) (10)

Wp ∈ RDm
, bp ∈ R are the parameters to learn.

Then we use a cross entropy loss function to calculate the

classification loss from the true label y and the prediction ŷ:

Loss(ŷ, y) = −
(

y × ln(ŷ) + (1− y)× ln(1− ŷ)
)

(11)

TABLE I
PERFORMANCE COMPARED WITH BASELINES

Methods AUC(death) AP(death) AUC(labtest) AP(labtest)

SVM 0.7523 0.5154 0.6587 0.2987
LR 0.8843 0.5213 0.6839 0.3014

RETAIN 0.8967 0.6244 0.7325 0.3196
Timeline 0.9349 0.7119 0.7455 0.3456
LSTM 0.9455 0.7414 0.7495 0.3513
TCN 0.8752 0.5752 0.7234 0.3131

MRM 0.9512 0.7695 0.7688 0.3714

IV. EXPERIMENTS

A. Experiment settings

This part describes the parameter settings and model train-

ing methods of the MRM proposed in this paper.

The parameter settings for MRM are as follows:

Model dimension Dm is 64, refined event number Nc is

3418, feature number Nf is 649 and maximum feature number

of a event is 3. The time interval Tr is 0.5 hour, the attention

number Nh is 8, the dimension of the attention mechanism is

8 and the number of reserved events topk is 4. The maximum

number of the event group M is 64 and the maximum length

of the event group is 32.

This work divides the dataset into 3 parts: training set

(70%), validation set (10%), and test set (20%).

All of the network structures mentioned in this part are

implemented in Keras and Theano and optimized with the

Adam method.

B. Experiment analysis

We compare MRM proposed in this paper with two types

of models: traditional statistical models and sequential neural

network models. We use the two datasets, death and labtest

described in previous work[1].

The sequential models use the output of the event represen-

tation described in Chapter III(B) as its input. The statistical

models use a vector FV which records the number of event

occurrences as its input. FV is defined by FV =
∑L

i=1 x̃
c
i ,

where x̃c
i is the one-hot encoding vector for the event ei.

The following is the baseline models of MRM:

• SVM takes FV vector as its input.

• Logistic Regression takes FV vector as its input and adds

L2 regularization layer. It is noted as LR.

• LSTM uses the LSTM model to process event sequential

data and adds a sigmoid layer for prediction at the end.

• RETAIN is described in related work. This method uses

a fixed partition of length 32 to partition the sequence.

• Timeline is described in related work. The input config-

uration is the same as RETAIN.

• TCN is described in related work.

Table I shows the experimental results of each model on

two datasets. Based on the experimental results in table I, we

can draw the following conclusions:

• All sequential models perform better on both tasks than

SVM and LR which are based on event frequency. This

is because SVM and LR not only ignore the temporal



information of the events but also ignore the feature

information of the events.

• RETAIN and TCN perform poorly in both tasks. Al-

though RETAIN and TCN both use a multi-level repre-

sentation to model clinical event sequences, their division

of events depends either on the visit information that

exists in the data or on fixed step size.

• The MRM model proposed in this paper overperforms

other models in both tasks. On the death prediction

dataset, MRM increased by at least 0.6% on the AUC

indicator and by 3.7% on the AP indicator relative to

other models. On the potassium ion concentration abnor-

mality detection dataset, MRM increased by 2.5% on the

AUC indicator and by 5.7% on the AP indicator. This

is because MRM models the short-term co-occurrence of

events with attention mechanism and reduces the length

of the sequence by the pooling mechanism, which reduces

the difficulty of long-term temporal dependency capture.

V. CONCLUSION

We propose a multi-level representation model MRM for

long clinical event sequences generated from EHR with com-

plex event types and multi-scale temporal information. MRM

uses a sparse attention mechanism to capture the short-term

co-occurrence of events and uses interval-based event pooling

mechanism to reduce sequence length and to preserve as

much the temporal information between events as possible.

Experiments on the death prediction dataset and the potassium

ion concentration abnormality detection dataset constructed on

the open dataset MIMIC-III have proved the effectiveness of

the MRM.
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