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Abstract—The extraction of phenotype information which is
naturally contained in electronic health records (EHRs) has been
found to be useful in various clinical informatics applications
such as disease diagnosis. However, due to imprecise descriptions,
lack of gold standards and the demand for efficiency, annotating
phenotypic abnormalities on millions of EHR narratives is still
challenging. In this work, we propose a novel unsupervised
deep learning framework to annotate the phenotypic abnor-
malities from EHRs via semantic latent representations. The
proposed framework takes the advantage of Human Phenotype
Ontology (HPO), which is a knowledge base of phenotypic
abnormalities, to standardize the annotation results. Experiments
have been conducted on 52,722 EHRs from MIMIC-III dataset.
Quantitative and qualitative analysis have shown the proposed
framework achieves state-of-the-art annotation performance and
computational efficiency compared with other methods.

Index Terms—Phenotype Annotation, Unsupervised Learning,
Natural Language Processing, Deep Learning, Electronic Health
Records

I. INTRODUCTION

Electronic health records (EHRs) are the digital version
of patients’ paper charts, which are real-time and patient-
centered. With the increasing adoption of EHRs in hospitals
[1], the explosive information archived in EHRs has been
exploited and found to be useful in clinical informatics ap-
plications [2], such as disease classification [3] and medical
image segmentation [4].

In this paper, we focus on annotating phenotype infor-
mation, from EHR textual datasets for better disease under-
standing. In the medical text, the word “phenotype” refers to
deviations from normal morphology, physiology, or behavior
[5]. The EHRs serve as a rich source of phenotype information
as they naturally describe phenotypic abnormalities of patients
in narratives. The annotation of phenotypic abnormalities from
EHRs can improve the understanding of disease diagnosis,
disease pathogenesis and genomic diagnostics [6], [7], which
is a large step towards precision medicine [8].

Several standardized knowledge bases have been proposed
to help clinicians understand phenotype information in EHRs
systematically and consistently [9]. Human Phenotype Ontol-
ogy (HPO) [10], which is a standardized and the most widely
used knowledge base of phenotypic abnormalities, provides
over 13,000 terms. As annotating such amount of phenotypic
abnormalities from millions of EHRs manually is extremely

expensive and impractical, automatic annotation techniques
based on natural language processing (NLP) are demanded.

We first analyzed the appearance of phenotype information
in EHRs. With the keyword search approach (i.e. exactly
matching the name and synonyms of HPO terms) on the EHRs
from MIMIC-III [11], we found that on average each EHR
contained 40.42 HPO terms against 11.74 ICD1 codes, and the
number of HPO terms related to a single disease also varied
significantly. For example, regarding the disease subarachnoid
hemorrhage, the number of HPO terms found in related EHRs
ranged from 4 to 40. As shown in Table I, the phenotype
expressions in the EHRs of patient A and B were clearly
different, though they were both diagnosed as subarachnoid
hemorrhage. These suggested the patients who were diagnosed
as the same disease could be further classified into different
sub-groups for personalized treatment. However, the keyword
search method cannot maximally extract HPO terms from free
text, so more sophisticated automatic phenotype annotation
methods is needed.

TABLE I
ANALYSIS OF PHENOTYPE INFORMATION IN EHRS FROM MIMIC-III.

Disease Phenotype
11.74 ICD per EHR 40.42 HPO per EHR

Disease name Phenotype quoted from EHRs

Subarachnoid hemorrhage
Patient A: “mild confusion”, “aneurysm”

and “vertebral basilar junction”
Patient B: “neurologically stab”, “mild
headache” and “pain is well controlled”

There are many automatic annotation methods being de-
veloped. Information retrieval based approaches such as OBO
Annotator [12], NCBO Annotator [13], Bio-LarK [14] and
MetaMap [15] rely on indexing and retrieval techniques which
require manually defined rules and can be computationally
inefficient, while deep learning based models with supervision
are effective but a gold standard for training is hard to acquire
[16] . However, the problem of how to automatically annotate
phenotypic abnormalities from EHRs accurately and efficiently
is still far from being solved. First, the phenotypic abnor-
malities may not be explicitly mentioned in EHRs and the

1ICD: https://www.who.int/classifications/icd/en/
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Fig. 1. Left (a): A simple illustration of Human Phenotype Ontology (HPO). The general phenotypic abnormalities H in the orange box is what the model
aims to annotate from EHRs. Meanwhile, the HPO provides additional subclasses H′. The solid lines show direct relation and the dashed lines show relation
with multiple hops. A HPO (red circle) can be a subclass of multiple Hj ∈ H. The S(Hj) ⊆ H′ in the green box stands for the additional subclasses of Hj .
Right (b): The proposed deep learning framework. The textual data is first encoded into the latent space by the encoder E. The generator G then reconstructs
the textual data so that the latent vectors can adequately represent the semantics. Besides, the classifier D is used to constrain and differentiate the priors.

imprecise descriptions in EHR narratives such as abbreviations
and synonyms can also make the annotation process difficult.
In addition, the reliability of methods is critical in the medical
area but it can be difficult to verify on a large-scale dataset due
to the cost of collecting phenotype annotations from experts.

In this work, we propose a novel unsupervised deep learning
framework to annotate phenotypic abnormalities from EHRs.
Without using any labelled data, the framework is designed
to integrate human curated phenotype knowledge in HPO
(Figure 1 (a)). It is assumed that the semantics of EHRs is
a composition of the semantics of phenotypic abnormalities.
Based on this assumption, an auto-encoder model and a
classifier are constructed to learn and constrain the semantic
latent representations of EHRs. The goal is to learn which
phenotypic abnormalities are semantically more important in
EHRs. The overall structure of the framework is shown in
Figure 1 (b). The main contributions of this work:
• We propose a novel unsupervised deep learning frame-

work to exploit supportive phenotype knowledge in
HPO and annotate general phenotypic abnormalities from
EHRs semantically.

• We demonstrate that our proposed method achieves state-
of-the-art annotation performance and computational ef-
ficiency compared with other methods.

In the remainder of this paper, we first summarize related
works in section II. The problem is formalized in section III.
We explain the methodology and the deep learning framework
in section IV. The experiments are introduced in section V and
the paper is concluded in section VI.

II. RELATED WORKS

A. Biomedical Concepts Annotation

There are many well-established knowledge bases in the
medical area such as International Classification of Dis-
ease (ICD), Human Phenotype Ontology (HPO) [10], Online

Mendelian Inheritance in Man (OMIM) 2. Previous works
mostly use indexing and retrieval techniques. For example,
the OBO Annotator [12] uses linguistic patterns to retrieve
relevant data and then annotates textual snippets based on the
indexes of concepts from knowledge bases. Other annotators
such as NCBO Annotator [13], Bio-LarK [14] and MetaMap
[15] follow a similar annotation pipeline. However, those
methods suffer from the problem of computational ineffi-
ciency. Meanwhile, the evaluation was conducted on limited
medical documents and none of the methods was evaluated
on EHRs. The recent work [16] shows the effectiveness
of supervised deep learning models (CNN) on annotating
10 phenotypes on 1,610 EHRs. In contrast, we propose an
unsupervised deep learning framework which is more effective
and efficient than the previous works, and our experiments
were conducted on 52,722 EHRs.

B. Semantic Representations in NLP

Learning semantic representations in the latent space of
textual data is one of the most fundamental techniques of
deep learning in natural language processing. From word
embedding [17] to sentence encoding [18], the generated latent
vectors should adequately represent semantics of text. Without
labelled data, learning the representation of semantics in text
and supportive knowledge in knowledge bases can be essential
to measure semantic similarity and difference [19]. Our work
adopts the idea of using prior distributions to constrain the
latent space in generative models [20] but we aim to annotate
the phenotypic abnormalities from EHRs.

III. PROBLEM FORMULATION

There are two types of data sources. First, let X =
{X1, ..., XN} be a collection of EHRs and each EHR consists
of textual notes written by clinicians. Second, let H =

2OMIM: https://www.omim.org



{H1, ...,HM} be a standardized general category of human
phenotypic abnormalities provided by HPO. The HPO also
provides additional subclasses which are notated as H′. A
simple illustration of HPO is given in Figure 1(a). Each general
phenotypic abnormality and subclass comes with a name and
a short description. As each Xi is textual data, to comply with
this data format, both ∀Hj ∈ H and ∀H ′ ∈ H′ refer to the
textual descriptions of phenotypic abnormalities.

The EHR can include either multiple phenotypic abnormal-
ities or a single or none. Therefore, learning the annotation of
phenotypic abnormalities from EHRs is essentially learning
the conditional probability p(1Hj

|Xi), ∀Hj ∈ H, i.e. a binary
classification for each Hj to decide whether Hj is mentioned
in Xi. As a whole, it is a multi-label classification on H.

IV. METHODOLOGY

A. Semantic Latent Representations

To represent the semantics of an EHR Xi and a phenotypic
abnormality Hj by latent vector space, the following two
assumptions are made:

1) The general phenotypic abnormality Hj can be repre-
sented by and generated from a latent vector z(j)H which
is sampled from some prior distribution p(Z

(j)
H ). Each

Hj corresponds with a prior distribution p(Z(j)
H ) and the

prior distributions should be ‘distinct’ enough with each
other to highlight their difference.

2) The EHR Xi can be represented by and generated from
a latent vector z∗i . It is also assumed that the semantics
of Xi is a composition of the semantics of ∀Hj ∈ H, so
z∗i =

∑M
j=1 α

(j)
i z

(j)
i , where α

(j)
i ∈ [0, 1] is a weight

that can be interpreted the importance of Hj in the
composition of Xi, and z

(j)
i is a sample from the prior

distribution p(Z(j)
H ) defined above.

Based on the two assumptions made above, it can be noticed
that there are two fundamental constraints which should be
considered in modelling.

1) The latent vector z∗i should adequately represent the se-
mantics of Xi. Likewise, z(j)H should adequately represent
the semantics of the corresponding Hj (see section IV-B).

2) The z(j)H and z(j)i are both samples from the same prior
p(Z

(j)
H ) and the priors of different ∀Hj ∈ H should be

‘distinct’ enough from each other (see section IV-C).

B. An Auto-encoder Model

Aforementioned, since the annotation process is essentially
learning the conditional probability p(Hj |Xi) and the latent
space is constructed:

p(Hj |Xi) =

∫
p(Hj , z

∗
i |Xi)dz

∗
i

=

∫
p(Hj |z∗i )p(z∗i |Xi)dz

∗
i

= EZ∼p(z∗i |Xi)[p(Hj |Z)]

(1)

The Equation 1 suggests an auto-encoder model which is
also effective to learn the latent representations [20]. There-
fore, a general reconstruction process for all available textual
data T ∈ X ∪ H ∪ H′ is considered. Both the encoding step
and generating step are approximated by deep neural networks.
The encoding step E : T → Z∗ and the generating step
G : Z∗ → T , where T is the textual space and Z∗ is the
latent space. The estimation of parameters of E and G is the
optimization of the following.

maxEZ∼p(z∗|T )

[
p(T |Z)

]
= max
θE ,θG

EZ∼pE(T ;θE)

[
pG(Z; θG)

] (2)

where θE and θG are the parameters of E and G respec-
tively. An illustration of E and G is shown in Figure 1(b).

There are three reconstruction loss functions being con-
sidered while E and G are estimated. The first loss func-
tion considers the general reconstruction loss of EHRs i.e.
∀T = Xi ∈ X .

LXrec =
1

N

N∑
i=1

[
− log pG(Xi|E(Xi))

]
(3)

Besides, the reconstruction loss of the general phenotypic
abnormalities i.e. ∀T = Hj ∈ H can be defined similarly,
and for each phenotypic abnormality Hj , the corresponding
α(j) should be maximized to 1 and others (α(6=j)) should be
minimized to 0, i.e. z(j)H = E(Hj).

LHrec =
1

M

M∑
j=1

[
− log pG(Hj |E(Hj))

+
1

M

[
− log(α(j))−

M∑
k 6=j
k=1

log(1− α(k))
]] (4)

The two loss functions are theoretically sufficient to learn
the latent representation of EHRs X and phenotypic abnormal-
ities H. However, in practice, the short description of Hj may
not be informative enough to define all cases of the general
phenotypic abnormality, and the usage of the additional sub-
classes H′ can help the model better understand the general
phenotypic abnormalities. Therefore, the reconstruction of the
additional subclasses H′ i.e. ∀T = H ′ ∈ H′ is also necessary
and the third loss can be defined as:

LH
′

rec =
1

|H′|
∑
H′∈H′

[
− log pG(H

′|E(H ′))

+
1

M

[
−

M∑
j=1

H′∈S(Hj)

log(α(j))−
M∑
j=1

H′ /∈S(Hj)

log(1− α(j))
]]

(5)

where S(Hj) ⊆ H′ stands for the additional subclasses of the
individual Hj ∈ H. As shown in Figure 1 (a) (the red circle),



there ∃H ′ ∈ H′ can be a subclass of multiple Hj ∈ H. In
other words, ∃k 6= j,Hk, Hj ∈ H, S(Hk) ∩ S(Hj) 6= ∅.

Algorithm 1: The training algorithm.
Input: EHRs X (training set), general phenotypic abnormalities

H, and additional subclasses H′.
1 Initializing θE , θG, θD ;
2 repeat
3 Sample a mini-batch of B textual examples

{T(i)}Bi=1 ⊆ X ∪H ∪H′ ;
4 Get z∗(i) and {z(j)(i) }

M
j=1 by E(T(i)) ;

5 Reconstruct T̂(i) by G(z∗(i)) ;
6 Calculate LX

rec, LH
rec, LH′

rec respectively ;
7 Classify z(j)(i) by D(z

(j)

(i) );
8 Calculate Lpr by Equation 7 ;
9 Update θE , θG, θD by gradient descent on:

L = λ1LX
rec + λ2LH

rec + λ3LH′
rec + λ4Lpr (6)

10 until convergence;
Output: The encoder E.

C. Constrained and Distinct Priors

There are two requirements regarding the priors as men-
tioned in section IV-A. (1) The latent vectors z(j)H and z

(j)
i

(both are the outputs of the encoder E) should be both sampled
from the same prior p(Z

(j)
H ). (2) The priors of different

Hj ∈ H should be ‘distinct’ enough from each other because
the semantics of different Hj are believed to be different.

To comply with the first requirement, one way is to apply
the idea of the variational auto-encoder which uses a KL-
divergence to constrain the latent vectors. Regarding the sec-
ond requirement, if the latent vectors sampled from different
priors can be classified to different classes, then the priors are
thought to be ‘distinct’ enough.

Therefore, considering both the requirements, a classifier
D is proposed (Figure 1(b)). The classifier D is designed
to conduct single-label classification with candidate classes
{c1, c2, ..., cM}. The intuition is the individual latent vector
z(j) from the encoder E of ∀T ∈ X ∪ H ∪ H′ should be
classified as the corresponding class cj via D. Besides, z(j)

and z(k) should be classified as two different classes cj and
ck (k 6= j) respectively. Thus, the loss function to constrain
and differentiate priors can be defined as follows.

Lpr =
1

#T

∑
T

M∑
j=1

[
− log pD(cj |z(j) ∈ E(T ))

]
(7)

D. Annotation Strategy

Since the α
(j)
i represents the importance of Hj in the

composition of Xi ∈ X and α
(j)
i ∈ [0, 1], in practice, we

use α(j)
i to approximate p(Hj |Xi). A threshold τj is applied

to each general phenotypic abnormalities Hj to decide if the
Hj is mentioned in Xi. If α(j)

i > τj , then Xi is annotated with
Hj . Otherwise, Xi is not annotated with Hj . The thresholds

{τj}Mj=1 are hyper-parameters and the value of τj for each
Hj is decided based on the distribution of {α(j)

i }
|X |
i=1 in the

training set (see section V-B).

V. EXPERIMENTS

A. Datasets

We conducted the experiments based on two datasets. (1)
We collected 52,722 discharge summaries as the EHRs from
MIMIC-III [11]. Each EHR also came with disease diagnosis
marked by International Classification of Diseases (ICD-9)
codes. The EHRs were randomly split into a training set
(70%) and a held-out set for testing (30%). (2) We downloaded
phenotype terms from Human Phenotype Ontology (HPO) 3

[10]. In HPO, each phenotypic abnormality term has a name,
synonyms and a definition. Besides, the HPO also provides
the class-subclass relations between phenotypic abnormalities,
as shown in Figure 1 (a). There are 24 general phenotypic
abnormalities in HPO, i.e., M = |H| = 24, and there
are 13,795 additional subclasses, i.e.. |H′| = 13795. The
vocabulary size |V| was limited to 30,000 most frequent words
in both datasets and all numbers were excluded.

B. Implementation Details 4

The encoder E and generator G were implemented based
on Transformer [21]. The encoder E used a word embedding
and a position embedding which were followed by 6 stacked
Transformer encoders. The hidden size, intermediate size and
number of attention heads were set as 768, 3072 and 12
respectively. As M = |H| = 24, the αs were then calculated
by a dense layer with 24 units and a sigmoid activation
function. The latent vectors {z(1), ..., z(M)} were calculated by
24 dense layers, each of which had 1536 units. The structure of
G was identical to E. The classifier D was a CNN with three
convolution layers. The convolution layers had filter sizes 8, 4,
2 and number of filters 4, 8, 16 respectively. The subsequent
dense layer had 24 units with softmax. All the neural networks
were implemented by using PyTorch [22].

In Algorithm 1, the loss functions used the cross entropy and
the coefficients are set as λ1 = 10, λ2 = 10, λ3 = 10, λ4 = 1
to balance values. The Adam optimizer [23] was used. In the
annotation afterwards, the value of each threshold τj was set
within the range of 70th- and 95th-percentile of {α(j)

i }
|X |
i=1

in the training set. The training and inference (annotation)
processes were run on a single NVIDIA Titan X GPU.

Since some original EHRs from MIMIC-III are lengthy, in
practice, EHRs were split into fragments each of which had
32 words. After the encoder E was trained, the annotation
strategy was performed on each fragment and the aggregated
annotations of all fragments were used as the final annotations
of the EHR. As the ICD codes were reported in the EHRs
at different levels, we used 3-digit level ICD codes when
evaluating the annotation results for consistency.

3Downloaded in April 2019.
4Source code: https://github.com/JingqingZ/Semantic-HPO.



TABLE II
QUALITATIVE ANALYSIS TO SHOW THE EFFECTIVENESS OF OUR METHOD IN DISCOVERING IMPLICIT PHENOTYPES FROM EHRS.

Disease name Description in EHR Target HPO Keyword NCBO OBO MetaMap Ours
Subarachnoid
hemorrhage

On arrival to [**Hospital Name**] a CT was
obtained which showed subarachnoid blood.

HP:0001871 (Abnormality
of blood and blood-forming
tissues)

× × × × X

Mitral valve
disorder

He admits to mild DOE, slightly decreased
exercise tolerance and occasional palpitations.

HP:0003011 (Abnormality
of the musculature)

× × × X X

Mitral valve
disorder

Patient presents s/p L orbit exenteration
([**Masked**]) for a history of basal cell car-
cinoma in her L orbit.

HP:0000478 (Abnormality
of the eye)

× × × × X

TABLE III
A COMPARISON OF DIFFERENT METHODS. THE #RECORDS REFERS TO

THE NUMBER OF TEXTUAL RECORDS USED IN THE ORIGINAL WORKS. THE
TIME WAS MEASURED BY THE DURATION OF ANNOTATING 52,722 EHRS

IN INFERENCE STAGE WITH A SINGLE THREAD INTEL I7-6850K 3.60GHZ
AND A SINGLE NVIDIA TITAN X.

Method Available (A)
Open source (O)

#Records
Time to
annotate

52,722 EHRs

OBO A, Not O 515 1.0 hour

NCBO A, Not O / 36.7 hours

MetaMap A, O / ∼ 22 days

Bio-LarK Not A, Not O 228 /

CNN [16] Not A, Not O 1,610 /

Ours A, O 52,722 40.2 min

TABLE IV
THE PERFORMANCE OF ANNOTATION RESULTS COMPARED WITH THE

SILVER STANDARD. ALL THE NUMBERS ARE AVERAGED ACROSS EHRS IN
THE TESTING SET.

Method Precision Recall F1

Random 0.5541 0.5401 0.5108
Keyword 0.6732 0.4982 0.5194

OBO 0.6817 0.5917 0.5775
NCBO 0.6782 0.5724 0.5659

MetaMap 0.7425 0.5231 0.5576

Ours 0.7113 0.6805 0.6383

C. Evaluation

We considered the most influential biomedical annotation
tools as baselines for performance comparison and the se-
lection was due to their availability and the experimental
settings. For a fair comparison, all the annotation results
by the baselines were mapped to sets of general phenotypic
abnormalities from H.

• Random choice: Each EHR was annotated by the general
phenotypic abnormalities H at random.

• Keyword search: We searched the name and synonyms
of each specific phenotypic abnormality in all EHRs and
used the searching results as the annotations.

• OBO Annotator [12] 5: Java implementation.

5OBO: http://www.usc.es/keam/PhenotypeAnnotation/

• NCBO Annotator [13] 6: the annotator web APIs.
• MetaMap [15]: 2016v2.
Since it is impractical to collect a gold standard on thou-

sands of EHRs, we created a silver standard, i.e., a mapping
from ICD codes to the general phenotypic abnormalities H
from HPO. As there is no manual curated direct mapping be-
tween ICD codes and HPO terms, we used Online Mendelian
Inheritance in Man (OMIM), which is a catalog of human
genes and genetic disorders, as an intermediate hop to link
ICD codes and HPO terms. We collected the mapping from
ICD codes to OMIM phenotype entries [24], [25] and the
mapping from OMIM entries to HPO terms 7. Based on these
two manual curated mappings, we constructed a mapping
from ICD codes to HPO terms, i.e. the general phenotypic
abnormalities H. The silver standard of the annotations of H
from EHRs was constructed by using this mapping.

The constructed silver standard provides a rich information
source on diseases and their associated phenotypic character-
istics. With the silver standard, we can partially evaluate the
reliability of the annotation results by different methods. We
used the micro-precision, micro-recall and micro-F1 which are
averaged across EHRs for quantitative analysis. Some typical
cases where EHRs have implicitly described some phenotypic
abnormalities were shown for qualitative analysis.

D. Results and Discussion
Table III compares different methods to show the scalabil-

ity and efficiency of our method. Our work has conducted
experiments on 52,722 EHRs, which are significantly more
than previous works. In addition, our method is also more
computationally efficient than the baselines. The inference (an-
notation) stage of our method takes 40.2 minutes to annotate
52,722 EHRs, which is 33% faster than the OBO Annotator
and >98% faster than the NCBO Annotator and MetaMap.

Table IV compares the accuracy of different annotation
methods on the silver standard. The proposed method achieves
the precision of 0.7113, recall of 0.6805 and F1 of 0.6383. The
F1 is significantly higher than those of all other baselines.
Considering the association between phenotype and diseases
in the silver standard, we believe that our method is more
effective and the annotation results of our method can provide
a better indication for disease diagnosis than the baselines.

6NCBO: http://data.bioontology.org/documentation
7https://hpo.jax.org/app/download/annotation

http://www.usc.es/keam/PhenotypeAnnotation/
http://data.bioontology.org/documentation


Along with the evaluation using the silver standard, we
have conducted qualitative analysis to provide more insights
of our annotation work. The EHRs for qualitative analysis are
selected from the patients with single disease. We find that
within the same disease group, the phenotypic abnormalities
vary across different EHRs. Our method can identify the
HPO terms that are missed by other methods. Table II shows
three typical case studies from qualitative analysis, where
one EHR is from the disease subarachnoid hemorrhage and
two EHRs are from the disease mitral valve disorder. In
the first case, the EHR contains the keyword “subarachnoid
blood” that clearly indicates the the presence of the general
phenotype category “HP:000187 (Abnormality of blood and
blood-forming tissues)”, while only our annotation method
has found this HPO term. The EHR in the second case de-
scribes “slightly decreased exercise tolerance” which indicates
movement impairment, and both our method and MetaMap
have successfully found the related general phenotype category
“HP:0003011 (Abnormality of the musculature)”. In the third
case, although the EHR is originally diagnosed as mitral
valve disorder, its description shows that this EHR can be
wrongly diagnosed as it is more likely to have eye diseases.
Our method has annotated the general phenotype category
“HP:0000478 (Abnormality of the eye)”, which is consistent
with our manual investigation. From the listed cases, we show
that our annotation method outperforms others in the aspect of
finding phenotypic abnormalities from implicit information.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a novel unsupervised deep learning
framework to annotate phenotypic abnormalities from EHRs.
The proposed framework is able to learn semantic latent repre-
sentations of textual data and use different prior distributions
to constrain the latent space. The experiments have shown
the effectiveness, efficiency and scalability of our method and
we believe our method can provide a better indication for
disease diagnosis than the baselines. In the future, we plan
to extend the proposed framework to annotate all the 13,000
specific phenotypic abnormalities in HPO. Besides, due to the
generality of the proposed framework, we believe it can be
applied to annotating general concepts on plain text in general
domains if a well-established knowledge base is available.
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