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Abstract - This paper introduces a new combination of 
software and hardware PIM (Process-in-Memory) 
architecture to accelerate the variant calling genomic 
process. PIM translates into bringing data intensive 
calculations directly where the data is: within the DRAM, 
enhanced with thousands of processing units. The energy 
consumption, in large part due to data movement, is 
significantly lowered at a marginal additional hardware 
cost. Such design allows an unprecedented level of 
parallelism to process billions of short reads. Experiments 
on real PIM devices developed by the UPMEM company 
show significant speed-up compared to pure software 
implementation. The PIM solution also compared nicely to 
FPGA or GPU based acceleration bringing similar to twice 
the processing speed but most importantly being 5 to 8 times 
cheaper to deploy with up to 6 times less power 
consumption. 
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I.  INTRODUCTION  
Variant calling is a fundamental genomic analysis. It 

consists in detecting, at a DNA level, small differences between 
two genomes. More precisely, from a pool of short DNA 
fragments (reads) coming from a specific individual, and 
obtained using high throughput sequencing, the objective is to 
locate the place, in a reference genome, where short DNA 
strings (< 50 bp) differ.  

Many software, such as GATK [1], Strelka2 [2], Varscan2 
[3], SOAPsnp [4] or DeepVariant [5] have been developed for 
that purpose. Although these tools have some advantages and 
disadvantages, they are daily used to identify a large number of 
specific variations in many health or agronomic application 
domaines.  

Several methods have been proposed to accelerate variant 
calling by the means of parallel and distributed computing 
techniques: HugeSeq [6], MegaSeq [7], Churchill [8] and 
Halvade [9] support variant calling pipelines related to GATK 
[10]. These parallel implementations exploit the fact that the 
alignment of one read is independent of the alignment of the 
others, while the call of variants is independent from one region 

to another. Other parallel pipelines for variant  calling include 
SpeedSeq [11] and ADAM [12]. 

Other strategies are based on hardware accelerators. FPGA 
technologies are particularly well suited to hardwire DNA 
computation intensive algorithms such as sequence alignments 
or read mapping. Among recent FPGA systems dedicated to 
genomic data analysis, the following platforms demonstrate 
significant speed-up compared to standard GATK software: the 
Illumina DRAGEN-Bio-IT platform [13] and the WASAI 
Lightning platform [14]. These FPGA architectures associate 
both reconfigurable computing resources and memory chips. 
They provide nice speed-up ranging from 10 to 50 on variant 
calling applications. 

GPU devices offer another alternative to reduce genomic 
analysis runtime, especially for read mapping which is an 
important step in the variant calling process [15][16][17][18]. 
More recently the parallelization of GATK on the NVIDIA 
Clara Parabricks pipelines [19] achieves a 35-50X acceleration. 

This paper explores another way of speeding up the variant 
calling process using a Processing-in-Memory (PIM) 
architecture. We present an original parallelization based on 
new PIM chips developed by the UPMEM company. Actually, 
PIM architecture is not a new concept. In the past, various 
research projects have investigated the possibilities to close data 
and computation. The Berkley IRAM project [20] probably 
pioneers this kind of architecture to limit the Von Neumann 
bottleneck between the memory and the CPU. The PIM project 
of the University of Notre Dame [21] was also an attempt to 
solve this problem by combining processors and memories on a 
single chip. 

The variant calling task perfectly illustrates how such time-
consuming applications can benefit from the PIM architecture. 
The mapping step, which represents a large part of the overall 
computation time, is particularly well suited, as fine grained 
parallelization can be efficiently executed to perform multiple 
independent alignments along the whole reference genome. 
Deporting this activity directly to the PIM-DRAM module, and 
parallelizing the whole process to hundreds of PIM cores, 
avoids a lot of CPU-memory transactions compared to a 
standard multithreaded solution. 

The objective of the research work presented here, is to 
precisely evaluate the potentialities of a PIM architecture 
composed of a bunch of UPMEM DIMM modules, coupled to 
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the main computer memory bus, on a critical genomic 
treatment. A generic variant calling algorithm, called upVC, has 
been implemented as a testbed on real PIM components to 
provide exact measurement and fair comparison with existing 
systems in terms of speed-up, energy consumption and cost. 
From a quality point of view, the upVC implementation is not 
intended to immediately compete with mature software such as 
GATK. 

II. UPMEM ARCHITECTURE OVERVIEW 
UPMEM’s PIM technology consists of thousands of parallel 

coprocessors (called DPU) within the main memory of a host 
CPU (e.g., x86, ARM64, or Power9). Standard and UPMEM 
DIMMS can coexist on a server to operate both regular 
processing and PIM. The CPU provides programming 
instructions to DPUs, and collects their results as they operate 
individually. This design relieves the CPU from a memory 
bottleneck and greatly reduces the energy hungry data 
movement. 

The UPMEM DDR4 2400 DIMM (dual ranks) comprises 
16 PIM enabled chips totaling 128 DPU. A DPU is a 32-bit 
processor running at 500MHz. Up to 20 UPMEM DIMMs can 
be plugged into a x86 platform, keeping 2 slots per socket for 
traditional DRAM. The solution scales with the ability to 
increase the number of DPU in a system and can reach 5120 
DPUs in a quadri socket platform with 40 PIM DIMMs .  

A PIM memory chip contains 8 DPUs. Each DPU is 
associated with 64MB of DRAM shared with the host CPU. The 
calculations happen on chip and within each unit with a memory 
bandwidth of 1GB/s. This is why PIM imposes data locality and 
parallelism with the consequence to alleviate the need for 
important data movements.  

A DPU is a 24 threads, 32-bit RISC processor – with 64-bit 
capabilities – working at 500Mhz with an ISA close to 
traditional ARM or RISC-V equivalent processors, making it 
easily programmable. DPUs have a 64KB of WRAM (Working 
RAM) and a 24KB instruction memory, called IRAM, that can 
hold up to 4,096 48-bit encoded instructions. DPUs are 
independent from each other and run asynchronously. 

Every DPU can be programmed individually or in groups 
while orchestrated through the host code.  The PIM architecture 
sits on an efficient toolchain centered around a LLVM based C-
compiler using LLVM v10.0.0 and with Linux drivers for x86 
servers. It also contains a full-featured runtime library for the 
DPU, management and communication libraries for host to 
DPUs operations and a LLDB based debugger. This experiment 
has been achieved using the SDK v2020.3.0 [27]. 

 

  
 Figure 2: UPMEM PIM chip diagram  

 

III. EXPERIMENT  
The upVC software has been tested on a 1280 DPU 

prototype system running at 266 MHz on Human Genome. 
Details of the implementation is given in a companion paper 
[28]. 

In order to have a ground truth to validate the correct 
functionality of upVC, a simulated sequencing dataset has been 
generated using the HG38 Human reference genome from 
which 3,153,377 small variants have been inserted. Paternal and 
maternal chromosomes have been generated using the 
vcf2diploid tool [22]. Short Illumina paired-end reads have 
been generated with the ART read simulator [23] with the 
following parameters: insert size = 400; standard deviation = 
50; read length = 150bp; coverage = 30X. The resulting dataset 
contains 586 x 106 reads split into two fastq files. With reads of 
length 150bp, the index size for the human genome is equal to 
120 GBytes. 
      To estimate the variant calling quality, we measure the 
following metrics: True Positive (TP), i.e. existing variants 
found by upVC; False Negative (FN), i.e. variants not found by 
upVC; False Positive (FP), i.e. non existing variants found by 
upVC; The following table summarizes the quality. 
 

 substitution insertion deletion 

 upVC GATK upVC GATK upVC GATK 

TP % 99.77 100 99.10 99.69 99.57 99.98 

FN % 0.50 0.23 0.91 0.74 0.57 0.37 

FP % 0.23 0 0.90 0.31 0.43 0.02 

 
GATK has been run with standard parameters. Compared to 

upVC, the quality is clearly better. However, upVC provides 
excellent results and legitimates our variant calling 
implementation on PIM architecture, knowing that the current 
code has plenty of room for improvement.  

The experiments have been done on an Intel® Xeon® Silver 
4110 CPU @ 2.1 Ghz, 8 cores with 64 GBytes of RAM, 
equipped with 10 additional UPMEM double-rank DIMM 
devices with DPU running at 266 MHz. Of a total of 1280 
available DPUs (10 x 128), only 1024 full operational DPUs 
have been used. The available PIM memory size is thus equal 
to 64 GBytes (64 Mbytes per DPU). 

The complete execution time to perform the variant calling 
is equal to 11048 sec. (~184 minutes). Due to its limit amount 
of memory, it requires 3 passes, each one working on a subset 
of the bank index. 

Extrapolating the real results obtained from this prototype 
to a 5120 system running at 600 MHz, the target frequency of 
the next generation of DPUs gives an idea of tomorrow PIM 
potentiality. Schematically, with 4 times more DPUs running at 
a frequency 2.3 times higher, the execution time will be divided 
by 9 (4 x 2.25), leading to decrease the total execution time to 
20 minutes.  
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IV. COMPARISON WITH ALTERNATIVE SYSTEMS 
We compare the performances of the upVC PIM 

implementation with two other hardware accelerators: Illumina 
DRAGEN  using proprietary software on 8 FPGA Xilinx 
UltraScale Plus 16 nm FPGA [13], and Nvidia Parabricks using 
BWA-GATK4 on 8 NVIDIA®Tesla®V100 GPUs [19]. 

To provide a fair comparison, we extend performance 
results to different PIM configurations with increased density 
and DPU frequency. At the time of writing, the reference 
platform available at UPMEM is a 2*Xeon Silver 4108 with 
128GB RAM and 160 GB of PIM memory with 2560 DPUs 
clocked at 400MHz. Servers with higher PIM DIMM density 
such as the Cooper Lake 4* Xeon Gold 6328H with 5120 DPUs 
and the AMD ARM Epyc with 3584 DPUs are in the process of 
qualification while DPUs clocked at 500MHz and more are 
under development. 

Figure 4 reports the execution time of the different systems 
to process a typical variant calling operation on a 30X human 
genome dataset. The loading of the reference genome in 
MRAM is not considered as part of the computation time if 
enough PIM memory in a system allows single batch runs of 
upVC. In this case, the reference genome loading process only 
happens at the start of the server and can be used for all 
subsequent sample analysis.   

 
Figure 4: Execution time based on 30X human genome dataset on 
FPGA, GPU and PIM 

A 2560 DPUs configuration does not allow enough space 
in MRAM to load the entire genome and simultaneously retain 
enough space to save the reads in MRAM. One DPU has 45,5 
MB available to store reference neighbors, which totalizes 
116,5 GB with 2560 memory banks, slightly less than the 120 
GB of the reference genome. To avoid the need for 2 batches 
and consequently load 2 halves of the reference genome with 
long HDD transfers we divide the input read buffer by 2. This 
way we free enough space for the reference genome but still has 
for consequence to double the DPU processing time on this 
configuration. Naturally we observe a gain  in performance 
once the memory space issue is alleviated in 3000+ DPUs 
configurations.  

Figure 5 gives the power consumption of  FPGA, GPU and 
PIM systems. The consumption of an FPGA board depends on 
its configuration. For this workload it is estimated to be used 
near maximum capacity at 320W per board, 90% of its TDP. 
The consumption of a V100 GPU is provided by Nvidia and 
reaches around 300W in full use. UPMEM provides precise 

measurements of a DPU power consumption and depends on its 
version and clocking. At 400Mhz, a DPU in current version 
v1.2 consumes 160 mW,  while it consumes 190 mW at 
500MHz. DPUs at 600MHz are benefiting from energy 
reduction designs and are expected at around 120mW. The 
overall consumption accounts that the charge of DPUs can 
hardly go over 90% during the entire execution and that every 
PIM module consumes 3W. PIM based configurations are in 
average 6x less energy consuming than the considered 
alternative accelerators. 

 
Figure 5: Power consumption (hardware accelerator + server) of  
PIM, GPU (8 NVIDIA®Tesla®V100) and FPGA (8 FPGA Xilinx 
UltraScale) systems. 

The consumptions of the server for PIM configurations is 
based on the 2*Xeon Silver 4110 with 128GB RAM. The TDP 
is given at 190W. An AMD 2*Epyc has a TDP around 280W 
and a Cooper Lake with 4* Xeon Gold has a TDP of 700W. We 
consider a 2*Xeon Gold 6328H server base for alternative 
accelerators to ensure efficient orchestration at TDP of 400W. 
3W per 8 GB of memory accounts for the DRAM consumption.  

Server and infrastructure costs follow the comprehensive 
AWS TCO cost estimator [24]. The estimator accounts for an 
annual maintenance of 15% of the hardware cost. The same 
logic if applied to each of the considered accelerator’s 
hardware. The consumption evaluation is based on previous 
energy considerations for a full 3 years and accounts for a 
cooling and infrastructure overhead (additional 70% of the 
hardware consumption). The cost of electricity is based on 
median US commercial price [25]: $0,1/kWh. 

 

 
Figure 6:  years TCO Comparison between  PIM  configurations  
against GPU and FPGA based accelerators for Mapping+Variant 
calling.  
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A full 3 years on premise FPGA based solution’s TCO 
nears $135,000, which accounts for FPGA board at around 
$8,800 per unit. It is about 5 times more expensive than 
UPMEM PIM solution at identical throughput for a 4096 DPUs 
at 500MHz configuration. Note that if we were to consider the 
software cost  for running Illumina Dragen, an additional 
$572,000 would be required over a period of 3 years, 
multiplying the cost reduction made by UPMEM solution by 
yet again a factor 5.  

Nvidia quotes its V100 GPU at $9,500 per unit resulting in 
a full 3 years TCO of Nvidia Parabrick estimation  over 
$140,000. In terms of algorithms, they are identical to BWA-
GATK4, using DNA-Bricks to port them over GPU 
architectures and do not represent an overhead cost to use the 
solution.  At equivalent throughput it is about 8 times more 
costly than UPMEM PIM FASTQ to VCF using 4096 DPUs at 
500MHz. 

Thus, UPMEM technology offers a drastic financial and 
environmental gain compared to both Nvidia and Illumina 
solutions.  Though it does not reach an as high accuracy, 
development efforts on upVC are progressively narrowing  the 
gap. 

V. CONCLUSION 
This implementation demonstrates the performance of the 

PIM architecture when dedicated to a large scale and highly 
parallel task in genomics: every DPU independently computes 
read mapping against his fragment of the reference genome 
while the variant calling is pipelined on the host. 

The algorithm works well within the confines of the 
experiment but still remains a long way from a real-world 
application with a holistic alignment strategy.  It is a prototype 
that verifies the capabilities of a PIM architecture in the context 
of mapping and variant calling. The low CPU usage of this 
implementation allows additional CPU based functions to 
complete the pre-variant calling workflow that would pave the 
road towards a commercial application.  

In comparison to existing accelerators, the PIM solution 
promises to deliver equal to better performances but with 
massive energy reduction and TCO gains. It is a crucial 
advantage in sight of the prominent place that genomics is about 
to occupy in the world of data computing and for its 
accessibility by medical institutions across the globe. A 
configuration with 3584 DPUs at 600MHz has the best TCO 
profile and could bring the cost of human genome analysis near 
$0,34/genome.  

PIM is a promising technology that shows a great potential 
to solve some of the challenges of genomics in terms of 
actionable computing power, programmability and cost.  
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