
2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

© IEEE 2021. This article is free to access and download, along with 
rights for full text and data mining, re-use and analysis.

555

Machine Learning to Predict ICU Admission, ICU 

Mortality and Survivors’ Length of Stay among 

COVID-19 Patients: Toward Optimal Allocation of 

ICU Resources  

Tingting Dan1, #, Yang Li1, #, Ziwei Zhu1, #, Xijie Chen1, Wuxiu Quan1, Yu Hu1, Guihua Tao1, Lei Zhu1, Jijin Zhu3, Yuyan 

Jin1, Longgeng Li1, Chaokai Liang2, Hanchun Wen4,*, Hongmin Cai1,*  
1School of Computer Science and Engineering, South China University of Technology, Guangzhou, China 

2School of Software Engineering, South China University of Technology, Guangzhou,  China 
3Emergency Department, The First Affiliated Hospital of Guangxi Medical University, Guangxi,  China 

4Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi,  China   
# These authors contributed equally to this work.

* Corresponding authors: hmcai@scut.edu.cn, wenhanchun@gxmu.edu.cn.

Abstract—COVID-19 causes burdens to the ICU. Evidence-
based planning and optimal allocation of the scarce ICU 
resources is urgently needed but remains unaddressed. This 
study aims to identify variables and test the accuracy to predict 
the need for ICU admission, death despite ICU care, and among 
survivors, length of ICU stay, before patients were admitted to 
ICU. Retrospective data from 733 in-patients confirmed with 
COVD-19 in Wuhan, China, as of March 18, 2020. Demographic, 
clinical and laboratory were collected and analyzed using 
machine learning to build the predictive models. The built 
machine learning model can accurately assess ICU admission, 
length of ICU stay, and mortality in COVID-19 patients toward 
optimal allocation of ICU resources. The prediction can be done 
by using the clinical data collected within 1-15 days before the 
actual ICU admission. Lymphocyte absolute value involved in 
all prediction tasks with a higher AUC. The online predictive 
system is freely available to the public 
(http://212.64.70.65:8000/). 

Keywords—Coronavirus Disease 2019 (COVID-19), ICU 
admission, mortality, machine learning, the turnover rate of ICU. 

I.� INTRODUCTION

Coronavirus Disease 2019 (COVID-19) has rapidly spread 
around the world [1]. As of November 16th, 54, 906, 130 
diagnoses and 1, 325, 621 deaths have been reported globally 
[2]. The number of people infected with the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) increases 
every day. 

A significant challenge of COVID-19 is its threat to scarce 
medical resources [3]. Of special interest is how to best 
allocate the intensive care unit (ICU) resources [4]. Toward 
this goal, some studies model basic reproduction rate hoping 
to estimate how many ICU beds are needed [5], other studies 
focus on how to reduce infections [6], while others seek 
treatments to reduce ICU admissions or shorten ICU stays [7]. 

We aimed to design a data-driven framework to optimally 
allocate ICU resources. We attempted to address three open 
questions. First, who needs to be admitted to ICU, and what 
risk factors contribute to this? Age is a factor, so are baseline 
conditions, but exceptions exist [8]. Herein we use machine 
learning to objectively identify an optimal combination of 
factors that predicts ICU admissions for individual patients. 
Second, can we predict who will, unfortunately, die despite 
being admitted into ICU? At the peak of the outbreak, when 
ICUs are at a severe shortage, clinicians face a “toughest triage” 
[9]�of having to allocate ICUs or ventilators to those patients

with a higher chance of survival or maximum longevity [4]. 
The decision to withdraw life support is primarily based on a 
patient’s age [4], but with moral controversies and a loose 
scientific ground. Mining clinical data may suggest evidence-
based multifactorial guidance on this unfortunate triage. 
Conversely, among those admitted into ICU and later 
discharged alive, can machine learning predict their lengths of 
ICU stay? This third question is important as the length of ICU 
stay is related to ICU’s turnover rate, and prediction of it can 
help policy-makers better allocate or prepare ICU resources. 

II. MATERIALS AND METHODS

A. Study Design – Data-powered ICU Model
Fig. 1 outlines our ICU models. Among all inpatients, the

model aimed to predict who needs to be admitted into ICU 
(Task I). Among patients admitted to ICU, the model aimed 
to predict who would unfortunately die (Task II). And among 
survivors in ICU, the model aimed to predict the length of stay 
in the ICU (Task III). 

B. Participants
This study was approved by the First Affiliated Hospital

of Guangxi Medical University Hospital Ethics Committee, 
with the informed consent being waived (No. 2020 (KY-E-
084)). We retrospectively studied 733 patients diagnosed with 
COVID-19, who were admitted as inpatients to the Huangpi 
Hospital of Traditional Chinese Medicine (Wuhan, China) 
from January to March 2020. Diagnostic methods were 
consistent with other clinical studies [10], and were based on 
positive real-time reverse-transcriptase polymerase chain 
reaction (RT-PCR) assay for nasal and pharyngeal swab 
specimens, or, the existence of Immunoglobulin M (IgM) and 
Immunoglobulin G (IgG) antibodies. 

C. Potential Predictive Variables
We extracted 194 examination indicators (909 variables)

from electronic medical records for each inpatient. These 909 
variables came from three categories: 1) demographic 
information (9 indicators, 9 variables), including sex, age, 
presence or absence of comorbidities (e.g., hypertension, 
diabetes, cerebral infarction and heart disease); 2) clinical and 
course examinations (12 indicators, 42 variables), including 
chest radiographs or CT scan (1-5 scans, average 2.1 scans, 
presence or absence of ground-glass opacity, consolidation, 
reversed halo sign, fibrosis and septal thickening, by the 
consensus of two physicians (HW; JZ)), main symptoms at 
admission (e.g., fever, dry cough, sputum production and  
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Fig. 1. The chart of our work. Task I: Predict Need for ICU, predicting the 

in-patients who need to be admitted into ICU; Task II: Predict ICU-Death, 
predicting the in-patients who will unfortunately die despite being admitted 

into ICU; Task III: Predict Length of ICU Stay, predicting the length of 
ICU stay among survivors. 

fatigue), and daily routine tests (e.g., pulse, respiration rate, 
blood pressure, body temperature, oxygen saturation and heart 
rate); and 3) laboratory indicators (173 indicators, 858 
variables), including complete blood count, coagulation 
profile, serum biochemical tests (including liver function 
(twelve items), renal function electrolyte (twelve items), blood 
lipid and blood glucose (three items), procalcitonin detection 
and fluorescence, glucose determination (various enzymatic 
methods), six sets of coagulation, five categories of complete 
blood count + CRP), respiratory tract infection pathogen IgM 
9 items and influenza A/B virus antigen detection. All 
continuous variables were quantified by six statistical 
measurements, including the mean, median, standard 
deviation, maximum, minimum, and interquartile range (IQR) 
[11]. Categorical variables were expressed as binary variables 
(0,1). 

D. Target Variables 
I. Need or No Need for ICU. The “Need-for-ICU” group 

included patients who were actually admitted into ICU and 
underwent invasive ventilation (N=25), plus patients who died 
of COVID-19 despite never admitted into ICU due to a 
shortage of ICU resources (N=8). The “No-Need-for-ICU” 
group included patients who were not admitted into ICU and 
were later healed (N=700). 

II. ICU Outcome (Death or Survival). Among 25 patients 
who were actually admitted into ICU, the ICU-Survival group 
had 17 patients (10 males and 7 females, ages 63±16 years of 
age), and ICU-Death group had 8 patients (2 males and 6 
females, ages 65±15 years of age). 

III. Length of ICU Stay among Survivors. Survivors (N=17) 
stayed in ICU for 6 ± 2 days (range: 1-21 days). Of them, 3 
(17.6%) patients stayed in the ICU for over two standard 
deviations away from the mean value, thus they were 
considered as outliers and excluded. 

E. Prediction and Variable Selection 
We first examined the predictive value of every variable 

by the receiver operating characteristic curve (ROC) and the 
area under the curve (AUC). Variables were ranked by their 
AUC values for predicting the need for ICU (target variable I) 
and death/survival in ICU (target variable II). 

In multivariate prediction, we used the top ten variables 
with the highest AUC values to build binary classifiers for 
predicting the need for ICU (target variable I) and 
death/survival in ICU (target variable II). We used a support 
vector machine (SVM) [12] with the kernel of poly for the 
binary classification. We employed the ensemble learning 
strategy [13] to balance the sample size between the Need-for-
ICU and No-Need-for-ICU groups. For the death and survival 
groups, we further conducted the recursive feature elimination 
[14] to select the significant features. Using target variable I 
as an example, our training set contained 586 patients (560 
patients in the No-Need-for-ICU group and 26 in the Need-
for-ICU group), and our testing set contained 147 patients 
(140 No-Need-for-ICU and 7 Need-for-ICU). We divided 560 
No-Need-for-ICU patients into 22 groups, each coupled with 
26 Need-for-ICU patients. Thus, the 22 groups of balanced 
training subset were used to train 22 SVM models and to be 
applied on the test samples, where the final predicted class was 
obtained by majority voting. In the multivariate prediction of 
the length of ICU stay for survivors, we used the least absolute 
shrinkage and selection operator (LASSO) regression model. 
We used the L1-norm regularizer to encourage only a few 
variables being selected (i.e., the sparsity of the LASSO 
model). The variables ranked within the top ten largest 
absolute value of regression coefficients were selected and 
analyzed individually. 

III. RESULTS 

A. Characteristics of Patients 
Demographic and clinical characteristics are analyzed. 

The median age of the collected 733 patients was 50 years 
(IQR 39-61). There were 406 (55.4%) males. The numbers of 
male and female patients in each age interval (0-17, 18-24, 25-
49, 50-64, >65 years) are ([7, 6], [14, 6], [184, 147], [130, 99], 
[70, 65]). Most patients in the Need-for-ICU were above 50 
years of age. Of the patients admitted into ICU, death 
happened in 5% patients in the 25-49 years age group, 14% of 
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patients in the 50-64 years age group, and 18%  of patients in 
the >65 years age group. Comorbidities existed in 222 patients 
[30.3%], including diabetes (48 [6.5%]), hypertension (108 
[14.7%]), hyperlipidemia (5 [0.7%]), cerebral infarction (11 
[1.5%]) hepatorenal insufficiency (17 [2.3%]) and heart 
disease (33 [4.5 %]). The most comm symptoms at onset of 
illness were fever, dry cough or fatigue ((595 [81.2%] 
patients); common symptoms were sputum production (578 
[78.9%]), food refusal or feeding difficulties (29 [4.0%]) and 
CT scan for double lung infection (499 [68.1%]). 

B. Prediction of ICU Admission 
When considered alone, ten clinical variables achieved the 

highest AUC predicting a patient’s need for ICU admission 

(Table I). They were: the mean of oxygen saturation 

(SaO2_mean, AUC=0.95), the mean of high sensitivity 

troponin I (hs-cTnI_mean, AUC=0.94), the mean of 

myoglobin (Mb_mean, AUC=0.92), the mean of albumin 

(Albumin_mean, AUC=0.87), the mean of lactate 

dehydrogenase (LDH_mean, AUC=0.87), the variance of 

high sensitivity troponin I (hs-cTnI_var, AUC=0.85), the 

variance of myoglobin (Mb_var, AUC=0.85), the mean of D-

Dimer (D-Dimer_mean, AUC=0.84), the mean of 

lymphocyte percentage (LP_mean, AUC=0.83), and the 

mean of lymphocyte absolute value (LAV_mean, 

AUC=0.83). The Need-for-ICU and No-Need-for-ICU 

groups had significantly different values in these variables (p-
value < 0.001, their box-plots are shown in Fig. 2). 

Multivariate analysis found that jointly considering these 

top ten factors had an accuracy superior to most single variate. 

Its accuracy and AUC were 0.83 and 0.84 for predicting 

whether inpatients will need ICU care (Fig. 3A). 

C. Prediction of ICU-Death 
Table II lists the top ten clinical variables that, when 

considered alone, best predicted death in ICU. They were: the 
mean of lymphocyte percentage (LP_mean, AUC=0.97), the 
mean of lymphocyte absolute value (LAV_mean, AUC=0.96), 
the mean of lactate dehydrogenase (LDH_mean, AUC=0.89), 
the mean of D-Dimer (D-Dimer_mean, AUC=0.88), the mean 
of Albumin (Albumin_mean, AUC=0.83), the mean of 
adenosine deaminase (ADA_mean, AUC=0.78), the variance 
of lactate dehydrogenase (LDH_var, AUC=0.76), the variance 
of direct bilirubin (DBIL_var, AUC=0.62), the variance of 
respiratory rate (RR_var, AUC=0.58) and the variance of the 
pulse (Pulse_var, AUC=0.52). Their corresponding boxplots 
with respect to the two types of patients were also visualized 
in Fig. 4. LP, LAV and D-Dimer were indicated to be 

statistically different (p-value  0.001). A patient admitted 

into ICU was more likely to die with a lower LP, lower LAV, 
lower Albumin, higher LDH, higher D-Dimer, larger 
fluctuation (variance) of ADA, larger fluctuation (variance) of 
RR, larger fluctuation (variance) of DBIL, and larger 
fluctuation (variance) of the pulse. 

Multivariate analysis found that the performance of the top 
ten factors was superior to all single variate (Fig. 3B). Its 
accuracy and AUC were 0.92 and 0.98 using 3-fold cross- 
validation for predicting whether inpatients will unfortunately 
die despite being admitted into ICU. 

D. Prediction of Length of ICU Stay among Survivors 
Table III shows that the top ten clinical variables most 

predictive of length of ICU stay among survivors were: the 

mean of lymphocyte absolute value (LAV_mean, MAE=1.91 
days), the mean of erythrocyte count (RBC_mean, MAE=1.68 
days), the mean of total cholesterol (TCHO_mean, 
MAE=2.22 days), adenovirus IgM antibody (ADV-
IgM_mean, MAE=2.25 days), the mean of hypersensitive C-
reactive protein (hs-CRP_mean, MAE=2.04 days), the 
variance of high sensitivity troponin I (hs-cTnI_var, 
MAE=1.92 days), the variance of total cholesterol 
(TCHO_var, MAE=2.12 days), Q fever Rickettsia IgM 
antibody (Q-fever IgM, MAE=2.01 days), heart disease 
(MAE=1.34 days) and age (MAE=1.72 days). If the patient 
was older and suffered from heart disease, the longer they 
stayed in the ICU. As well as the abnormal values for LAV, 
RBC, TCHO, hs-cTnI, hs-CRP, Q-fever IgM and ADV-IgM 
affected the length of stay in the ICU.  

Multivariate analysis found that the performance of the top 
ten factors was superior to all single variate (Fig. 3C). The 
mean absolute error (MAE) was obtained using 3-fold cross-
validation, it yields the results of 0.723 on the data set and 
implies that we achieved an error of less than one day 
predicting the length of ICU stay among survivors before the 
patients were admitted to ICU. 

 
Fig. 2.  The boxplots of the distributions of top ten factors in the need-for-ICU 
group versus no-need-for-ICU groups. 

no-need-for-ICU need-for-ICU need-for-ICUno-need-for-ICU

need-for-ICUno-need-for-ICU need-for-ICUno-need-for-ICU

need-for-ICUno-need-for-ICU need-for-ICUno-need-for-ICU

need-for-ICUno-need-for-ICU need-for-ICUno-need-for-ICU

need-for-ICUno-need-for-ICU

Oxygen saturation_mean, p-value<0.0001

Albumin_mean, p-value<0.0001

D-Dimer_mean, p-value<0.0001

High sensitivity troponin I_mean, p-value=0.1045

Myoglobin_mean, p-value=0.1260

Lactate dehydrogenase_mean, p-value<0.0001 High sensitivity troponin I_var, p-value<0.0001

Myoglobin_var, p-value<0.0001

Lymphocyte percentage_mean, p-value<0.0001 Lymphocyte absolute value_mean, p-value<0.0001

need-for-ICUno-need-for-ICU

Task I: Predict Need for ICU
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Fig. 3. Multivariate analysis for three tasks. Left: ROC for predicting need for ICU admission, on the testing set based on SVM of the selected 10 features. 

Middle: ROC for predicting ICU-Death using 3-fold cross-validation, on the whole set based on SVM of the selected 10 features. Right: predicted versus actual 
length of ICU stay in leave-one-out cross validation. 

TABLE I.   

SINGLE-VARIATE ANALYSIS FOR TASK I. ‘_MEAN’ AND ‘_VAR’ DENOTES THE MEAN AND VARIANCE OF CONTINUOUS VARIABLES, 

RESPECTIVELY. 

Task I-Predict need for ICU 

 
Optimal 

threshold 

(unit) 

Under the 

optimal 

threshold 

Sensitivity 

Under the 

optimal 

threshold 

Specificity 

AUC 

Clinical and course examinations 

Oxygen 

saturation 

(SaO2_mean) 

< 88.0 

(%) 

0.800 0.966 0.948  

 

Laboratory indicators 

High sensitivity 

troponin I (hs-

cTnI_mean) 

> 20.3 

(pg/ml) 

1.00 0.909 0.936  

Myoglobin 

(Mb_myouean) 

> 51.55 

(ng/ml) 

1.00 0.806 0.924  

Albumin 

(Albumin_mean) 

< 33.125 

(g/L) 

0.688 0.940 0.867  

Lactate 

dehydrogenase 

(LDH_mean) 

> 227.33 

(u/l) 

0.833 0.771 0.866  

High sensitivity 

troponin I 

(hs-cTnI_var) 

> 19.36 

(pg/ml2) 

0.80 0.970 0.850  

Myoglobin 

(Mb_var) 

> 27.56 

(ng/ml2) 

0.80 
0.897 

0.850  

D-Dimer 

(D-Dimer_mean) 

> 1.71 

(ug/ml) 

0.667 0.895 0.841  

Lymphocyte 

percentage 

(LP_mean) 

< 16.48 

(%) 

0.742 0.897 0.830  

Lymphocyte 

absolute value 

(LAV_mean) 

< 0.8875 

(10^9/L) 

0.710 0.867 

 

0.830  

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 
1.0 

0.5 
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Fig. 4.  The boxplots of the distributions of top ten factors in the ICU-survival 
versus ICU-death groups. 

IV. DISCUSSION 

Our study aimed to use machine learning to provide early, 
quantitative and objective suggestions for the optimal 
planning and allocation of the scarce ICU resources during the 
COVID-19 outbreak (Fig. 1, study design). 

We started from whether it is possible to use clinical 
information before a patient was admitted into ICU to predict 
the patient’s future need for ICU admission. There is 
increasing interest in predicting the severity of COVID-19, but 
“severity” is not always clearly defined – some defined it as 
death or needing ventilators [15], others defined it based on 
lesion volumes in lung images [16] or based on guidelines 
from Health Commission of specific nations [10]. Ours is the 
first that specifically focuses on the need for ICU admission 
(Fig. 1, Task I). The perspective is to tie the severity of 
COVID-19 to the actual ICU load [17], [18]. We conducted 
the first study to show that admission to ICU could be 

predicted, 1-15 days before the patient was admitted into ICU. 
This would give hospitals and policymakers precious time 
window to potentially allocate patients into hospitals with ICU 
capacities or to estimate ICU shortages [4]. 

We showed that jointly considering our selected top ten 
clinical variables achieved a higher accuracy (AUC=0.8429, 
Fig. 3A) than most individual variables alone (Table I). 
Noteworthy, we found that three single variables with higher 
AUC, Sensitivity and Specificity on the whole set, which are 
oxygen saturation (SaO2, AUC=0.948, Sensitivity=0.800, 
Specificity=0.966), high sensitivity troponin I (hs-cTnI, 
AUC=0.936, Sensitivity=1.000, Specificity=0.909) and 
myoglobin (Mb, AUC=0.924, Sensitivity=1.000, 
Specificity=0.806). A patient was more likely to need ICU 
admission if the oxygen saturation (SaO2) was lower than88% 
(AUC=0.95), the high sensitivity troponin I (hs-cTnI) was 
higher than 20.3 pg/ml, or myoglobin (Mb) was lower than 
51.55 ng/ml. The latter two indicated cardiac muscle 
abnormalities. In previous perceptions, the value of SaO2 is 
95%-98% in normal people, yet the value of SaO2 was lower 
than 88% in the patients with COVID-19. It indicated that the 
patient was in a hypoxic state and needed to be treated with 
ventilators (invasive or non-invasive). Furthermore, oxygen is 
stored in muscle tissue, which is the energy supply generation 
system when energy is needed for muscle exercise. 
Myocardium is slightly damaged. In other words, it enters the 
blood circulation directly from myocardial cells. 

The second contribution of the paper is that we showed the 
possibility to predict who would, unfortunately, die despite 
being admitted into ICU. When Wuhan, China, and Lombardy, 
Italy experienced their peaks of the COVID-19 outbreak, an 
unfortunate reality was that clinicians had to decide, among 
many patients who urgently needed ICU admissions, who 
were the lucky few that could be admitted into ICU [19]. A 
major consideration in this sad decision was the chance to 
survive if admitted into ICU, or the expected longevity [4]. 
Elderly or diabetic patients, among others, were often 
sacrificed [20].  

In the first such study, we found that the somewhat 
“inevitable death” among patients admitted into ICU was best 
predicted by lymphocyte percentage (LP), lymphocyte   
absolute value (LAV), lactate dehydrogenase (LDH), D-
Dimer, albumin, adenosine deaminase (ADA), direct bilirubin 
(DB), respiratory rate (RR) and pulse. D-Dimer proved to be 
a risk factor in previous work [21], the value is higher than  
5.41 ug/ml, it indicated that the circulatory system is in a state 
of high coagulation, and can easily lead to pulmonary 
embolism. LDH and DB were also identified as risk factors 
[15]. Lymphocyte, albumin and adenosine deaminase all 
heralded by virus infection and damaged the human immune 
system. Large fluctuations in RR and pulse in the clinical 
courses indicated that the patients were extremely unstable. 
These factors were not closely related to the age and diabetes 
in the aforementioned research to a certain extent, they all 
directly reflected the manifestation of COVID-19.  

In the third piece of the paper, we showed that the length 
of ICU stay could be predicted among those discharged alive 
from ICU. Herein we focused on the length of ICU stay among 
survivors, because the survivors can objectively respond to the 
progress of the course of the disease. Predicting the length of 
ICU stay can also help quantify the turnover rate of ICU. We 
found that, older age (>60 years) and with heart disease 
together best predicted a longer stay at ICU among survivors. 

ICU-survival ICU-death

Lymphocyte absolute value_mean, p-value<0.0001

ICU-survival ICU-death

Lactate dehydrogenase_mean, p-value=0.0146

ICU-survival ICU-death

D-Dimer_mean, p-value=0.0004

ICU-survival ICU-death

Albumin_mean, p-value=0.0036 Adenosine deaminase_mean, p-value=0.0949

ICU-survival ICU-death

Lactate dehydrogenase_var, p-value<0.0001

ICU-survival ICU-death ICU-survival ICU-death

ICU-survival ICU-death

Pulse_var, p-value=0.0518

ICU-survival ICU-death

Lymphocyte percentage_mean, p-value<0.0001

Direct bilirubin_var, p-value<0.0001

Respiratory rate_var, p-value=0.0066

ICU-survival ICU-death

Task II: Predict ICU-Death
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Additionally, a patient stayed longer in ICU before discharged 
alive if the patient had higher total cholesterol (possibly 
hyperlipidemia). 

Noteworthy, lymphocyte absolute value involved in all 
predictive tasks, its abnormality verified that COVID-19 
patients were viral infectious diseases. 

These contributions came with certain limitations. First, 
like in other pilot machine learning studies of COVID-19 [15],  
there is need for a larger sample size (like us, they used 
hundreds of patients), need for more balanced data (like us, 
they had more patients with favorable outcomes and patients 
with adverse outcomes), need for multi-site verification (like 
us, two of three COVID-19 machine learning studies were on 
single-site data), and need to generalize to multi-national data 
(like us, they used data from Wuhan, China). Second, our high 
prediction accuracy only provided scientific evidence to assist 
patient triage and allocation of ICU resources. Moral and legal 
issues are considered beyond the scope of this study. 

Despite limitations, our study objectively analyzed and 
predicted the patients who will enter the ICU, mortality and 

the length of stay in ICU. With the epidemic continuing to 
spread in many countries, maybe there will be a new round of 
outbreaks, our strategy provides quantitative evidence and 
method to calculate the turnover rate of the ICU, thus 
facilitating the optimal allocation of ICU resources. 

V. CONCLUSION 

This pilot study shows that machine learning could predict 
which patient with COVID-19 needs ICU admission and 
which patients would, unfortunately, still die even admitted to 
ICU, and among survivors, the length of ICU stay. All 
predictions were achieved 1-15 days before the patients were 
actually admitted to ICU. The high predictive power provides 
a quantitative reference to better plan and allocates ICU 
resources. 
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TABLE II. 

 SINGLE-VARIATE ANALYSIS FOR TASK II. ‘_MEAN’ AND ‘_VAR’ DENOTES THE MEAN AND VARIANCE OF CONTINUOUS VARIABLES, 

RESPECTIVELY. 

Task II-Predict ICU-Death 

 Optimal 

threshold 

(unit) 

Under the 

optimal 

threshold 

Sensitivity 

Under the 

optimal 

threshold 

Specificity 

AUC 

Laboratory indicators 
Lymphocyte 

percentage 

(LP_mean) 

< 6.6 

(%) 

1.0 0.941 0.971    

Lymphocyte 

absolute value 

(LAV_mean) 

< 0.645 

(10^9/L) 

1.0 0.824 0.961  

Lactate 

dehydrogenase 

(LDH_mean) 

> 428.0 

(u/l) 

0.857 0.833 0.893  

D-Dimer 

(D-Dimer_mean) 

> 5.41 

(ug/ml) 

0.875 0.882 0.876  

Albumin 

(Albumin_mean) 

< 30.0 

(g/L) 

0.571 1.0 0.832  

Adenosine 

deaminase 

(ADA_mean) 

> 12.0 

(U/L) 

0.857 0.647 0.777  

Lactate 

dehydrogenase 

(LDH_var) 

< 144.89 

(u/l2) 

1.0 0.583 0.762  

Direct bilirubin 

(DBIL_var) 

< 1.58 

(umol/L2) 

1.0 0.353 0.622  

Clinical and course examinations 
Respiratory rate 

(RR_var) 

< 0.1875 

(Times2 / 

min2) 

0.625 0.588 0.577  

Pulse 

(Pulse_var) 

< 0.24 

(Times2 / 

min2) 

0.625 0.588 0.518  

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 

0.9 0.8 0.7 0.6 1.0 0.5 
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TABLE III. 

SINGLE-VARIATE ANALYSIS FOR TASK III. ‘_MEAN’ AND ‘_VAR’ DENOTES THE MEAN AND VARIANCE OF CONTINUOUS VARIABLES.  

Task III-Predict length of ICU Stay 

 
Correlation p_value 

Lasso 

Coefficient 

Prediction 

MAE 

Laboratory indicators 
Adenovirus IgM 

antibody  

(ADV-IgM) 

-0.351 0.218 0.757 2.254  

Total cholesterol 

(TCHO_mean) 

0.231 0.424 0.340 2.219  

Total cholesterol 

(TCHO_var) 

-0.419 0.134 0.867 2.121  

Hypersensitive C-

reactive protein 

(hs-CRP_mean) 

-0.311 0.278 0.538 2.035  

Q fever Rickettsia 

IgM antibody 

(Q-fever IgM) 

-0.234 0.420 1.821 2.015  

High sensitivity 

troponin I 

(hs-cTnI_var) 

-0.50 0.069 0.671 1.924  

Lymphocyte 

absolute value 

(LAV_mean) 

0.40 0.156 4.246 1.912  

Erythrocyte Count 

(RBC_mean) 

0.669 0.009 2.477 1.678  

Demographic information 
Age 

 

-0.614 0.019 0.081 1.721  

Heart disease 

 

0.641 0.013 3.036 1.343  
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