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Abstract—Entity and relation extraction is the necessary step
in structuring medical text. However, the feature extraction
ability of the bidirectional long short term memory network
in the existing model does not achieve the best effect. At the
same time, the language model has achieved excellent results
in more and more natural language processing tasks. In this
paper, we present a focused attention model for the joint entity
and relation extraction task. Our model integrates well-known
BERT language model into joint learning through dynamic range
attention mechanism, thus improving the feature representa-
tion ability of shared parameter layer. Experimental results on
coronary angiography texts collected from Shuguang Hospital
show that the F1-scores of named entity recognition and relation
classification tasks reach 96.89% and 88.51%, which outperform
state-of-the-art methods by 1.65% and 1.22%, respectively.

Index Terms—Named entity recognition, Relation classifica-
tion, Joint model, BERT language model, Electronic health
records.

I. INTRODUCTION

With the widespread of electronic health records (EHRs)
in recent years, a large number of EHRs can be integrated
and shared in different medical environments, which further
support the clinical decision making and government health
policy formulation [1]. However, most of the information in
current medical records is stored in natural language texts,
which makes data mining algorithms unable to process these
data directly. To extract relational entity triples from the
text, researchers generally use entity and relation extraction
algorithm, and rely on the central word to convert the triples
into key-value pairs, which can be processed by conventional
data mining algorithms directly.

To solve the task of entity and relation extraction, re-
searchers usually follow pipeline processing and split the task
into two sub-tasks, namely named entity recognition (NER)
and relation classification (RC), respectively. However, this
pipeline method usually fails to capture joint features between
entity and relationship types. For example, for a valid relation
“存在情况(presence)” in Fig. 1, the types of its two relational
entities must be “疾病(disease)”, “症状(symptom)” or “存在
词(presence word)”. To capture these joint features, a large
number of joint learning models have been proposed [2],
[3], among which bidirectional long short term memory (Bi-
LSTM) [4] are commonly used as the shared parameter layer.
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Fig. 1. An illustrative example of entity and relation extraction in the text of
EHRs.

However, compared with the language models that benefit
from abundant knowledge from pre-training and strong feature
extraction capability, Bi-LSTM model has relatively lower
generalization performance. To improve the performance, one
of the solutions is to incorporate language model into joint
learning as a shared parameter layer. However, existing models
only introduce language models into the NER or RC task
separately [5], [6], leading the joint features between entity
and relationship types unable to be captured.

Given the aforementioned challenges and current researches,
we propose a focused attention model based on widely known
BERT language model [7] to jointly tackle NER and RC tasks.
Specifically, through the dynamic range attention mechanism,
we construct task-specific MASK matrix to control the at-
tention range of the last K layers in BERT language model,
leading to the model focusing on the words of the task. This
process helps obtain the corresponding task-specific context-
dependent representations. In this way, the modified BERT
language model can be used as the shared parameter layer
in joint learning of NER and RC task. We call the modified
BERT language model as shared task representation encoder
(STR-encoder) in the following paper. The main contributions
of our work are summarized as follows:

• We propose a focused attention model to jointly learn
NER and RC task. The model integrates BERT language
model as a shared parameter layer to achieve better
generalization performance.

• In the proposed model, we incorporate a novel structure,
called STR-encoder, which changes the attention range of
the last K layers in BERT language model to obtain task-
specific context-dependent representations. It can make
full use of the original structure of BERT to produce the
vector of the task, and directly use the prior knowledge
contained in the pre-trained language model.
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• For RC task, we design two different MASK matrices to
extract the required feature representation of RC task. The
performances corresponding to the matrices are analyzed
and compared in the experiment.

II. RELATED WORK

Entity and relation extraction is to extract relational entity
triplets. There are two kinds of approaches for the task, namely
Pipeline and joint learning methods. The former decomposes
the task into two subtasks, namely named entity recognition
(NER) and relation classification (RC), while the latter at-
tempts to solve the two tasks simultaneously.

A. Named Entity Recognition

In medical domain, we use NER to recognize disease,
symptom, etc. In general, NER is formulated as a sequence
tagging task using BIEOS (Begin, Inside, End, Outside, Sin-
gle) [8] tagging strategy. Conventional methods in medical
domain can be divided into two categories, i.e., statistical and
neural network methods. The former are generally based on
conditional random fields (CRF) [9] which relies on hand-
crafted features and external knowledges to improve the ac-
curacy. Neural network methods typically use neural network
to calculate the features without tedious feature engineering,
e.g., bidirectional long short term memory neural network
[10]. However, none of the above methods can make use of
a large amount of unsupervised corpora, resulting in limited
generalization performance.

B. Relation Classification

RC is closely related to NER task, which classifies the
relationship between the entities identified in the text. The
task is typically formulated into a classification problem that
takes a piece of text and two entities in this text as inputs, and
possible relation between the entities as output. The existing
methods of RC can be roughly divided into two categories,
i.e., traditional methods and neural network approaches. The
former are based on feature-based [11] or kernel-based [12]
approaches. These models usually spend a lot of time on
feature engineering. Neural network methods can extract the
relation features without complicated feature engineering. e.g.,
recurrent capsule network [13] and domain invariant convolu-
tional neural network [14]. However, These methods cannot
utilize joint features between entity and relation, resulting in
lower generalization performance when compared with joint
learning methods.

C. Joint Entity and Relation Extraction

Compared with pipeline methods, joint learning approaches
are able to capture the joint features between entities and
relations [15].

State-of-the-art joint learning methods can be divided into
two categories, i.e., joint tagging methods and parameter shar-
ing methods. Joint tagging methods transform NER and RC
tasks into sequence tagging tasks through a specially designed
tagging scheme, e.g., a novel tagging scheme proposed by

Zheng et al. [2]. Parameter sharing methods share the feature
extraction layer in the models of NER and RC. Compared to
joint tagging methods, parameter sharing methods are able to
effectively process multi-map problem. The most commonly
shared parameter layer in medical domain is the Bi-LSTM
network [16]. However, compared with language model, the
feature extraction ability of Bi-LSTM is relatively weaker,
and the model cannot obtain pre-training knowledge through a
large amount of unsupervised corpora, which further reduces
the robustness of extracted features.

III. PROPOSED METHOD

In this section, we first introduce classic BERT language
model and the dynamic range attention mechanism. Then, we
present a focused attention model for joint entity and relation
extraction.

A. BERT Language Model

BERT [7] is a language model that utilizes bidirectional
attention mechanism and large-scale unsupervised corpora to
obtain effective context-sensitive representations of each word
in a sentence. Owing to its effective structure and a rich
supply of large-scale corpora, BERT has achieved state-of-the-
art results on various natural language processing (NLP) tasks.
The basic structure of BERT includes self attention encoder
(SA-encoder) and downstream task layer. SA-encoder obtains
the corresponding context-dependent representation using the
sequence S and the MASK matrix:

HN = SA-encoder(S,MASK) (1)

The downstream task layer differs from task to task. In this
work, we focus on NER and RC, which are further detailed
in Section III-C2 and III-C4, respectively.

B. Dynamic Range Attention Mechanism

In BERT, MASK matrix is originally used to mask the
padding portion of the text. However, we observe that, with the
help of a specific MASK matrix, we can directly control the
attention range of each word, thus obtaining specific context-
sensitive representations.

Note that, when calculating the attention in BERT, the
parameter matrix MASK∈ {0, 1}T×T , where T is the length
of the sequence. If MASKi,j = 0, then we have (MASKi,j −
1)×∞ = −∞ and the Eq. (2), which indicates that the i-th
word ignores the j-th word when calculating attention.

Similar(i, j)

= Softmax[
QKT

√
dk i,j

+ (MASKi,j − 1)×∞]

= Softmax(−∞)

(2)
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Fig. 2. The architecture of our proposed model.

When MASKi,j = 1, we have (MASKi,j − 1) ×∞ = 0
and the Eq. (3), which means the i-th word considers the j-th
word when calculating attention.

Similar(i, j)

= Softmax[
QKT

√
dk i,j

+ (MASKi,j − 1)×∞]

= Softmax(
QKT

√
dk i,j

)

(3)

C. Focused Attention Model

The architecture of the proposed model is demonstrated
in the Fig. 2. The focused attention model is essentially
a joint learning model of NER and RC based on shared
parameter approach. It contains layers of shared parameter,
NER downstream task and RC downstream task.

The shared parameter layer, called shared task representa-
tion encoder (STR-encoder), is improved from BERT through
dynamic range attention mechanism. It contains an embedded
layer and N multi-head self-attention layers which are divided
into two blocks. The first N−K layers are only responsible for
capturing the context information, and the context-dependent
representations of words are expressed as HN−K . According
to characteristics of NER and RC, the remaining K layers
use the MASKtask matrix setting by the dynamic range
attention mechanism to focus the attention on the words. In
this manner, we can obtain task-specific representations Htask

N

and then pass them to corresponding downstream task layer.
In addition, the segmentation point K is a hyperparameter,
which is discussed in Section V-A.

Given a sequence, we add a [CLS] token in front of the
sequence and a [SEP ] token at the end of the sequence as
BERT does. After the Embedding layer, the initial vector of
each word in the sequence S is represented as H0, which is
same as BERT. Then we input H0 to the first N−K multi-head
self-attention layers. In theses layers, attention of a single word
is evenly distributed on all the words in the sentence to capture

the context information. Given the output (Hm−1) from the
(m− 1)-th layer, the output of current layer is calculated as:

H ′m = LN [Hm−1 +MHSA(Hm−1,MASKall)] (4)
Hm = LN [H ′m + PosFF (H ′m)] (5)

where MHSA, PosFF and LN represent multi-head self
attention, feed forward and layer normalization [17] and
MASKall ∈ {1}T×T indicates each word calculates attention
with all the other words of the sequence.

The remaining K layers focus on words of downstream task
by task-specific matrix MASKtask based on dynamic range
attention mechanism. Given the output (Htask

m−1) of previous
(m− 1)-th layer, the current output (Htask

m ) is calculated as:

H
′task
m = LN [Htask

m−1 +MHSA(Htask
m−1,MASKtask)] (6)

Htask
m = LN [H

′task
m + PosFF (H

′task
m )] (7)

where Htask
N−K = HN−K and task ∈ {ner, rc}.

As for STR-encoder, we only input different MASKtask

matrices, which calculate various representations of words
required by different downstream task (Htask

N ) with the same
parameters:

Htask
N = STR-encoder(S,MASKtask,MASKall) (8)

The structure has two advantages:
• It obtains the representation vector of the task through the

strong feature extraction ability of BERT. Compared with
the complex representation conversion layer, the structure
is easier to optimize.

• It does not significantly adjust the structure of the BERT
language model, so the structure can directly use the prior
knowledge contained in the parameters of pre-trained
language model.

Subsequently, we will introduce the construction of
MASKtask and downstream task layer of NER and RC in
blocks.

1) The Construction of MASKner: In NER, the model needs
to output the corresponding BIEOS tag of each word in the
sequence. In order to improve the accuracy, the appropriate
attention weight should be learned through parameter op-
timization rather than limiting the attention range of each
word. Therefore, according to the dynamic range attention
mechanism, the value of the MASKner matrix should be set to
MASKner ∈ {1}T×T , indicating that each word can calculate
attention with any other words in the sequence.

2) The Construction of NER Downstream Task Layer:
In NER, the downstream task layer needs to convert the
representation vector of each word in the output of STR-
encoder into the probability distribution of the corresponding
BIEOS tag. Compared with the single-layer neural network,
CRF model can capture the link relation between two tags
[18]. As a result, we perform CRF layer to get the probability
distribution of tags. Specifically, the representation vectors of
all the words except [CLS] token in the output of STR-encoder
are sent to the CRF layer. Firstly, CRF layer calculates the



emission probabilities by linearly transforming these vectors.
Afterwards, layer ranks the sequence of tags by means of
emission and transition probabilities. Finally, the probability
distribution of sequence of tags is obtained by softmax func-
tion:

Hner
p = Hner

N [1 : T ]×W ∗ner + bner (9)

Score(L|Hner
p ) =

T∑
t=1

(ALt−1,Lt +Hner
p t,Lt

) (10)

pner(L|S,MASKner,MASKall)=
eScore(L|Hner

p )∑
J eScore(J|Hner

p )

(11)
The loss function of NER is shown as Eq. (12), and our

training goal is to minimize Lner, where L′ indicates the real
tag sequence.

Lner = −Log[pner(L′|S,MASKner,MASKall)] (12)

3) The Construction of MASKrc: In RC, the relation be-
tween two entities are represented by a vector. In order to
obtain the vector, we confine the attention range of [CLS]
token, which is originally used to summarize the overall
representation of the sequence, to two entities. Thus, the vector
of [CLS] token can accurately summarize the relation between
two entities. Based on the dynamic range attention mechanism,
we propose two kinds of MASKrc denoted as Eq. (13) and
(14), respectively.

MASKrc
i,j =


1 if i ∈ PCLS , j ∈ PCLS,EN1,EN2

1 if i 6∈ PCLS

0 else
(13)

MASKrc
i,j =

{
1 if i, j ∈ PCLS,EN1,EN2

0 else
(14)

where Px represents the position of x in sequence S.
The difference between the two matrices is whether the

attention range of entity 1 and 2 is confined. In Eq. (13),
the attention range of entity 1 and 2 is not confined, which
leads to the vector of RC shifting to the context information
of entity. Relatively, in Eq. (14), only [CLS], entity 1 and 2
are able to pay attention to each other, leading the vector of
RC shifting to the information of entity itself. Corresponding
to the RC task on medical text, the two MASK matrices will
be further analyzed in Section V-A.

4) The Construction of RC Downstream Task Layer: For
RC, the downstream task layer needs to convert the represen-
tation vector of [CLS] token in the output of STR-encoder into
the probability distribution of corresponding relation type. In
this paper, we use multilayer perceptron (MLP) to perform
this conversion. Specifically, the vector is converted to the
probability distribution through two perceptrons with Tanh
and Softmax as the activation function, respectively:

Hrc
p =Tanh(Hrc

N [0]×Wrc1 + brc1) (15)

prc(R|S,MASKrc,MASKall) =

Softmax(Hrc
p ×Wrc2 + brc2) (16)

The training is to minimize loss function Lrc, denoted as
Eq. (17), where R′ indicates the real relation type.

Lrc = −Log[prc(R′|S,MASKrc,MASKall)] (17)

D. Joint Learning
Note that, the parameters are shared in the model except

the downstream task layers of NER and RC, which enables
STR-encoder to learn the joint features of entities and rela-
tions. Moreover, compared with the existing parameter sharing
model (e.g., Joint-Bi-LSTM [4]), the feature representation
ability of STR-encoder is improved by the feature extraction
ability of BERT and its knowledge obtained through pre-
training. The loss function of the joint model (i.e., Lall) will
be obtained as follows:

Lall = Lner + Lrc (18)

where Lner and Lrc are defined in Eq. (12) and (17), respec-
tively.

IV. EXPERIMENTAL STUDIES

A. Dataset and Evaluation Metrics
The dataset of entity and relation extraction is collected

from coronary arteriography reports in Shanghai Shuguang
Hospital. There are five types of entities, i.e., Negation,
Body Part, Degree, Quantifier and Location. Meanwhile, five
relations are included, i.e., Negative, Modifier, Position, Per-
centage and No Relation. 85% of “No Relation” in the dataset
are discarded for balance purpose. The statistics of the entities
and relations are demonstrated in Table I.

TABLE I
STATISTICS OF DIFFERENT TYPES OF ENTITIES AND RELATIONS

Entity Type Number Relation Type Direction Number
Negation 103 Negative e2 to e1 406
Body Part 492 Modifier e2 to e1 1,068
Degree 658 Position e1 to e2 389
Quantifier 422 Percentage bi-direction 100 / 256
Location 461 No Relation none 1,975
Total 2,136 Total none 4,194

* The bi-direction indicates there are two directions, i.e., e1 to e2 and e2 to e1.

In order to ensure the effectiveness of our experiment, we
divide the dataset into training, development and test in the
ratio of 8:1:1. In the following experiments, we use common
performance measures such as Precision, Recall, and F1-score
[19] to evaluate NER, RC and joint models.

B. Experimental Setup
The training of focused attention model proposed in this

paper can be divided into two stages. In the first stage, we need
to pre-train the shared parameter layer. Due to the high cost of
pre-training BERT, we directly adopted parameters pre-trained
by Google in Chinese general corpus. In the second stage, we
need to fine-tune NER and RC tasks jointly. Parameters of the
two downstream task layers are randomly initialized. The two
hyperparameters K and MASKrc in the model will be further
studied in Section V-A.



C. Experimental Result

To evaluate the performance of our focused attention model,
we compare it with state-of-the-art methods on the task of
NER, RC and joint entity and relation extraction, respectively.

Based on NER, we experimentally compare our focused
attention model with other reference algorithms. These algo-
rithms consist of two NER models in medical domain (i.e., Bi-
LSTM [20] and RDCNN [21]) and one joint model in generic
domain (i.e., Joint-Bi-LSTM [4]). In addition, we originally
plan to use the joint model [16] in the medical domain,
but the character-level representations cannot be implemented
in Chinese. Therefore, we replace it with a generic domain
model [4] in similar structure. As demonstrated in Table II,
the proposed model achieves the best performance, and its
precision, recall and F1-score reach 96.69%, 97.09% and
96.89%, which outperforms the second method by 0.2%,
0.40% and 1.20%, respectively.

TABLE II
COMPARISONS WITH THE DIFFERENT METHODS ON THE TASK OF NER

Methods NER
Precision Recall F1-score

Bi-LSTM [18] 94.46 94.07 94.26
RDCNN [21] 96.49 94.90 95.69
Joint-Bi-LSTM [4] 93.84 96.69 95.24
Our model 96.69 97.09 96.89

To further investigate the effectiveness of the proposed
model on RC, we use two RC models in medical domain
(i.e., RCN [13] and CNN [22]) and one joint model in generic
domain (i.e., Joint-Bi-LSTM [4]) as baseline methods. Since
RCN and CNN methods are only applied to RC tasks and
cannot extract entities from the text, so we directly use the
correct entities in the text to evaluate the RC models. Table
III illustrate that the focused attention model achieves the
best performance, and its precision, recall and F1-score reach
96.06%, 96.83% and 96.44%, which beats the second model
by 1.57%, 1.59% and 1.58%, respectively.

TABLE III
COMPARISONS WITH THE DIFFERENT METHODS ON THE TASK OF RC

Methods RC with Correct Entities
Precision Recall F1-score

RCN [13] 90.77 93.65 92.19
CNN [23] 94.49 95.24 94.86
Joint-Bi-LSTM [4] 92.92 92.86 92.88
Our model 96.06 96.83 96.44

For the task of joint entity and relation extraction, we
use Joint-Bi-LSTM [4] as baseline method. Since these two
models are joint learning, we use the entities predicted in
NER as the input for RC. From Table IV, we observe that
our focused attention model achieves the best performance,
and its F1-score reaches 96.89% and 88.51%, which is 1.65%
and 1.22% higher than the second method, respectively. These

observations confirm that the feature representation of STR-
encoder is indeed stronger than existing common models.

TABLE IV
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON THE TASK OF

JOINT ENTITY AND RELATION EXTRACTION

Methods NER RC with Predicted Entities
Precision Recall F1-score Precision Recall F1-score

Joint-Bi-LSTM 93.84 96.69 95.24 93.64 81.75 87.29
Our model 96.69 97.09 96.89 95.41 82.54 88.51

V. EXPERIMENTAL ANALYSIS

In this section, we perform additional experiments to ana-
lyze the influence of different settings on segmentation points
K, and different settings on MASKrc and joint learning.

A. Hyperparameter Analysis

We further study the impacts of different settings on seg-
mentation points K defined in Section III-C and different
settings on MASKrc defined in Section III-C3. As shown in
Table V, when K = 4 and MASKrc use Eq. (14), RC reaches
the best F1-score of 92.18%. When K = 6 and MASKrc use
Eq. (13), NER achieves the best F1-score of 96.77%. One
possible reason is that MASKrc defined in Eq. (13) doesn’t
confine the attention range of entity 1 and 2, which enables the
model to further learn context information in shared parameter
layer, leading to a higher F1-score for NER. For RC, the F1-
score with K = 4 is the lowest when MASKrc uses Eq. (13),
and reaches the highest when MASKrc uses Eq. (14). One
possible reason is that the two hyperparameters are closely
related to each other. However, how they interact with each
other in the focus attention model is still an open question.

TABLE V
COMPARISONS WITH DIFFERENT HYPERPARAMETERS ON THE TASK OF

JOINT ENTITY AND RELATION EXTRACTION

K MASK NER RC with Predicted Entities
Precision Recall F1-score Precision Recall F1-score

2 Eq. (13) 95.07 97.93 96.48 97.08 87.37 91.97
4 Eq. (13) 94.98 98.20 96.56 97.06 86.84 91.67
6 Eq. (13) 95.39 98.20 96.77 98.20 86.32 91.88
2 Eq. (14) 94.67 97.93 96.27 95.95 87.37 91.46
4 Eq. (14) 94.77 97.87 96.29 98.21 86.84 92.18
6 Eq. (14) 94.47 97.93 96.17 96.51 87.37 91.71

B. Ablation Analysis

In order to evaluate the influence of joint learning, we train
NER and RC models separately as an ablation experiment. In
addition, we also use correct entities to evaluate RC, excluding
the effect of NER results on the RC results, and independently
compare the NRE and RC tasks.

As shown in Table VI, compared with training separately,
the results are improved by 0.52% score in F1-score for
NER and 0.82% score in F1-score for RC. It shows that



TABLE VI
COMPARISONS WITH TRAINING NER AND RC TASKS SEPARATELY

Methods NER RC with Correct Entities
Precision Recall F1-score Precision Recall F1-score

Only NER 95.14 97.64 96.37 - - -
Only RC - - - 96.00 95.24 95.62
Our model 96.69 97.09 96.89 96.06 96.83 96.44

joint learning can help to learn the joint features between
NER and RC and improves the accuracy of two tasks at the
same time. For NER, precision score is improved by 1.55%,
but recall score is reduced by 0.55%. One possible reason
is that, although the relationship type can guide the model
to learn more accurate entity types, it also introduces some
uncontrollable noise. In summary, joint learning is an effective
method to obtain the best performance.

VI. CONCLUSION

In order to structure medical text, entity and relation ex-
traction is an indispensable step. In this paper, we propose
a focused attention model to jointly learn NER and RC
task based on a shared task representation encoder which
is transformed from BERT through dynamic range attention
mechanism. Compared with existing models, our model can
extract the entities and relations from the medical text more
accurately. The experimental results on coronary angiography
texts verify the effectiveness of our model.
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