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Abstract—During the COVID-19 pandemic, there has been an
emerging need for rapid, dedicated, and point-of-care COVID-
19 patient disposition techniques to optimize resource utilization
and clinical workflow. In view of this need, we present COVID-
MobileXpert: a lightweight deep neural network (DNN) based
mobile app that can use chest X-ray (CXR) for COVID-19
case screening and radiological trajectory prediction. We design
and implement a novel three-player knowledge transfer and
distillation (KTD) framework including a pre-trained attending
physician (AP) network that extracts CXR imaging features
from a large scale of lung disease CXR images, a fine-tuned
resident fellow (RF) network that learns the essential CXR
imaging features to discriminate COVID-19 from pneumonia
and/or normal cases with a small amount of COVID-19 cases, and
a trained lightweight medical student (MS) network to perform
on-device COVID-19 patient triage and follow-up. To tackle the
challenge of vastly similar and dominant fore- and background
in medical images, we employ novel loss functions and training
schemes for the MS network to learn the robust features. We
demonstrate the significant potential of COVID-MobileXpert for
rapid deployment via extensive experiments with diverse MS
architecture and tuning parameter settings. The source codes
for cloud and mobile based implementations are available from
the following url: https://github.com/xinli0928/COVID-Xray.

Index Terms—COVID-19, SARS-CoV-2, On-device Machine
Learning, Trajectory Prediction, Chest X-Ray (CXR)

I. INTRODUCTION

Due to its flu-like symptoms and potentially serious out-
comes, a dramatic increase of suspected COVID-19 cases
are expected to overwhelm the healthcare system during the
flu season. Health systems still largely allocate facilities and
resources such as Emergency Department (ED) and Intensive
Care Unit (ICU) on a reactive manner facing significant labor
and economic restrictions. To optimize resource utilization
and clinical workflow, a rapid, automated, and point-of-care
COVID-19 patient management technology that can triage
(COVID-19 case screening) and follow up (radiological tra-
jectory prediction) patients is urgently needed.

Chest X-ray (CXR), though less accurate than a PCR
diagnostic, chest Computed Tomography (CT) or serological
test, became an attractive option for patient management due to
its impressive portability, availability and scalability [1]. Con-
volutional neural networks (CNNs) have achieved significant
advancement in various tasks based on CXR [2]–[4]. During
the pandemic, CNNs have also been successfully employed to

assist with COVID-19 CXR interpretation, where three major
tasks have been performed: diagnosis, severity evaluation, and
trajectory prediction. The majority of related previous works
concentrate on diagnosis. They directly borrowed or adopted
well-known CNN architectures such as ResNet [5], [6], Incep-
tionV3 [5], DenseNet [7], and VGG [6] for COVID-19 case
screening. For severity evaluation, Cohen et al. [8] and Zhu
et al. [9] predicted lung disease severity scores using a linear
regression model based on features extracted from CNNs. To
associate each score with a confidence value, Signoroni et al.
[10] treated this task as a joint multi-class classification and
regression problem using a compound loss function. Based
on the severity assessment, the trajectory prediction can be
achieved by calculating severity score difference between two
adjacent CXR images. Other than score level interpretation,
Duchesne et al. [11] built their trajectory prediction model
based on feature level. They used logistic regression to classify
the trajectory based on the feature extracted from a single
CXR. However, the feature from a single CXR may not be
sufficient to predict radiological trajectory. To tackle these
challenges, we propose to forecast trajectory using feature
extracted from a series of longitudinal CXR images, where
subtle changes that are invisible to human, can be detected.

There is a growing interest to deploy machine learning
models on the device to minimize latency and maximize the
protection of privacy. Currently, most models for COVID-19
interpretation are full DNNs and not suitable to deploy on
resource-constrained mobile devices. As there is no existing
on-device medical image interpretation research, most of the
recent work [12] focuses on comparing the performance of
different lightweight DNNs using natural image datasets. To
improve the performance of the lightweight models, knowl-
edge distillation [13], [14] is usually used where a full size
teacher model is trained first, and a lightweight student model
is then trained with the ‘knowledge’ distilled via the soft
labels from the teacher model. Knowledge distillation yields
compact student models that outperform the compact models
trained from scratch [15]. Unlike the natural images, on-device
classification of medical images remain largely an uncharted
territory due to the following unique challenges: 1) label
scarcity significantly limits the generalizability of the system;
2) vastly similar and dominant fore- and background make it
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Fig. 1. Overview of the three-player KTD training architecture demonstrating the knowledge transfer from AP to RF and the knowledge
distillation from RF to MS. The blue and purple arrows demonstrate the training for two tasks: patient triage and follow-up respectively.

hard samples for learning the discriminating features between
different classes. To tackle these challenges, we propose a
novel three-player knowledge transfer and distillation (KTD)
framework composed of an Attending Physician (AP) network,
a Resident Fellow (RF) network, and a Medical Student
(MS) network for on-device COVID-19 patient triage and
follow-up. We pre-train a full AP network using a large
scale of lung disease CXR images [16], followed by fine-
tuning a RF network via knowledge transfer using COVID-
19 dataset, then we train a lightweight MS network for on-
device COVID-19 patient triage and follow-up via knowledge
distillation. The unique features of the KTD framework are
knowledge transfer from large-scale lung disease images to
enhance expressiveness of learned representation and novel
loss functions to increase robustness of knowledge distillation
to the MS network.

To the best of our knowledge, currently, there is no mobile
AI system for on-device COVID-19 patient triage and follow-
up using CXR images. In this work, we present an AI-
powered system, COVID-MobileXpert, to triage and follow
up COVID-19 patients using portable X-rays at the patient’s
location. At the ED, COVID-MobileXpert calculates COVID-
19 probabilistic risk to assist automated triage of COVID-19
patients. At the ICU or general ward (GW), it uses a series
of longitudinal CXR images to determine whether there is an
impending deterioration in the health condition of COVID-
19 patients. Therefore, COVID-MobileXpert is essential to
fully realize the potential of CXR to exert both immediate
and long-term positive impacts on US healthcare systems. The
experiments demonstrate the effectiveness of our proposed
framework and a strong potential of on-device patient man-
agement using COVID-MobileXpert.

II. METHOD

A. Model Architecture and KTD Training Scheme

We employ DenseNet-121 architecture as the template to
pre-train and fine-tune the AP and RF networks. In addi-

tion, among well-studied lightweight CNNs [12], we select
the most well-applied network MobileNetV2, and the most
lightweighted network SqueezeNet as the candidate MS net-
works for on-device COVID-19 case screening and radiolog-
ical trajectory prediction. Fig. 1 illustrates the three-player
KTD training framework where the knowledge of abnormal
CXR images is transferred from AP network to RF network
and knowledge of discriminating COVID-19, non-COVID-19,
and pneumonia is distilled from the RF to the MS network.

We pre-train the AP network as the source task (Fig. 1a),
i.e., lung disease classification, and fine-tune the RF network
as the destination task (Fig. 1b). Different from recent studies
[17] that pre-train the models with natural image datasets
such as ImageNet, we pre-train the DenseNet-121 based AP
network using the more related ChestX-ray8 dataset [16]
of 108,948 lung disease cases to extract the CXR imaging
features of lung diseases instead of generic natural imaging
features. After that we fine-tune the RF network using a
smaller compiled dataset of 3 classes of CXR images, i.e.,
COVID-19, normal and pneumonia. The RF network is then
used to train the lightweight MS network, e.g., MobileNetV2,
or SqueezeNet, via knowledge distillation.

As shown in the MS section in Fig. 1c, after knowledge
distillation, the trained MS network can triage patients by
screening COVID-19 cases following the blue arrow. Then
a radiological trajectory prediction model is further developed
based on the trained MS network (Fig. 1d). Following the
purple arrow, given a series of longitudinal CXR images from
one patient, all images are fed into the pre-trained MS network
for extracting disease-specific features. These features are then
aggregated using different schemes before prediction. Here we
investigate two different schemes: 1) calculating the difference
between the last two CXR images’ features; 2) chronologically
concatenating all features. After feature aggregation, two fully
connected layers are randomly initialized and trained with
softmax loss function for the trajectory prediction.
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Fig. 2. An example of data preparation for a series of longitudinal
CXR images with radiological trajectory labels. The patient is in
critical condition on t3 then recovered afterward.

B. Loss Functions

As stated above, a unique challenge in medical imaging
classification is the so-called “hard sample problem” [18],
i.e., a subtle difference on the ROI across the images with
a large amount of shared fore- and backgrounds. Motivated
by this, we use an in-house developed loss function, i.e.,
Probabilistically Compact (PC) loss, for training the MS model
and compared with ArcFace [19], the additive angular margin
loss for deep face recognition, using the classical softmax loss
as the baseline. Both PC and ArcFace losses are designed for
improving classification performance on hard samples. PC loss
is to encourage the maximized margin between the most prob-
able label (predictive probability) and the first several most
probable labels whereas ArcFac loss is to encourage widening
the geodesic distance gap between the closest labels. In terms
of predicted probabilities, DNN robustness is beneficial from
the large gap between fy(x) and fk(x) (k �= y), where fy(x)
represents the true class and fk(x) (k �= y) represents the
most probable class. Indeed, the theoretical study [20] in deep
learning shows that the gap fy(x)−maxk fk(x) can be used
to measure the generalizability of DNNs.

The PC loss to improve CNN’s robustness is as follows:

Lpc(θ) =
1

N

K∑

k=1

∑

ik∈Sk

K∑

j=1,j �=k

max{0, fj(xik)+ξ−fk(xik)},
(1)

where N is the number of training samples, ξ > 0 is the proba-
bility margin treated as a hyperparameter. Here, we include all
non-target classes in the formulation and penalize any classes
for each training sample that violate the margin requirement
for two reasons: (1) by maintaining the margin requirement
for all classes, it provides us convenience in implementation
as the first several most probable classes can change during the
training process; and (2) if one of the most probable classes
satisfies the margin requirement, all less probable classes will
automatically satisfy this requirement and hence have no effect
on the PC loss. Compared with previous works that explicitly
learn features with large inter-class separability and intra-class

compactness, the PC loss avoids assumptions on the feature
space, instead, it only encourages the feature learning that
leads to probabilistic intra-class compactness by imposing a
probability margin ξ.

III. EXPERIMENT AND RESULTS

A. Datasets
The CXR image dataset for COVID-19 patient triage is

composed of 179 CXR images from normal class [21], 179
from pneumonia class [21] and 179 from COVID-19 class
containing both PA (posterior anterior) and AP (anterior pos-
terior) positions [22]. All images are resized to 256 × 256
pixels and then center-cropped to 224 × 224 pixels before
being fed into networks [22]. We split the dataset into train-
ing/validation/testing sets with 125/18/36 cases (7:1:2) in each
class. Since some patients have multiple images, we sample
images per patient for each split to avoid images from the
same patient being included in both training and testing sets.

For the radiological trajectory dataset, we assign a opacity
score S for each COVID-19 positive CXR image in [22] using
the scoring system provided by [8]. Fig. 2 shows an example
of how we generate CXR image sequences and assign corre-
sponding radiological trajectory labels (i.e., “Worse”, “Stable”,
“Improved”). Given a COVID-19 patient’s CXR images over
four time points (the maximum length is set to four time
points), we can create three CXR image sequences with zero-
padding. For each sequence, we calculate the difference in the
score of the last two CXR images. If the difference is larger
than 0.3 the sequence is categorized as “Worse”, if the differ-
ence is less than −0.3, it is labeled as “Improved”, otherwise,
the category is “Stable”. We collect a total of 159 CXR image
sequences from 100 patients in [22] and the dataset contains
76 “Worse” samples, 38 “Stable” samples, and 45 “Improved”
samples. Similarly, we split it into training/validation/testing
sets with 111/16/32 samples (7:1:2).

B. Implementation Details
We implement our model on a GeForce GTX 1080ti GPU

platform using PyTorch. The network is trained with the Adam
optimizer for 50 epochs with a mini-batch size of 32 (triage
task) and 10 (follow-up task). The parameter values that give
rise to the best performance on the validation dataset are used
for testing. Similar to [11], when training the radiological
trajectory prediction model, we employ the pre-trained MS
network as a feature extractor (fixed weights). To overcome
the overfitting problem, we also apply a dropout regularization
with a rate of 0.5.

C. Tunning Parameters
ξ: in the PC loss formula (Eq. 1), a larger value of ξ

will encourage the probabilistic intra-class compactness. α: in
knowledge distillation [13], [14], it regularizes the ‘strength’
of knowledge distillation by specifying the relative contribu-
tions of the distillation loss. T : it represents temperature in
distillation loss. As T increases, the probability distribution
generated by the softmax loss becomes softer, providing more
information from RF model.
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MobileNetV2/SqueezeNet (T=5)
α PC(ξ = 0.8) PC(ξ = 0.995) ArcFace SM

0.2 0.870/0.798 0.833/0.777 0.870/0.750 0.861/0.777
0.4 0.880/0.777 0.870/0.815 0.861/0.796 0.833/0.759
0.6 0.851/0.796 0.851/0.787 0.851/0.805 0.861/0.796
0.8 0.880/0.824 0.870/0.796 0.851/0.796 0.833/0.787

MobileNetV2/SqueezeNet (α = 0.8)
T PC(ξ = 0.8) PC(ξ = 0.995) ArcFace SM
1 0.851/0.750 0.880/0.814 0.870/0.796 0.870/0.796
5 0.880/0.824 0.870/0.796 0.851/0.796 0.833/0.787
10 0.880/0.796 0.842/0.750 0.861/0.787 0.870/0.824

TABLE I
CLASSIFICATION PERFORMANCE OF MS NETWORKS, THE VALUES IN ./.

INDICATE MOBILENETV2 VS. SQUEEZENET.

MobileNetV2/SqueezeNet (DenseNet-121)
Classifiers Difference Concatenation

Logistic Regression 0.560/0.640 (0.720) 0.760/0.720 (0.800)
Gradient Boosting 0.680/0.640 (0.680) 0.680/0.680 (0.680)

Random Forest 0.680/0.600 (0.680) 0.720/0.680 (0.720)
Our FC-classifier 0.720/0.680 (0.720) 0.800/0.760 (0.800)

TABLE II
PERFORMANCE COMPARISON OF TWO FEATURE AGGREGATION SCHEMES
(DIFFERENCE VS. CONCATENATION) WITH FOUR DIFFERENT CLASSIFIERS
USING TWO MS NETWORKS (MOBILENETV2 AND SQUEEZENET) AS THE

FEATURE EXTRACTOR. VALUES IN PARENTHESES INDICATE THE UPPER
BOUND OF ACCURACY YIELDED BY RF NETWORK (DENSENET-121).

D. Evaluation of COVID-19 Patient Triage Performance

We first report the classification accuracy to select the best
MS model under different values of hyperparameters, followed
by evaluation of the best model’s discriminating power of
COVID-19 using AUROC values. With the knowledge transfer
from the AP network pre-trained with a number of lung disease
cases, the RF network demonstrates a remarkably high accu-
racy of 0.935 in the classification. Distilling knowledge from
the RF network to the lightweight MS network, we observe
an impressive performance that a vast majority of accuracy
values are well above 0.850. Table I shows the results of both
MobileNetV2 and SqueezneNet architecture with different
settings. It is clear that the knowledge distillation is essential to
train the lightweight MS network since the MS network alone,
without knowledge distillation, achieves a baseline accuracy
of 0.843 (MobileNetV2) and 0.732 (SqueezeNet), which are
lower than the performance shown in Table I. In addition, we
note that the performance of MobileNetV2 and SqueezeNet
are not sensitive to the choice of Parameters T and α, but
sensitive to the choice of loss functions. Overall, the PC loss
performs the best across all settings, indicating the quality
of knowledge distilled to the MS network plays a pivotal
role to ensure an accurate on-device performance. In order
to evaluate the triage performance under the different decision
thresholds, we use the AUROC value to assess how well the
model is capable of discriminating COVID-19 cases. Both
MobileNetV2 and SqueezeNet achieve high AUROC values
of 0.970 and 0.964 when discriminating COVID-19 cases
against mixed pneumonia and normal cases demonstrating
strong potential for on-device triage.

E. Evaluation of COVID-19 Patient Follow-up Performance

Similar to [11], we first report the classification accuracy
of discriminating “Worse” versus “Improved” cases to se-

Mobile Systems Nexus One Pixel Pixel 2 XL
The MS Network CPU Memory CPU Memory CPU Memory

MobileNetV2 69.3 % 69.4 MB 67.2 % 70.5 MB 68.7 % 72.8 MB
SqueezeNet 37.7 % 67.5 MB 29.0 % 29.0 MB 26.7 % 68.6 MB

Nexus S Pixel 2 Pixel 3 XL
MobileNetV2 67.7 % 88.8 MB 66.2 % 69.4 MB 63.6 % 76.5 MB
SqueezeNet 32.7 % 64.4 MB 28.8 % 70.1 MB 25.8 % 66.1 MB

TABLE III
COMPARISON OF RESOURCE CONSUMPTION OF THE TWO MS NETWORKS
DEPLOYED TO THE SIX ANDROID BASED MOBILE DEVICES. THE ENERGY
CONSUMPTION IS HEAVY FOR MOBILENETV2 BASED APP BUT MEDIUM

FOR SQUEEZENET BASED APP ON ALL DEVICES.

lect the best combination of classifiers and feature aggre-
gation schemes, followed by evaluation of the best model’s
performance using AUROC values. Based on the extracted
features, four classifiers are trained for radiological trajectory
prediction: 1) logistic regression; 2) gradient boosting; 3)
random forest and 4) MS networks followed by fully con-
nected layers (our FC-classifier). As shown in Table II, we
observe the classifiers trained based on the feature extracted
from both compact MS networks, achieve a very similar
level of performance to large scale RF network. This again
demonstrates that KTD training architecture with PC loss
performs a high-quality knowledge distillation. When doing
comparison between the feature aggregation schemes, we can
see a significant improvement from using a series of longitu-
dinal features over using only the difference between the last
two sets of features. As for classifier selection, compared with
these conventional classifiers, our FC-classifier is able to learn
a series of subtle changes related to radiological features from
CXR images, thus achieving a better performance. As a result,
the best on-device performance is obtained by our FC-classifier
with feature concatenation using MobileNetV2, which attains
the upper bound of accuracy (0.800) yielded by DenseNet-
121. Duchesne et al. [11] also report a high accuracy (0.827)
of predicting the “Worse” category based on the feature
extracted from a single CXR with their highly imbalanced
testing dataset, which contains over 84.6% samples labeled
as “Worse”. However, the reported accuracy is lower than a
simple baseline: a dummy classifier that always predicts the
most frequent label “Worse” would yield a higher accuracy of
0.846. To make a comparison, we reimplement their model
[11] on our more balanced dataset and record a result of
0.600, which implies that using the feature from a single
CXR may not be sufficient to predict radiological trajectory.
In order to systematically evaluate the performance of the MS
networks under the different decision thresholds, we again
use the AUROC value to assess how capable the model is
in discriminating “Worse” cases from “Improved” cases. It is
important to note that MobileNetV2 networks can achieve a
high AUROC value of 0.883 enabling it to identify “Worse”
cases and show a significant potential of on-device follow-up.

IV. PERFORMANCE EVALUATION ON MOBILE DEVICES

For on-device COVID-19 patient triage and follow-up with
resource constraints, resource consumption is also an impor-
tant consideration for performance evaluation in addition to
accuracy. In order to systematically assess the performance of
our COVID-19 on-device app, we select six mobile systems
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released following a chronic order, i.e., Nexus One / Nexus S
(low-end); Pixel/ Pixel 2 (mid-range) and Pixel 2 XL/ Pixel
3 XL (high-end). Using the Pytorch Mobile framework, we
deploy the three MS networks to the six Android based mobile
systems and compare the resource consumption with regard to
CPU, memory and energy usages.

In Table III, it is clear that the MobileNetV2 based COVID-
19 app is resource-hungry, demonstrated by much higher re-
source consumption than SqueezeNet. Thus, the high accuracy
achieved by MobileNetV2 is at the cost of high resource
consumption. Within each app, we observe a downward trend
in resource consumption following the chronic order, reflecting
a continuous improvement of mobile device hardware. Overall,
MobileNetV2 based COVID-19 apps are more suitable for
high-performing mobile devices due to the high accuracy
achieved with a higher resource consumption. On the other
hand, SqueezeNet is more suitable for low-end mobile devices
with both lower accuracy and resource consumption.

V. CONCLUSIONS

The classical two-player knowledge distillation framework
[13] has been widely used to train a compact network that is
hardware-friendly with ample applications [12]. In the related
task of on-device natural image classification, the teacher
network is pre-trained with ImageNet and distill the knowledge
to a lightweight student network (e.g., MobileNetV2). This
two-player framework, although seemingly successful, can be
problematic for on-device medical imaging based COVID-19
case screening and radiological trajectory prediction described
herein. The large gap between natural images and the medical
images of a specific disease such as COVID-19 makes the
knowledge distillation less effective as it is supposed to be.
The small number of labeled COVID-19 images for training
further aggravates the situation.

In our three-player KTD framework, knowledge transfer
from the AP network to the RF network can be viewed
as a more effective regularization as they are built on the
same network architecture, which in turn, make the knowledge
distillation more effective since the RF network and MS
network share the same training set. Different from what has
extensively investigated focusing on the impact of distillation
strength and temperature, we uncover a pivotal role of employ-
ing novel loss functions in refining the quality of knowledge
to be distilled. Hence our three-player framework provides a
more effective way to train the compact on-device model using
a smaller dataset while preserving performance.

From a more broad perspective, the three-player KTD
framework is generally applicable to train other on-device
medical imaging classification and segmentation apps for
point-of-care screening of other human diseases such as lung
[16] and musculoskeletal [23] abnormalities.
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