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Abstract—We study the performance of Local Causal Discov-
ery (LCD) [5], a simple and efficient constraint-based method for
causal discovery, in predicting causal effects in large-scale gene
expression data. We construct practical estimators specific to the
high-dimensional regime. Inspired by the ICP algorithm [13], we
use an optional preselection method and two different statistical
tests. Empirically, the resulting LCD estimator is seen to closely
approach the accuracy of ICP, the state-of-the-art method, while
it is algorithmically simpler and computationally more efficient.

Index Terms—machine learning, prediction methods, bioinfor-
matics, genetic expression

I. INTRODUCTION

One of the main goals of empiricism is uncovering rela-
tionships that underlie the data at hand. Scientific questions
often aim for the estimation of causal quantities instead of
statistical associations. Causal models can predict the effects
of perturbations (interventions) to the system, allowing one to
reason about previously unseen experiments that are too costly,
difficult or unethical to perform.

One approach to causal inference is constraint-based, where
statistical evidence in the data on multiple variables at a
time is combined to limit the search space of possible causal
effects. The PC and FCI algorithms [15] ingeniously combine
independence testing under certain assumptions to infer a
set of possible causal graphs. These methods are sound and
complete under their respective assumptions, but require a
(possibly very slow) global search when the variable set
is large and relations are non-sparse. Furthermore, they are
traditionally only applied to observational data, not making
use of any perturbation data that may be available.

The LCD algorithm [5]], one of the simplest constraint-
based causal discovery methods, uses background informa-
tion, that can be derived from experiments, in addition to
(in)dependencies to predict that one variable causes another for
subsets of three variables locally. The method is algorithmi-
cally simple and generic such that many practical variants are
possible. Specifically, a conservative version of LCD has been
used to infer protein signaling networks from mass cytometry
data [[17]]. Another estimator related to LCD is Trigger [4].
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The more recently introduced ICP algorithm [13]] requires
data from multiple contexts. Under certain assumptions, it
predicts causal effects by exploiting that certain conditional
distributions remain invariant under changes of the context.
In [9]] ICP predictions have been assessed with real-world gene
expression data [7]], and results were shown to be significant
when compared to an internal data-driven ground-truth and
several externally sourced gold-standards.

In this work, we focus on the statistical aspects of LCD
and apply it to predict knock-out effects in large-scale gene
expression data [7]]. Inspired by the implementation of the ICP
estimator, we construct several practical versions of LCD that
are well-suited to this high-dimensional task. In particular,
we apply Lo-boosting, a fast gradient boosting regression
method for variable selection suitable to the high-dimensional
setting [14], [3]], to limit the search space of LCD. We also
examine the effect of using different statistical tests in the
LCD estimator.

The experiments are performed on train-test splits of gene
expression data [[7|] containing “pure observations” and knock-
outs. Here one part of the knock-out data serves as the back-
ground information that can be used in prediction methods,
while the remaining data are used to construct a ground-truth
set. We compare the performance of the LCD estimators to
ICP, the state-of-the-art method for this dataset [9] that exploits
the perturbed data in a more sophisticated approach. We find
that implementing the preselection procedure with LCD results
in cause-effect predictions that evaluate comparably to ICP,
while LCD is computationally more efficient. The choice of
the statistical test was not seen to affect results.

We start by concisely introducing causal models and causal
inference from both observational and interventional data.
Then we discuss the main methods in this work, LCD and ICP,
and their estimators. We outline the experimental approach and
provide results for experiments on gene expression data, before
we close with conclusions.

II. PRELIMINARIES

Here we shortly introduce causal graphical modeling and
methods for causal inference from observational and interven-
tional data.
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A. Graphical Causal Models

We consider a set of p random variables X =
{X1,Xa,...,X,}, for which the observed causal relationships
are modeled as edges between nodes (variables) in a directed
mixed graph (DMG). Here, a directed edge X — Y between
X,Y € X corresponds to a direct causal effect relative to X.
An ancestral causal effect, typically plainly referred to as a
causal effect, then corresponds to the existence of a sequence
of direct causal effects X — W — V — ... — Y. The
set of direct causes of a target variable Y is denoted as its
parents (or pa(Y)), while the set of its ancestral causes is
referred to as its ancestors (or anc(Y)). When unmeasured
confounding is present (in the case without causal sufficiency),
the causal graph is a directed mixed graph (DMG) that
contains bidirected edges between variables, indicating latent
unmeasured variables that causally affect pairs of measured
variables.

A common way of modeling observational and interven-
tional data related to a causal graph is with a Structural Causal
Model (SCM) [12]@ In essence, an SCM specifies a single
equation for each endogenous variable X,

Xi = fi (pa(X;), N;), )]

where f; is a function of the parent set pa(Y) and an
exogenous noise variable N;. The solutions of these structural
equations, together with the distributions of the exogenous
noise terms, specify the joint observational distribution P (X).
Perfect interventions are modeled by replacing the right-
hand side of for all targeted variables : € I C X by
the corresponding fixed value ¢;, inducing the corresponding
interventional distribution P (X | do (X1 = £1)). We refer the
reader to [[12] and [[1]] for detailed treatments on SCMs.

B. Constraint-based Causal Discovery

The Markov assumption (see e.g. [[12], [6] for an overview)
relates statistical properties of a causal graph to independence
constraints in observed data. Missing edges in the causal graph
imply (conditional) independencies of the form X 1 Y'|Z, for
Z C X, through the d-separation criterion (see e.g. [12], [15])
in the acyclic caseE] Under the faithfulness assumption the
reverse implication holds, such that al// independencies present
in the data correspond to pairs of separated variables.

Algorithms in a class of constraint-based causal discovery
methods build on this principle, learning (direct) causal effects
from independence statements that are derived from obser-
vational data. The PC algorithm combines independencies
between all pairs of variables in a clever search to recover
(as much of) an acyclic causal graph under causal sufficiency,

lTechnically we consider the class of Simple SCMs here (see [[11]), for
which, relative to a given SCM, the formal definitions of (direct) causal effects
coincide with the more informal notations here.

2Recent advances have non-trivially extended d-separation to cyclic models
by introducing o-separation [[6]. It can be shown that the LCD and ICP
(reformulated in JCI-1 terms) methods are valid when cycles are present
for Simple SCMs by using this separation criterion under certain modeling
assumptions [11]]. As it is not the main focus of this work, we will treat
methods mainly in terms of acyclic models and d-separation.

whereas the FCI algorithm extends this strategy to cases where
confounding and selection bias are present [15]. These meth-
ods can be computationally prohibitive for systems with a large
number of variables, as the search can require a large number
of pairwise tests. Local strategies such as Y-Structures [10]]
and LCD [5] (see Sec. trade off completeness for the
ability to scale to a large number of variables.

C. Interventional Data and Joint Causal Inference

In almost all practical situations, only a subset of the causal
effects is recoverable from independence statements derived
from purely observational data. Even in the infinite sample
limit, observational constraint-based causal discovery is in
general feasible up to an equivalence class that represents
multiple indistinguishable graphs. The identifiability of causal
effects can be increased by the inclusion of interventional
samples.

The recently introduced Joint Causal Inference (JCI) [11] is
a framework for incorporating various types of experimental
data jointly in causal learning problems. Perfect interventions
(and other manipulations) are jointly modeled through multiple
context variables, in addition to the regular endogenous system
variables, and a set of underlying assumptions. For example,
samples from multiple datasets can be combined by including
a single context variable to the dataset, resulting in an extra
integer column in the dataset that encodes the originating
dataset of each sample. The main idea of JCI is then to jointly
learn over the meta-system of combined system and context
variables, while encoding a set of required assumptions on
context variables as background knowledge.

The JCI assumptions that are relevant for methods in this
work are given as follows, where C' and X now denote sets
of context and system variables respectively.

Assumption 0: (Joint SCM) The data-generating process
underlying C' and X is modeled by a single (simple) SCM.

Assumption 1: (Exogenity) No system variable X € X is

an ancestor of any context variable C' € C.
This combined modeling assumption is labeled as the JCI-1.
We refer the reader to [11] for additional JCI assumptions
related to context models that are outside the scope of this
work.

As a simple example of a JCI-1 model, consider the
Randomized Controlled Trial (RCT), where the causal effect
of a randomized treatment on a single outcome variable Y is
studied. Here the context C' indicates the treated population
(C = 1) and the control group (C' = 0), expressing the
belief that outcome of the treatment does not effect the
treatment itself. Under these conditions, i.e. assuming JCI-
1, and when there is no confounding and selection bias, a
statistical dependence between C and Y implies a causal effect
of ConY.

III. METHODS

We first describe the two causal prediction methods that are
central to this work in the terminology of JCI. We discuss
practical estimators for each algorithm specifically.



A. Invariant Causal Prediction

The Invariant Causal Prediction (ICP) [[13|] algorithm pre-
dicts a conservative subset of the true parent set for a given
target variable Y by identifying conditional distributions that
remain invariant under changes of a single context variable C,
also referred to as the environment. In the original formulation,
ICP assumes that there is no causal effect from C to Y in
addition to causal sufficiency and acyclicity, but it remarkably
does not require the faithfulness assumption. One of the main
statistical aspects is its ability to set a confidence level for
which subsets are accepted.

In [[11] it is shown that ICP can be reformulated in terms
of JCI-1 when faithfulness is additionally assumed, and the
interpretation proposed there also allows for cycles to be
present. ICP then outputs a subset of the true ancestors of
Y instead of a subset of the parent set.

We now describe several statistical aspects of a practical ICP
estimator, which is one of possible choices given the generic
ICP algorithm.

Statistical Test: The original ICP variant [13] tests at
confidence level « if a linear SCM exhibits invariant model
parameters in realizations ¢ of C for a given target effect
Y. The authors of [[13|] propose two practical estimators, a
regression based test and an approximate test. For the first we
refer to Sec. 3.1.1 in [[13]], while the second test, which we
label a mean-variance test, is constructed as follows.

For each potential parent set, i.e. each subset of X \{Y}, the
mean of the residuals of a linear regression in each context ¢ €
C is compared to the mean of the linear regression residuals in
all others contexts C'\ {c} with a t-test. The resulting p-values
are combined over all contexts with a Bonferroni correction.
Analogously, an F'-test is used to test differences in variances
of the residuals across contexts and combined in the same way.
The final p-value of the potential parent set is the minimal of
the two values, and the returned parent set is chosen as the
intersection of all potential parents that are not rejected at level
a. For example, the test returns both X; and X5 as parents
of Y in the linear model in Fig. [2]

Preselection: In the worst case, ICP scales exponentially
in the number of system variables p by examining all subsets
of variables as potential causes. To circumvent this prob-
lem, [13] suggests limiting this set of potential parents for
each target Y through a preselection method. Their proposal
is to take a number of top ranking non-zero coefficients from
a Lasso regression [[16] or Lo-boosting [|14]] regression, where
the latter essentially is the repeated application of least square
regression fitting of residuals.

ICP Estimator: For each of the above options,
we pick the default setting used in the R package
InvariantCausalPrediction for the high-dimensional
setting encountered here. Thus, the practical ICP estimator uses
the mean-variance test and the Lo-boosting preselectionﬂ

3We use small capitalization to label estimators.

B. Local Causal Discovery

Local Causal Discovery (LCD) [5] is a constraint-based
causal discovery method, combining three (in)dependence
tests with causal background knowledge. It requires that the
data includes (at least) one context variable C' subject to JCI-
1 assumptions and that selection bias is not present in the
samples. LCD does not assume causal sufficiency and cycles
may be present in the modern formulation [11].

LCD tests if the following constraints hold for a given triplet
of variables {C, X,Y'}:

C 1lY|X

CrX 2)

XLy
where X,Y € X and ) denotes statistical dependence.
It then follows that X is a direct cause of Y relative to
{C,X,Y}, Y is not a direct cause of X and that no con-
founding is present between X and Y. One straightforward
proof is to enumerate all possible DMGs for three variables

where these (in)dependencies and the JCI-1 assumption holds,
resulting in the three DMGs in Fig. [T]

)
)
T

Fig. 1. All three-variable DMGs with context C' where LCD predicts that
X € pa(Y) relative to {C, X, Y}

As LCD holds under confounding, it can directly be applied
to systems with more than three variables by iterating over (all)
subsets of triples, each time marginalizing all other variables
and testing for the LCD constraints in @]) In that case, the
LCD prediction is an ancestral causal effect, rather than a
direct causal effect, relative to all system and context variables.

Compared to ICP, the LCD algorithm exhibits less power
in predicting causal effects. ICP predicts the causal effect
X € pa(Y) in each of the LCD patterns in Fig. but
it can additionally infer multiple parents for a single effect
when configured as in Fig. [2] The latter pattern is omitted by
LCD, as marginalizing over X; (or X5) leads to a dependency
between C' and Y even when conditioning on X5 (or X7).
Note however that ICP is less efficient, as it potentially
searches over all possible subsets of pa (Y'), whereas LCD
has a computational complexity of O (p3)

We introduce four practical LCD estimators here that each
implement the generic LCD algorithm described above. Each
one of these estimators is a combination of the following two
options.

Statistical Test: We consider two options for testing the
(in)dependencies in (2) at confidence level a.. Following com-
mon practice in constraint-based causal discovery literature,
we accept independence whenever p > a.
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Fig. 2. Example of a DMG with context C' where LCD does not make a
prediction, but where ICP returns {X1, X2} as parent set of Y.

We can use the same combined mean-variance test as used
by the ICP estimator in Sec. [[II-A] to find potential parent sets.

Alternatively, we use a (partial) correlation test, one of the
simplest (conditional) independence test that assumes a Gaus-
sian distribution and which is used extensively in constraint-
based causal discovery. The p-value for the null hypothesis of
independence is computed using the Student’s ¢ transform of
the (partial) correlation coefficient.

Preselection: As LCD scales reasonably well with the
number of variables p, it is generally possible to compute all
possible LCD triples for large p with a fast test.

Alternatively, we use Lo-boosting as a preselection method
inspired by the ICP estimator. Then we only test for LCD
triples {C, X, Y’} if X is found is in the variable selection for
Y for suitable tuning of the boosting method.

LCD Estimators: This results in the following practical
LCD estimators.

e LCD: no preselection and the partial correlation test.

e LCD-MV: no preselection and the mean-variance test.

e LCD-BST: Lo boosting as preselection and the partial

correlation test.

e LCD-BST-MV: Ly boosting as preselection and the mean-

variance test.

C. Boosting Baseline

An interesting non-causal baseline is obtained by simply
computing the Lo-boosting preselection method for each target
variable Y and naively labeling the set of selected variables
(that are predictive for Y') as the causes of Y.

IV. EXPERIMENTS

We apply the LCD and ICP estimators on train-test splits of
gene expression data, that consists of both observational and
interventional data labeled by a JCI context variable. We define
a target ground-truth score, derived from part of the “true”
interventional measurement and a few observational samples,
and assess the performance of each predictor against this score.

A. Experimental Setup

Data: We use data from microarray experiments from [/7]],
where, after preprocessing, 262 observational samples are
available for each of 6170 genes Additionally, in 1479 knock-
out experiments a unique single gene has been externally
disabled (intervened) and the expression level is measured
once for all 6170 genes. In Fig. [3] we show how these

4Original and preprocessed data files are available at http:/deleteome.
holstegelab.nl/downloads_causal_inference.php.
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Fig. 3. Examples of pairwise gene expressions (z,j) from the [7] dataset.
Observational and interventional samples are shown in blue and red, while
the knock-out of the gene ¢, which expression is displayed on the horizontal
axes (e.g. YMR275C and YMRO031C), is indicated by the green cross.

interventional samples differ from observational data for a few
example gene pairs.

Train-Test Split: In a train-test setup, we split the dataset in
five equally sized and disjoint partitions, such that each one
consist of 1/5th of the observational samples and 1/5th of the
interventional experiments. Each of these parts is considered
once as a test set, in which the knock-out data are used to
construct the “true” causal effect of interventions disjoint from
the training set. The remaining four parts are then merged in a
training set, that therefore contains all interventional samples
that are not the target “true” causal effect. The training data are
prepared as a joint JCI dataset with a single context variable
and 6170 system variables, where all observations are gathered
in one context labeled C' = 0 and all interventions in another
labeled C' = 1.

Ground-Truth Definition: The interventional samples,
where in each one a single knock-out (i.e. a perfect interven-
tion) has been performed, can straightforwardly be used to test
for the existence of (ancestral) causal effects for that knock-
out. A significant difference in the interventional distribution
P(Y'|do (X)) from the observational distribution P(Y") implies
that X € an(Y), where all other variables X \ {X,Y}
are marginalized. This allows us to construct a ground-truth
score from the interventional data that scores causal effect as
follows.

Let the expression of gene j measured under intervention
i be denoted as X ;. This single interventional sample repre-
sents the raw expression level in the units of measure of gene j,
independent of its natural observational state. We standardize
it with respect to the observational expression levels of this
gene, resulting in the following score:

Xy — 1
gt = Pl )
J

where o; and 11, are the empirical mean and standard deviation
of the expression level of gene j in the observational data.
We compute this score for all combinations of interventions
and all genes that are available in each test set and merge
the score afterwards over all pairs. The result is a total of
9119260 scored pairs that are available in the ground-truth,
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for 1479 unique interventions on 6170 genes, where we have
excluded self-effects.

Evaluation: For a given training set, predictions for each
causal method are computed only for those intervention-
gene pairs (4,7) for which the intervention is available in
the respective test set. All prediction scores are aggregated
afterwards over all partitions. The continuous ground truth
score Sfjt-d is thresholded at a desired prevalence level to
produce a ground-truth set of “true” pairs. The pairs that rank
highest according to each of the prediction methods are then
compared with this set in a ROC curve, where the recall, or
true positive rate (TPR), is set out against the sensitivity, or
false positive rate (FPR).

B. Method Implementation

We used the InvariantCausalPrediction [13] R
package to compute ICP predictions (Sec. [[II-A). We closely
follow the approach of [9]: the confidence level for the ICP
estimator is set at 0.01 and stopIfEmpty is set to TRUE
for faster computation, while all other settings are left to the
defaults. This implies that Lo-boosting is used as preselection
method, which calls the glmboost routine from the MBoost
R package. Here the tuning parameter is set at the ICP default,
such that a maximum of 8 variables are selected as potential
parents for each target variable, while all other parameters are
left at default options. Note that this variable selection is also
computed over the joint data, which includes all observational
and interventional samples.

For the LCD estimators (Sec. we use the same settings
as ICP whenever applicable: a confidence level of 0.01 for
each of the statistical tests is used, and the same construction
of the Ly-boosting is applied in for preselection in LCD-BST
and LCD-BST-MV.

The non-causal L,-boosting baseline (Sec. uses the
same preselection construction as described above for LCD
and ICP.

All prediction methods are trained over 100 random sub-
samples of the training data to increase the stability of pre-
dictions in the high-dimensional setup [2]. In the subsampling
procedure, the joint observational and interventional data are
sampled uniformly at a fraction of 0.5 without replacement.
The resulting final stabilized [[8] estimator for each prediction
method that is used is then given as the number of pairs
predicted across all subsamples.

Lastly we attempted to compare with the Trigger esti-
mator [4]], which assumes that a natural (Mendelian) ran-
domization of the genetic information underlies the data
and then combines a sequence of likelihood ratio tests. We
found however that the practical estimator in the Trigger R
package could not be computed successfully on a pooling of
the knockout expression data with context variables.

C. Results

The results of the experiments are shown in Fig. 4 where
the ICP, LCD and the baseline estimators are compared to the
top scoring pairs according to the ground-truth score (3). ROC

curves are shown at three different levels of prevalence, where
in each figure we vary the number of true effects that are in
the ground-truth set.

Surprisingly, the Lo-boosting baseline shows a very effec-
tive selection of the first few hundred pairs in the ground-truth
set. Nonetheless, it is still outperformed by ICP and LCD at
low prevalence, as expected.

We find that ICP outperforms other methods for the top
ranking predictions for this particular definition of the ground-
truth, where a large portion of the highest scoring predictions
(i.e. the pairs that are predicted most frequently in all random
subsamples) matches with the top 10%, 1% and 0.1% pairs
in the ground-truth. This reaffirms the findings of [9], where
a different ground-truth definition is used.

The simplest LCD-type estimator, LCD, shows better-than-
random results at the 10% prevalence, but this is reduced
to random guessing levels for the harder prediction tasks at
lower prevalences. The same applies to LCD-MV, which uses
the mean-variance test. Applying a Lo-boosting preselection
procedure has a large effect, as can be seen in the performance
of LCD-BST. This method shows a larger recall at the same
level of FPR for each of the settings, approaching the 1CP result
in all cases. When we compare LCD-BST-MV to LCD-BST, it
is seen that the choice of using either the partial correlation
test or the more complex mean-variance test has almost no
effect on the evaluation with respect to the top scoring pairs.

TABLE I
COMPUTATION TIMES (CPU HOURS)
L2-BOOSTING | ICP | LCD LCD-MV  LCD-BST  LCD-BST-MV
118 585 17 1936 133 172

Computation times are shown in Tab. [I] for each method,
where we report the total time required for computing all
pairwise predictions over all 100 subsamplesE] The mean-
variance test is two orders of magnitude slower in LCD-
MV than simply running LCD with partial correlations, while
having little to no effect on outcomes (Fig. f). Preselecting
results with the Lo-boosting leads to a sparse enough set of
possible parents such that a speedup is seen for the LCD-BST-
MV estimator, in addition to increased precision. Applying the
Ly-boosting preselection to the simplest LCD implementation,
LCD, which uses the fast partial correlations test, results in the
LCD-BST estimator, which is an order of magnitude slower but
with better sensitivity.

We also find that ICP is several times slower than LCD-
BST-MV, the estimator that uses the same preselection and
independence test as ICP. Notably, ICP is even less efficient
when compared to LCD-BST, while both LCD-BST and LCD-
BST-MV are very similar in performance to ICP.

5The experiments were computed in an embarrassingly parallel setup with
CPUs with comparable qualities, where each subsample of the data was
randomly computed on either an Intel Xeon E5-2680, Intel Xeon E5-2680
or Intel Xeon Gold—5118 processor.
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Fig. 4. ROC curves for the top predictions of ICP, four LCD estimators and the L2-boosting baseline in a 5-fold train-test split of the gene expression data.
Curves for LCD almost completely match LCD-MV , and similarly for LCD-BST and LCD-BST-MV. From left to right, the ground-truth is composed of the
10%, 1% and 0.1% of the top scoring pairs according to S;f;-d respectively. Random guessing with a 99% confidence interval is shown in gray.

V. CONCLUSION

Inspired by features of the ICP estimator, we imple-
mented several different practical estimators of LCD, a simple
constraint-based causal discovery method. We have shown
that LCD predictions, computed on top of an Lo-boosting
procedure, can successfully predict the effects of unseen
gene knock-outs in large-scale expression data. The estimator
closely approximates the empirical performance of the state-
of-the-art ICP, while it is algorithmically simpler and com-
putationally more efficient. We also found that the predicted
causal effects from LCD in this setting are robust under the
choice of the independence test that is used. Surprisingly, a
large part of the good performance is already explained by the
Ly-boosting preprocessing that these algorithms apply before
causal considerations come into play.

As we have seen, statistical aspects of causal discov-
ery methods have a large impact on empirical performance.
Nonetheless, they are largely underexplored for many practical
algorithms. This leaves open the possibility for future work.
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