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Generating Novel Compounds Targeting SARS-CoV-

2 Main Protease Based On Imbalanced Dataset  

Abstract—The de novo drug design plays an important role 
in the drug discovery. Recently deep learning based method 
has been popular as a promising approach for the design of 
novel drugs with desirable properties. However, conventional 
target-specific generative models mainly concentrate on the 
known inhibitors and thus produce similar molecules. And 
these derivatives of known inhibitors are probably negative 
against the same target. Considering the cost of chemical 
synthesis and experimental validation, the low false positive 
rate of generative molecules is very important. In this paper, 
we propose an efficient pipeline to generate novel SARS-CoV-2 
3C-like protease inhibitors. Based on the GPT2 generator and 
the well performing multi-task predictor which achieves high 
precision on the highly imbalanced 3CL in vitro screening 
dataset (650 positive of 297,467 molecules), we acquired a 
number of novel 3CL-target compounds and analyzed their 
molecular properties. Moreover, we applied randomized 
SMILES for data augmentation of positive molecules to create 
larger chemical space for the generator. Finally, the selected 
positive compounds with desirable properties are exhibited, as 
well as their nearest neighbors of 3CL inhibitors which have 
already been verified in vitro. 

Keywords—de novo drug design, SARS-CoV-2, 3C-like 
protease, imbalanced dataset, transformer 

I. INTRODUCTION 

The ongoing COVID-19 pandemic has so far sickened 
more than twenty millions and killed hundreds of thousands 
people across globe, which is caused by SARS-CoV-2, a 
member of the family Coronaviridae [1]. Similar to MERS-
CoV and SARS-CoV, SARS-CoV-2 can cause severe 
respiratory diseases in human. It is urgent to find some ways 
to inhibit the virus and get everything back on track. Given 
the fact that the development of effective and safety vaccine 
can take years, discovery of drugs that inhibit SARS-CoV-2 
would be very important, especially for those people who 
had already been infected. However, the effect of 
commercial drug repurposing seems to be lower than 
expected [2, 3]. Perhaps the de novo design of novel
compounds that specifically targeting SARS-CoV-2 may be 
a good choice. One main challenge for traditional drug 
design is multi-objective optimization problem, that is, 
chemists have to consider many parameters that are hard to 
explore systematically, as well as increasingly large and 

complex chemical space which has been now estimated more 
than 1060

 molecules.  

More recently, as a powerful tool for big data, deep 
learning has been introduced into the area of drug discovery 
and drug design. Researchers took large sets of existing 
compounds to train their model and then generated novel 
compounds according to the distribution. There are several 
ways for representing compounds for machine learning 
models. A broadly used input format is Simplified Molecular 
Input Line Entry Specification (SMILES), which encodes 
compound into a sequence of ASCII strings using a depth-
first graph traversal. With SMILES as put, researchers has 
proposed many deep models for drug molecules generation. 
Segler et al. [4] introduced a recurrent neural network (RNN) 
based model to generate novel molecules, which is trained to 
predict the next character given previous characters in the 
input SMILES. They further fine-tuned the model on sets of 
known inhibitors and thus produced potential novel 
compounds against targets. Interestingly, they simulated the 
Design-Synthesis-Test Cycles to design positive molecules, 
but the generalization of target prediction part was critical. In 
another study, Gómez-Bombarelli et al. [5] reported a 
Variational Autoencoder (VAE) method consisting of three 
coupled parts: encoder, decoder, and predictor. The encoder 
converted the one-hot vector of SMILES into a real-valued 
dense vector, the decoder converted this vector back to 
SMILES representation vector, and the predictor estimated 
chemical properties based on the latent dense vector. Another 
promising method is to design drug using Generative 
adversarial network (GAN).  Guimaraes et al. [6] proposed a 
method combined GAN and reinforcement learning (RL), 
which bias the model to generate molecules with desirable 
properties. RL has increasingly become a popular reward 
function, which can be combined or separately used, to fine 
tune the generator to produce molecules with high reward. 
For example, Zhavoronkov et al. [7] discovered discoidin 
domain receptor 1 (DDR1) portent novel inhibitor in 21 days 
by the combination of VAE and RL.  

During the COVID-19 pandemic, these AI aided methods 
have naturally attracted attention for the fast design of novel 
antivirals and several teams have reported some target 
specific generative molecules for SARS-CoV-2. Tang et al. 
presented a deep Q-learning network combined with the 
fragment-based drug design for generating drugs and 
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Fig. 1. The schematic of proposed method

exhibited 47 potential inhibitors targeting SARS-CoV-2 3CL 
protease [8]. Integrating protein pocket and ligand features,  
Zhavoronkov et al. showed 10 representative generated 
SARS-CoV-2 inhibitors that target on 3C-like protease [9]. 
Another study proposed a generative framework CogMol to 
design drug candidates targeting on three relevant proteins of 
SARS-CoV-2 with high off-target selectivity [10].  

However, to acquire desirable inhibition activity, most 
target specific generative models were fine-tune on the 
known inhibitors against given targets and thus produced 
similar molecules. In fact, many derivatives of known 
inhibitors are probably to be negative, even against the same 
targets. Keeping the balance between novelty and binding 
affinity of generative molecules remains a challenge. 
Considering the cost of chemical synthesis and experimental 
validation, the low false positive rate of generative molecules 
is very important, that is, excluding molecules with low 
binding possibility as much as possible. 

Inspired by previous studies, we propose a pipeline to 
generate novel SARS-CoV-2 3CL protease inhibitors (as 
displayed in Fig. 1), which consists of generator (generate 
molecules), filter (control property) and predictor (get 
positive molecules). At the beginning, the GPT-2 generator 
is trained on 1.9 million bioactive molecules and then 
produces diverse new compounds. After passing filter, the 
remaining generative molecules would be predicted by the 
multi-task predictor and those positive molecules would be 
used to fine-tune the generator. For each epoch, generator 
produces 100,000 new molecules. These molecules would be 
assessed by several scoring metrics and the ratio of predicted 
positive would be calculated. Rather than fine-tuning 

generator directly on the known 3CL inhibitors, we prefer to 
fine-tune our generator based on the predicted positives. 
Most importantly, the well performing multi-task predictor is 
critical for this task, which is pre-trained on large 
heterogeneous datasets and fine-tuned by experimental 3CL 
protease inhibitors. The predictor achieves Precision=0.67 on 
the highly imbalanced 3CL inhibitors dataset (650 positive of 
297,467 total), which means the false positive is relatively 
low. Notably, the ratio of predicted positives to total 
generations is extremely low at early epochs (e.g., 16 of 
100,000 at 1

st
 epoch), which is similar to real-world situation 

that the hit rates are very low. Thus we explore data 
augmentation for positive molecules by randomized SMILES 
technique to create larger chemical space for generator. 
Finally, the selected generative molecules are exhibited, as 
well as their corresponding nearest neighbors of the 
experimental 3CL inhibitors.  

II. METHODS 

A. Data 
ChEMBL-27, which contains 1.9 million bioactive 

molecules with drug-like properties, is used to pre-train the 
generator [11]. A SARS/MERS/SARS-CoV-2 3CL protease 
inhibitor specific dataset is collected and used to fine-tune 
the predictor, which contains 650 positive and 296,817 
negative molecules. The inhibitors with binding affinity 
(IC50/Kd/Ki)  lower than 10 μM are regarded  as positive. 

B. Generator  
Here we use GPT-2 to generate molecules. GPT-2, the 

direct successor to GPT, consists of transformer decoder 

modules. Briefly, four basic components in transformer are 
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multi-head attention, residual connection, normalization and 

linear layer. Instead of performing a single attention 

function with -dimensional keys, values and queries, 

multi-head attention allows the model to jointly attend to 

information from different representation subspaces at 

different positions [12]: 

� �����

� where � ����

 Where the projections are parameter matrices 

, and , in 
which , and h is the number of heads. In practice, 
we compute each matrix of outputs as ‘scaled dot-product 
attention’: 

  (3) 

Equation (3) computes the compatibility function using a 
feed-forward network with a single hidden layer, and apply a 
softmax function to obtain the weights on the value.  

GPT-2 is trained using causal language modeling, that is, 
GPT-2 learns to predict a word given only its left context. 
And this property makes GPT-2 very good at text generation.  

C. Filter  
The chemical validity and uniqueness of generated 

molecules are checked by RDKit package and the invalid 
and duplicated molecules are excluded. Then several metrics 
are used to filter these molecules to ensure the desired drug 
properties. Specifically, the molecular weight is in the range 
of 200 to 550 Dalton, the number of hydrogen acceptors is 
not more than 10, the number of rotatable bonds is not more 
than 10 and the octanol-water partition coefficient (logP) is 
not more than 5.   

D. Predictor 
Here we use a multi-task CNN model as predictor. 

Briefly, the model consists of two parts: shared layers and 
task-specific layers. The shared layers are designed to learn a 
joint representation for all tasks and the task-specific layers 
use the joint representation to learn the weights of specific 
blocks based on specific tasks. Here two related tasks are 
defined: binary classification and regression. The multi-task 
model was pre-trained by large amounts of data from various 
heterogeneous protein-ligand datasets (unpublished). Then 
the model is fine-tuned on the imbalanced 3CL inhibitors 
dataset.  

E. Evaluation 
The metrics Accuracy, Precision, Recall, F1score, Area 

under the curve (AUC) and Matthews correlation coefficient 
(MCC) are used to evaluate the performance of predictor. 
Formulas are listed below: 

� � ����

� � ����

� � �	��

� � �
��

� � ����

where TP is true positive, TN is true negative, FP is false 
positive, FN is false negative, P is positive, N is negative.  

Besides, four objectives including solubility, drug-
likeness, synthesizability and chemical similarity are used to 
evaluate generated molecules [13]. Briefly, solubility refers 
to octanol-water partition coefficient (logP), which is the 
concentration ratio of the substance between a water-
saturated octanolic phase and an octanol-saturated aqueous 
phase, and indicates the lipophilicity of molecules [14]. The 
logP of a potential orally active drug should not more than 
five. Drug-likeness, which indicates how likely a molecule 
can be a drug, is scored by Quantitative Estimate of 
Druglikeness (QED) [15]. Usually the QED score is in the 
range of 0 to 1, the higher score the better. Synthesizability 
refers to how easy a molecule can be synthesis and is 
quantified by Synthetic Accessibility (SA) score [16]. The 
SA score is between 1 (easy to make) and 10 (very difficult 
to make). Chemical similarity, which indicates how similar 
is a molecule to another, plays an important role in drug 
discovery such as identifying compounds with similar 
bioactivities based on structural similarity. The Tanimoto 
similarity metric is used to evaluate the similarity between 
molecules. 

III. RESULTS 

A. Predictor Training  
A well performing predictor is extremely important for 

this task. We are more depending on the performance of 
predictor to tell us whether the generated molecules are 
“true”, compared to an image discriminator. A recent study 
showed that the imbalanced nature of the datasets has a 
negative impact on the classification performance of machine 
learning algorithms [17]. In their study, the precision scores 
are extremely low (most lower than 0.01) on several highly 
imbalanced drug datasets, although several tricks has been 
tried.   

Here we use a multi-task CNN model as predictor. The 
multi-task predictor was previously pre-trained by large 
amounts of data from various heterogeneous protein-ligand 
datasets (unpublished). To verify the effectiveness of fine-
tune (in which the model has learned latent “knowledge” 
from heterogeneous protein-ligand interactions), we compare 
the performance of models either fine-tuned or trained from 
scratch on 3CL-inhibitor dataset. Several metrics are used to 
evaluate the model performance. The MCC is in essence a 
correlation coefficient between the observed and predicted 
binary classifications and is commonly used in the 
imbalanced data classification. It returns a value between −1 
and +1. A coefficient of +1 represents a perfect prediction, 0 
no better than random prediction and −1 indicates total 
disagreement between prediction and observation. 

Different from directly fine-tuned generator on the whole 
3CL inhibitors, we explore the possibility of focusing our 
generator on the predicted positives by predictor. One 
advantage is that the false positive of the predicted positive 
molecules would be very low, because the predictor has 
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“seen” large amounts of experimental negatives and achieves 
high precision on the highly imbalanced 3CL-inhibitor 
dataset. But it should also be noted that the coverage 
probability of experimental positives might be low, as can be 
inferred from the low recall. At last, the fine-tuned model is 
used as our predictor. 

B. Generation of Positive Compounds 
For a more quantitative assessment, we compare the 

positive predictive generated molecules with 650 positive 
3CL inhibitors using the Tanimoto similarity score. Fig. 2 
shows the distributions of the nearest neighbor Tanimoto 
similarity score, which is generated by comparing generated 
molecules and their nearest neighbors in the 3CL inhibitors. 
As epochs goes on, the model produces more and more 
similar molecules to those inhibitors, and most generated 
molecules with Tanimoto similarity score more than 0.7.   

The rediscovery (Tanimoto similarity score=1) means the 
generated molecules has exactly the same substructure 
fingerprint as one positive inhibitor. Interestingly, the model 
have rediscovered 32 different inhibitors within 10 epochs. It 
should be noted that, rather than fine-tuning directly on 3CL 
inhibitors, our generator only “see” positive molecules 
predicted by predictor. The generator is trying to replicate 
the probability distribution of the predictor. Moreover, 38 
and 49 different inhibitors have been re-produced when 
Tanimoto similarity score thresholds are set to 0.9 and 0.8, 
respectively. 

 

 
Fig. 2. Nearest neighbor Tanimotosimilarity of generated molecules for 

3CL-inhibitors. Coordinates of x and y: nearest neighbor Tanimoto 

similarity score and the numbers of generated molecules. 

C. Data Augmentation for Positives 
As mentioned above, the ratio of predicted positives to 

total generations is extremely low at early epochs (e.g., 16 of 
100,000 at epoch 0), which is similar to real-world situation 
that the hit rates are very low. We have explored a data 
augmentation method for these positive predictive generated 
molecules. The numbers of molecules used for fine-tune are 
amplified 10 times each epoch by using randomized 
SMILES technique [18]. Briefly, multiple SMILES strings of 
a molecule can be achieved by randomizing the atom 
ordering, which does not alter the way the molecule graph is 
traversed but changes only the starting point and the order of 
branching paths. Thus a maximum of n! different SMILES 
strings could be generated for a molecule with n heavy atoms.  

The results displayed in Fig. 3 indicate that, this data 
augmentation experiment performs worse than experiment 
without data augmentation. Most generated molecules have 
nearest neighbor Tanomi similarity lower than 0.5, which 
indicates that the distribution of generator is not getting close 
to that of the predictor. The data augmentation group has 
rediscovered 16 different inhibitors, and 23 and 29 different 
inhibitors when the Tanimoto similarity thresholds are set to 
0.9 and 0.8, respectively. 

 
Fig. 3. Nearest neighbor Tanimoto similarity of generated molecules for 

3CL-inhibitors (with data augmentation for positive predictive molecules). 

Coordinates of x and y: nearest neighbor Tanimoto similarity score and the 
numbers of generated molecules. 

D. Property of Generated Molecules 
According to the Lipinski's rule of five, a likely orally 

active drug for human needs to have some limited chemical 
properties and physical properties including:  no more than 5 
hydrogen bond donors, no more than 10 hydrogen bond 
acceptors, a molecular mass less than 500 Daltons, an 
octanol-water partition coefficient (logP) that does not 
exceed 5. After passing the filter, all the remaining generated 
molecules are eligible.  

Validity (%) is the ratio between the number of valid 
molecules and all generated molecules and uniqueness (%) is 
the ratio between the number of unique molecules and all 
valid molecules. As epoch goes on, the validity of no 
augmented group continue increasing, whereas the validity 
of augmented group decreases before it begins to increase. 
This difference suggests that maybe the data augmentation 
introduced some noise to generator in the fine-tuning process. 
As for uniqueness, the data augmentation group performs 
better, which indicates that the degree of variety in this group 
is higher. But the generator may be much easier to get stuck 
in the characteristics of a small group of augmented 
inhibitors, as can be inferred from the number of 
rediscovered inhibitors. The no augmented group has totally 
rediscovered 32 unique inhibitors whereas the rediscovered 
unique inhibitors by the augmented group is 16.  

SA score, which refers to Synthetic Accessibility (SA) 
score, is between 1 (easy to make) and 10 (very difficult to 
make). QED score is in the range of 0 to 1, is used to 
evaluate the drug-likeness of a molecule, the higher score the 
better. The SA scores of augmented group are generally 
higher than those of the no augmented group, which 
indicates the generated molecules in augmented group are a 
bit more difficult to synthesize. The QED scores of both 
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groups increase along epoch, suggesting a trend toward more 
drug-likeness. 

E. Novel Molecules Display 
Some of the selected molecules and their nearest 

neighbors in the known 3CL-inhibitors are also shown in Fig. 
4. Some generated novel molecules have higher QED scores 
than their nearest neighbors, suggesting a higher drug-
likeness. As mentioned above, the filter allows only 
molecules which follow the Lipinski's rule of five to pass,  it 
is not surprising that these novel molecules have better 
properties than the known inhibitors. 

 

 

 
Fig. 4. Selected generated molecules with their nearest neighbors in the 

known 3CL-inhibitors. The number in bracket is the corresponding QED. 

IV. CONCLUSION 

In this study, we introduced a novel pipeline to generate 
novel SARS-CoV-2 3CL protease inhibitors. Based on the 
GPT2 generator and the well performing multi-task predictor 
on the highly imbalanced 3CL dataset, the false positive rate 
of our generative 3CL targeted molecules is presumably low. 
Additionally, we have leveraged randomized SMILES 
method to augment positive molecules, which may create 
larger chemical space for the generator. Finally, several 
selected generative molecules with potential inhibitory 
activity against 3CL protease are shown, along with their 
nearest neighbors of known inhibitors. We hope these 
results would be helpful in the fight against COVID-19. 
Future work will focus on improving the generalizability of 

predictor by using more virus specific data, and the 
optimization of property control process generation process 
by combining reinforcement learning.  
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