
HAL Id: hal-03006764
https://hal.science/hal-03006764

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variant Calling Parallelization on Processor-in-Memory
Architecture

Dominique Lavenier, Remy Cimadomo, Romaric Jodin

To cite this version:
Dominique Lavenier, Remy Cimadomo, Romaric Jodin. Variant Calling Parallelization on Processor-
in-Memory Architecture. BIBM 2020 - IEEE International Conference on Bioinformatics and
Biomedicine, Dec 2020, Virtual, South Korea. pp.1-4. �hal-03006764�

https://hal.science/hal-03006764
https://hal.archives-ouvertes.fr

1

Variant Calling Parallelization
on Processor-in-Memory Architecture

Dominique Lavenier
Univ. Rennes, IRISA / CNRS, INRIA

Rennes - France
lavenier@irisa.fr

Remy Cimadomo, Romaric Jodin

UPMEM
Grenoble - France

rcimadomo,rjodin@upmem.com

Abstract - This paper introduces a new combination of
software and hardware PIM (Process-in-Memory)
architecture to accelerate the variant calling genomic
process. PIM translates into bringing data intensive
calculations directly where the data is: within the DRAM,
enhanced with thousands of processing units. The energy
consumption, in large part due to data movement, is
significantly lowered at a marginal additional hardware
cost. Such design allows an unprecedented level of
parallelism to process billions of short reads. Experiments
on real PIM devices developed by the UPMEM company
show significant speed-up compared to pure software
implementation. The PIM solution also compared nicely to
FPGA or GPU based acceleration bringing similar to twice
the processing speed but most importantly being 5 to 8 times
cheaper to deploy with up to 6 times less power
consumption.

Keywords – variant calling; processing-in-memory; PIM;
bioinformatics, genomic; I/O disk bandwidth; hardware
accelerator; power consumption

I. INTRODUCTION
Variant calling is a fundamental genomic analysis. It

consists in detecting, at a DNA level, small differences between
two genomes. More precisely, from a pool of short DNA
fragments (reads) coming from a specific individual, and
obtained using high throughput sequencing, the objective is to
locate the place, in a reference genome, where short DNA
strings (< 50 bp) differ.

Many software, such as GATK [1], Strelka2 [2], Varscan2
[3], SOAPsnp [4] or DeepVariant [5] have been developed for
that purpose. Although these tools have some advantages and
disadvantages, they are daily used to identify a large number of
specific variations in many health or agronomic application
domaines.

Several methods have been proposed to accelerate variant
calling by the means of parallel and distributed computing
techniques: HugeSeq [6], MegaSeq [7], Churchill [8] and
Halvade [9] support variant calling pipelines related to GATK
[10]. These parallel implementations exploit the fact that the
alignment of one read is independent of the alignment of the
others, while the call of variants is independent from one region

to another. Other parallel pipelines for variant calling include
SpeedSeq [11] and ADAM [12].

Other strategies are based on hardware accelerators. FPGA
technologies are particularly well suited to hardwire DNA
computation intensive algorithms such as sequence alignments
or read mapping. Among recent FPGA systems dedicated to
genomic data analysis, the following platforms demonstrate
significant speed-up compared to standard GATK software: the
Illumina DRAGEN-Bio-IT platform [13] and the WASAI
Lightning platform [14]. These FPGA architectures associate
both reconfigurable computing resources and memory chips.
They provide nice speed-up ranging from 10 to 50 on variant
calling applications.

GPU devices offer another alternative to reduce genomic
analysis runtime, especially for read mapping which is an
important step in the variant calling process [15][16][17][18].
More recently the parallelization of GATK on the NVIDIA
Clara Parabricks pipelines [19] achieves a 35-50X acceleration.

This paper explores another way of speeding up the variant
calling process using a Processing-in-Memory (PIM)
architecture. We present an original parallelization based on
new PIM chips developed by the UPMEM company. Actually,
PIM architecture is not a new concept. In the past, various
research projects have investigated the possibilities to close data
and computation. The Berkley IRAM project [20] probably
pioneers this kind of architecture to limit the Von Neumann
bottleneck between the memory and the CPU. The PIM project
of the University of Notre Dame [21] was also an attempt to
solve this problem by combining processors and memories on a
single chip.

The variant calling task perfectly illustrates how such time-
consuming applications can benefit from the PIM architecture.
The mapping step, which represents a large part of the overall
computation time, is particularly well suited, as fine grained
parallelization can be efficiently executed to perform multiple
independent alignments along the whole reference genome.
Deporting this activity directly to the PIM-DRAM module, and
parallelizing the whole process to hundreds of PIM cores,
avoids a lot of CPU-memory transactions compared to a
standard multithreaded solution.

The objective of the research work presented here, is to
precisely evaluate the potentialities of a PIM architecture
composed of a bunch of UPMEM DIMM modules, coupled to

2

2

the main computer memory bus, on a critical genomic
treatment. A generic variant calling algorithm, called upVC, has
been implemented as a testbed on real PIM components to
provide exact measurement and fair comparison with existing
systems in terms of speed-up, energy consumption and cost.
From a quality point of view, the upVC implementation is not
intended to immediately compete with mature software such as
GATK.

II. UPMEM ARCHITECTURE OVERVIEW
UPMEM’s PIM technology consists of thousands of parallel

coprocessors (called DPU) within the main memory of a host
CPU (e.g., x86, ARM64, or Power9). Standard and UPMEM
DIMMS can coexist on a server to operate both regular
processing and PIM. The CPU provides programming
instructions to DPUs, and collects their results as they operate
individually. This design relieves the CPU from a memory
bottleneck and greatly reduces the energy hungry data
movement.

The UPMEM DDR4 2400 DIMM (dual ranks) comprises
16 PIM enabled chips totaling 128 DPU. A DPU is a 32-bit
processor running at 500MHz. Up to 20 UPMEM DIMMs can
be plugged into a x86 platform, keeping 2 slots per socket for
traditional DRAM. The solution scales with the ability to
increase the number of DPU in a system and can reach 5120
DPUs in a quadri socket platform with 40 PIM DIMMs .

A PIM memory chip contains 8 DPUs. Each DPU is
associated with 64MB of DRAM shared with the host CPU. The
calculations happen on chip and within each unit with a memory
bandwidth of 1GB/s. This is why PIM imposes data locality and
parallelism with the consequence to alleviate the need for
important data movements.

A DPU is a 24 threads, 32-bit RISC processor – with 64-bit
capabilities – working at 500Mhz with an ISA close to
traditional ARM or RISC-V equivalent processors, making it
easily programmable. DPUs have a 64KB of WRAM (Working
RAM) and a 24KB instruction memory, called IRAM, that can
hold up to 4,096 48-bit encoded instructions. DPUs are
independent from each other and run asynchronously.

Every DPU can be programmed individually or in groups
while orchestrated through the host code. The PIM architecture
sits on an efficient toolchain centered around a LLVM based C-
compiler using LLVM v10.0.0 and with Linux drivers for x86
servers. It also contains a full-featured runtime library for the
DPU, management and communication libraries for host to
DPUs operations and a LLDB based debugger. This experiment
has been achieved using the SDK v2020.3.0 [27].

 Figure 2: UPMEM PIM chip diagram

III. EXPERIMENT
The upVC software has been tested on a 1280 DPU

prototype system running at 266 MHz on Human Genome.
Details of the implementation is given in a companion paper
[28].

In order to have a ground truth to validate the correct
functionality of upVC, a simulated sequencing dataset has been
generated using the HG38 Human reference genome from
which 3,153,377 small variants have been inserted. Paternal and
maternal chromosomes have been generated using the
vcf2diploid tool [22]. Short Illumina paired-end reads have
been generated with the ART read simulator [23] with the
following parameters: insert size = 400; standard deviation =
50; read length = 150bp; coverage = 30X. The resulting dataset
contains 586 x 106 reads split into two fastq files. With reads of
length 150bp, the index size for the human genome is equal to
120 GBytes.
 To estimate the variant calling quality, we measure the
following metrics: True Positive (TP), i.e. existing variants
found by upVC; False Negative (FN), i.e. variants not found by
upVC; False Positive (FP), i.e. non existing variants found by
upVC; The following table summarizes the quality.

 substitution insertion deletion

 upVC GATK upVC GATK upVC GATK

TP % 99.77 100 99.10 99.69 99.57 99.98

FN % 0.50 0.23 0.91 0.74 0.57 0.37

FP % 0.23 0 0.90 0.31 0.43 0.02

GATK has been run with standard parameters. Compared to

upVC, the quality is clearly better. However, upVC provides
excellent results and legitimates our variant calling
implementation on PIM architecture, knowing that the current
code has plenty of room for improvement.

The experiments have been done on an Intel® Xeon® Silver
4110 CPU @ 2.1 Ghz, 8 cores with 64 GBytes of RAM,
equipped with 10 additional UPMEM double-rank DIMM
devices with DPU running at 266 MHz. Of a total of 1280
available DPUs (10 x 128), only 1024 full operational DPUs
have been used. The available PIM memory size is thus equal
to 64 GBytes (64 Mbytes per DPU).

The complete execution time to perform the variant calling
is equal to 11048 sec. (~184 minutes). Due to its limit amount
of memory, it requires 3 passes, each one working on a subset
of the bank index.

Extrapolating the real results obtained from this prototype
to a 5120 system running at 600 MHz, the target frequency of
the next generation of DPUs gives an idea of tomorrow PIM
potentiality. Schematically, with 4 times more DPUs running at
a frequency 2.3 times higher, the execution time will be divided
by 9 (4 x 2.25), leading to decrease the total execution time to
20 minutes.

3

3

IV. COMPARISON WITH ALTERNATIVE SYSTEMS
We compare the performances of the upVC PIM

implementation with two other hardware accelerators: Illumina
DRAGEN using proprietary software on 8 FPGA Xilinx
UltraScale Plus 16 nm FPGA [13], and Nvidia Parabricks using
BWA-GATK4 on 8 NVIDIA®Tesla®V100 GPUs [19].

To provide a fair comparison, we extend performance
results to different PIM configurations with increased density
and DPU frequency. At the time of writing, the reference
platform available at UPMEM is a 2*Xeon Silver 4108 with
128GB RAM and 160 GB of PIM memory with 2560 DPUs
clocked at 400MHz. Servers with higher PIM DIMM density
such as the Cooper Lake 4* Xeon Gold 6328H with 5120 DPUs
and the AMD ARM Epyc with 3584 DPUs are in the process of
qualification while DPUs clocked at 500MHz and more are
under development.

Figure 4 reports the execution time of the different systems
to process a typical variant calling operation on a 30X human
genome dataset. The loading of the reference genome in
MRAM is not considered as part of the computation time if
enough PIM memory in a system allows single batch runs of
upVC. In this case, the reference genome loading process only
happens at the start of the server and can be used for all
subsequent sample analysis.

Figure 4: Execution time based on 30X human genome dataset on
FPGA, GPU and PIM

A 2560 DPUs configuration does not allow enough space
in MRAM to load the entire genome and simultaneously retain
enough space to save the reads in MRAM. One DPU has 45,5
MB available to store reference neighbors, which totalizes
116,5 GB with 2560 memory banks, slightly less than the 120
GB of the reference genome. To avoid the need for 2 batches
and consequently load 2 halves of the reference genome with
long HDD transfers we divide the input read buffer by 2. This
way we free enough space for the reference genome but still has
for consequence to double the DPU processing time on this
configuration. Naturally we observe a gain in performance
once the memory space issue is alleviated in 3000+ DPUs
configurations.

Figure 5 gives the power consumption of FPGA, GPU and
PIM systems. The consumption of an FPGA board depends on
its configuration. For this workload it is estimated to be used
near maximum capacity at 320W per board, 90% of its TDP.
The consumption of a V100 GPU is provided by Nvidia and
reaches around 300W in full use. UPMEM provides precise

measurements of a DPU power consumption and depends on its
version and clocking. At 400Mhz, a DPU in current version
v1.2 consumes 160 mW, while it consumes 190 mW at
500MHz. DPUs at 600MHz are benefiting from energy
reduction designs and are expected at around 120mW. The
overall consumption accounts that the charge of DPUs can
hardly go over 90% during the entire execution and that every
PIM module consumes 3W. PIM based configurations are in
average 6x less energy consuming than the considered
alternative accelerators.

Figure 5: Power consumption (hardware accelerator + server) of
PIM, GPU (8 NVIDIA®Tesla®V100) and FPGA (8 FPGA Xilinx
UltraScale) systems.

The consumptions of the server for PIM configurations is
based on the 2*Xeon Silver 4110 with 128GB RAM. The TDP
is given at 190W. An AMD 2*Epyc has a TDP around 280W
and a Cooper Lake with 4* Xeon Gold has a TDP of 700W. We
consider a 2*Xeon Gold 6328H server base for alternative
accelerators to ensure efficient orchestration at TDP of 400W.
3W per 8 GB of memory accounts for the DRAM consumption.

Server and infrastructure costs follow the comprehensive
AWS TCO cost estimator [24]. The estimator accounts for an
annual maintenance of 15% of the hardware cost. The same
logic if applied to each of the considered accelerator’s
hardware. The consumption evaluation is based on previous
energy considerations for a full 3 years and accounts for a
cooling and infrastructure overhead (additional 70% of the
hardware consumption). The cost of electricity is based on
median US commercial price [25]: $0,1/kWh.

Figure 6: years TCO Comparison between PIM configurations
against GPU and FPGA based accelerators for Mapping+Variant
calling.

4

4

A full 3 years on premise FPGA based solution’s TCO
nears $135,000, which accounts for FPGA board at around
$8,800 per unit. It is about 5 times more expensive than
UPMEM PIM solution at identical throughput for a 4096 DPUs
at 500MHz configuration. Note that if we were to consider the
software cost for running Illumina Dragen, an additional
$572,000 would be required over a period of 3 years,
multiplying the cost reduction made by UPMEM solution by
yet again a factor 5.

Nvidia quotes its V100 GPU at $9,500 per unit resulting in
a full 3 years TCO of Nvidia Parabrick estimation over
$140,000. In terms of algorithms, they are identical to BWA-
GATK4, using DNA-Bricks to port them over GPU
architectures and do not represent an overhead cost to use the
solution. At equivalent throughput it is about 8 times more
costly than UPMEM PIM FASTQ to VCF using 4096 DPUs at
500MHz.

Thus, UPMEM technology offers a drastic financial and
environmental gain compared to both Nvidia and Illumina
solutions. Though it does not reach an as high accuracy,
development efforts on upVC are progressively narrowing the
gap.

V. CONCLUSION
This implementation demonstrates the performance of the

PIM architecture when dedicated to a large scale and highly
parallel task in genomics: every DPU independently computes
read mapping against his fragment of the reference genome
while the variant calling is pipelined on the host.

The algorithm works well within the confines of the
experiment but still remains a long way from a real-world
application with a holistic alignment strategy. It is a prototype
that verifies the capabilities of a PIM architecture in the context
of mapping and variant calling. The low CPU usage of this
implementation allows additional CPU based functions to
complete the pre-variant calling workflow that would pave the
road towards a commercial application.

In comparison to existing accelerators, the PIM solution
promises to deliver equal to better performances but with
massive energy reduction and TCO gains. It is a crucial
advantage in sight of the prominent place that genomics is about
to occupy in the world of data computing and for its
accessibility by medical institutions across the globe. A
configuration with 3584 DPUs at 600MHz has the best TCO
profile and could bring the cost of human genome analysis near
$0,34/genome.

PIM is a promising technology that shows a great potential
to solve some of the challenges of genomics in terms of
actionable computing power, programmability and cost.

REFERENCES
[1] Van der Auwera, G. A. et al. From FastQ data to high confidence

variant calls: the Genome Analysis Toolkit best practices
pipeline. Curr Protoc Bioinformatics 43(11), 10.1–33 (2013).

[2] Kim, S. et al. Strelka2: fast and accurate calling of germline and
somatic variants. Nat Methods 15, 591–594 (2018).

[3] Koboldt, D. C., Larson, D. E. & Wilson, R. K. Using VarScan 2
for Germline Variant Calling and Somatic Mutation Detection.
Curr Protoc Bioinformatics 44(15.4), 1–17 (2013).

[4] Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K. SNP
detection for massively parallel whole-genome resequencing.
Genome Res. 2009;19(6):1124–1132.

[5] Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz,
Thomas Colthurst, Alexander Ku, Dan Newburger, Jojo Dijamco,
Nam Nguyen, Pegah T. Afshar, Sam S. Gross, Lizzie Dorfman,
Cory Y. McLean, and Mark A. DePristo. A universal SNP and
small-indel variant caller using deep neural networks. Nature
Biotechnology 36, 983–987 (2018).

[6] Lam HYK, Pan C, Clark MJ, Lacroute P, Chen R, Haraksingh R,
et al. Detecting and annotating genetic variations using the
HugeSeq pipeline. Nature Biotechnology. 2012 Mar;30(3):226–
229

[7] Puckelwartz MJ, Pesce LL, Nelakuditi V, Dellefave-Castillo L,
Golbus JR, Day SM, et al. Supercomputing for the parallelization
of whole genome analysis. Bioinformatics. 2014
Jun;30(11):1508–1513

[8] Kelly BJ, Fitch JR, Hu Y, Corsmeier DJ, Zhong H, Wetzel AN,
et al. Churchill: an ultra-fast, deterministic, highly scalable and
balanced parallelization strategy for the discovery of human
genetic variation in clinical and population-scale genomics.
Genome biology. 2015 Jan;16(1)

[9] Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade:
scalable sequence analysis with MapReduce. Bioinformatics.
2015 Mar;31(15):2482–2488

[10] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K,
Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data.
Genome research. 2010 Sep;20(9):1297–1303

[11] Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB,
Garrison EP, et al. SpeedSeq: ultra-fast personal genome analysis
and interpretation. Nature Methods. 2015 Aug;12(10):966–968.

[12] Nothaft F. Scalable Genome Resequencing with ADAM and
avocado. UC Berkeley; 2015. Technical Report no UCB/EECS-
20IS-6S.

[13] Illumina DRAGEN Bio-IT Platform v3.2.8. User Guide. 2019
[14] https://www.wasaitech.com/genomics
[15] Y. Liu, B. Schmidt, D. Maskell: CUSHAW: a CUDA compatible

short read aligner to large genomes based on the Burrows-
Wheeler transform, Bioinformatics, (2012) 28(14): 1830-1837

[16] Y. Liu, B. Schmidt: CUSHAW2-GPU: empowering faster gapped
short-read alignment using GPU computing. IEEE Design & Test
of Computers 31(1):31-39, 2014

[17] Klus P, Lam S, Lyberg D, Cheung MS, Pullan G, McFarlane I,
Yeo GSH, Lam BY. (2012) BarraCUDA - a fast short read
sequence aligner using graphics processing units. BMC Research
Notes, 5:27.

[18] Langdon WB, Lam BY, Petke J, Harman M. (2015) Improving
CUDA DNA Analysis Software with Genetic Programming.
Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation - GECCO '15

[19] https://www.nvidia.com/en-us/docs/parabricks/
[20] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K.,

Kozyrakis, C., Thomas, R., and Yelick, K. (1997). "A Case for
Intelligent RAM: IRAM," IEEE Micro, 17 (2), pp. 34–44

[21] https://sdk.upmem.com/
[22] Kogge, P. M., T. Sunaga and e. a. E. Retter (1995). Combined

DRAM and Logic Chip for Massively Parallel Applications. 16th
IEEE Conf. on Advanced Research in VLSI, Raleigh, NC

[23] Rozowsky J. et al. AlleleSeq: analysis of allele-specific
expression and bin ding in a network framework. Mol Syst Biol.
2011

[24] Huang, Weichun et al. “ART: a next-generation sequencing read
simulator.” Bioinformatics (Oxford, England) vol. 28,4 (2012):
593-4. doi:10.1093/bioinformatics/btr708

[25] https://awstcocalculator.com/
[26] U.S. Energy Information Administration’s Electric Power

Monthly report
[27] https://sdk.upmem.com/2020.3.0/
[28] D. Lavenier, E. Jodin, R. Cimadomo, Variant Calling

Parallelization on Processor-in-Memory Architecture, bioRxiv,
https://www.biorxiv.org/content/10.1101/2020.11.03.366237v1

