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Abstract—Recent emergence of a new coronavirus, SARS-CoV-
2, has caused the disease COVID-19 and has been declared a
worldwide pandemic. Identification of relevant modules such as
target cells is a significant step for characterizing diseases and
consequently leads to better diagnosis, treatment and prognosis.
High-throughput single-cell RNA-Seq (scRNA-seq) technologies
have advanced in recent years, enabling researchers to investigate
cells individually and understand their biological mechanisms.
Computational techniques such as data clustering, which are
categorized via unsupervised learning methods, are the more
suitable for the pre-processing step in scRNA-seq data analysis.
They can be used to identify a group of genes that belong to
a specific cell type based on similar gene expression patterns.
However, due to the sparsity and high-dimensional nature of this
type of data, classical clustering methods are not efficient. There-
fore, the use of nonlinear dimensionality reduction techniques to
improve clustering results is crucial. In this work, we aim to find
representative clusters of SARS-CoV-2 target cell lung by com-
bining dimensionality reduction and clustering techniques. We
first perform upstream analysis on data, including normalization
and filtering using quality control metrics. We then assess the
impact of different dimensionality reduction techniques on the
clustering results. Our results show that modified Locally Linear
Embedding combined with Independent Component Analysis
have a very positive impact on clustering large-scale COVID-
19 scRNA-seq data. To validate our findings, we identified target
cell types involved in immune system functionality and a list of
overlapping marker genes among COVID-19, Influenza A and
HSV-1 infection.

Index Terms—non-linear dimensionality reduction, clustering,
single-cell RNA sequencing, SARS-CoV-2 target cells, COVID-19

I. INTRODUCTION

Single-cell sequencing is an emerging technology used to
capture cell information at a single-nucleotide resolution and
by which individual cell can be analyzed separately [1]. As
of now, all available single-cell RNA-seq (scRNA-seq) data
have been generated for different purposes [2]. However, these
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high-dimensional and sparse data lead to some analytical
challenges. Analyzing scRNA-seq data can be divided into two
main categories: at the cell level and gene level. Finding cell
sub-networks or highly deferentially expressed tissue-specific
gene lists is one of the common challenges at the cell level
[3]. Arranging cells into clusters to find the heterogeneity in
the data is arguably the most significant step of any scRNA-
seq data downstream analysis. This step could be used to
distinguish tissue-specific sub-networks based on identified
gene sets. Indeed, cell clustering aims to identify cell sub-types
based on the patterns embedded in gene expression without
prior knowledge at the cell level. Since the number of genes
that are profiled in scRNA-seq data is typically large, cells
tend to be located close to each other following nonEuclidean,
but a complex relationship in high-dimensional spaces [4].
Therefore, traditional clustering algorithms are unsuitable for
this challenge, and hence, are not able to efficiently separate
individual cell types. To alleviate this problem of the curse
of dimensionality, several algorithms have been proposed to
accurately cluster cells from scRNA-seq profiles.

Dimensionality reduction techniques have been widely used
in several studies of large-scale scRNA-seq data processing
[5]. Most of the previous studies use principal component
analysis (PCA). However, there was no advantage in keeping
the clustering performance after the changes in the data in
lower dimensions [6]. Other works have also employed PCA
as a pre-processing step to remove cell outliers for per-
forming dimensionality reduction and visualization. Moreover,
several studies have used unsupervised clustering models to
identify rare novel cell types. For instance, the hierarchical
clustering algorithm divides large clusters into smaller ones
or merge each data points into larger clusters progressively.
This algorithm has been employed to analyze scRNA-seq
data by BackSPIN [7] and pcaReduce [8], through dimension
reduction after each division or combination in an iterative
manner. k-Means which is one of the most common clustering
algorithms, has been employed in the Monocle, specifically for
analyzing scRNA-seq data [9]. Also, the authors of [10] used
the Louvain algorithm, which is based on community detection
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techniques to analyze complex networks [11]. However, to
achieve acceptable clustering performance on scRNA-seq data,
other comprehensive studies indicated that hybrid models,
designed as a combination of clustering and dimensionality
reduction techniques, tend to improve the clustering results
[6]. They learned 20 different models using four dimension-
ality reduction method including PCA, non-negative matrix
factorization (NMF), filter-based feature selection (FBFS), and
Independent Component Analysis (ICA). They also used five
clustering algorithms such as k-means, density-based spatial
clustering of applications with noise (DBSCAN), fuzzy c-
means, Louvain, and hierarchical clustering. Their experiments
highlight the positive effect of hybrid models and showed
that using feature-extraction methods could be a good way
to improve clustering performance. Their experimental results
indicate that Louvain combined with ICA performed well in
small feature spaces.

In this paper, we proposed a model to obtain efficient
and meaningful clusters of cells from large-scale COVID-19
scRNA-seq data. We focus on the combination of unsupervised
dimensionality reduction followed by conventional clustering
methods. We investigated different non-linear dimensionality
reduction and manifold learning methods such as standard Lo-
cally Linear Embedding (LLE), modified LLE, and Laplacian
eigenmaps. Also, ICA is employed to enhance visualization
and clustering of the data, and combined with k-means cluster-
ing. Experimental results on a well-known scRNA-seq dataset
show the power of modified LLE and ICA on clustering data
in very low dimensions, providing very high accuracy and
enhanced visualization.

II. MATERIALS AND METHODS

The block diagram of our proposed approach is depicted
in Fig. 1. Based on the main pipeline, the scRNA-seq data is
pre-processed based on the number of cells and the number
of genes. Filtered data is then normalized and scaled. Highly
variable genes are extracted as part of the feature selection
step, and linear regression is one of the most widely-used
methods to correct technical artifacts present in the data based
on the total counts per cell and mitochondrial percentage as
discussed in [10] [14]. The data obtained at this point is then
processed to reduce the dimensions of the feature space into
two or three dimensions; afterwards, k-means clustering is
applied. Besides, We performed ICA on the lower-dimensional
data followed by k-means clustering to achieve meaningful
clusters and enhanced visualization.

A. Dataset

The data used in this study is a gene expression profile
dataset extracted from NCBI’s Gene Expression Omnibus
[12], accession number GSE148729 [13]. The data contains
27,072 gene expression profiles of 48,890 human lung cell
lines, which were sequenced using Illumina NextSeq 500. In
this dataset, different cell lines from lung tissue, which is
one of the main cellular components in the immune system,
were contaminated with SARS-CoV-1 and SARS-CoV-2 and

sequenced at different time slots to study the impact of
infection on immune system over time.

B. Data Pre-processing and Quality Control

This step includes filtering out genes and cells based on
quality metrics, normalization and scaling, feature selection,
and quality control. The Python package, Scanpy, is used to
perform pre-processing and quality control. To this end, we
follow the typical scRNA-seq analysis workflow, as described
in [14]. As shown in Fig. 1, the first step of pre-processing is to
filter poorly expressed genes. Low-quality cells that are dyed,
degraded, or damaged during sequencing are represented by a
low or large number of expressed genes. As such, we filtered
out 6,066 genes expressed in less than three cells and cells
with less than 200 expressed genes. Moreover, we removed
a large number of mitochondrial genes, which are the result
of damaged cells [15], [16]. To remove low-quality cells, we
investigated the distribution of data to estimate quality control
metrics. Based on Fig. 2, the number of expressed genes, i.e.,
the left plot (Fig. 2a) of the figure are mainly between 500
and 2,500 genes. Also, the distribution of the proportions of
mitochondrial genes, i.e., the right plot (Fig. 2c) of the figure,
contains very extreme values, above 0.05. We extracted the
number of genes that are less than 2,500 and mitochondrial
genes less than 5%. Plot in the middle (Fig. 2b) represents
total number of samples per cell.

Then, we normalized the data using the Counts Per Million
(CPM) normalization combined with logarithmic scaling on
the data:

CPM = readsMappedToGene× 1

totalReads
× 106 (1)

where totalReads is the total number of mapped reads of a
sample, and readsMappedToGene is the number of reads
mapped to a selected gene.

At this point, we extracted highly variable genes (HVGs) as
a part of the feature selection step, aiming at minimizing the
search space. We then removed any random noise and held
genes that highlight relevant biological information. Highly-
variable genes are those genes that are expressed more or
less in some cells compared to other ones. Quality control
makes sure that the differences occur because of biological
differences and not technical noise. The simplest approach to
compute such a variation is to quantify the variance of the
expression values for each gene across all samples. Here, we
use log-normalized data because we want to ensure having the
same log-values in the clustering and dimensionality reduction
follow a consistent analysis through all steps. To perform
feature selection, a good mean-variance relationship is desired.
Also, a good trade-off value would help select the subset of
genes that keep useful biological knowledge, while removing
noise. There are several widely-used approaches to find the
best threshold. Based on Fig. 4, we used a minimum of 0.5 for
normalized dispersion, a maximum mean of 3, and a minimum
mean of 0.0125 to select relevant genes. Finally, we obtained
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Fig. 1: Block diagram of the proposed approach.

Fig. 2: (a) The number of expressed genes, (b) the total counts per cell, and (c) the percentage of mitochondrial genes.

2,194 genes with 3,791 cells for downstream analysis. The
normalized dispersion is obtained by scaling the mean and
standard deviation of the dispersion for genes falling into
a given bin for the mean expression of genes. This means
that for each bin of mean expression, highly-variable genes
are selected. The 20 top genes extracted before and after
normalization are shown in Fig. 3.

C. Dimensionality Reduction

High-dimensional gene expression data is unprecedentedly
rich and should be well-explored. In a single-cell expression
profile, each gene appears as a dimension of the data. As
such, dimensionality reduction techniques tend to summarize
biological features in fewer dimensions. With two genes,
we can obtain two-dimensional points, each representing a
cell. To reduce the number of individual dimensions, we
aim to perform dimensionality reduction to obtain the most
informative genes compressed into a smaller number of di-

mensions. As a result, we are able to perform the downstream
analysis with less computational effort. In this regard, we used
some of the dimensionality reduction and manifold learning
techniques such as LLE, Laplacian eigenmaps, and ICA on
this dataset. Here, high-dimensional data is reduced to two and
three dimensions. As a result, we obtain the most informative
components, which are further used for clustering.

1) Locally Linear Embedding: LLE succeeds in discov-
ering the underlying structure of the manifold when used
for dimensionality reduction. This technique is empowered
by preserving “locality” of the data, when reduced to lower
dimensions. In addition, LLE is capable of generating highly
nonlinear embeddings. Consider the sample points in a high-
dimensional space, X = {x1,x2, ...,xn}, where {xj , j ∈ N}
and the weight matrix is represented by W ={wij}. First, a
directed graph G = (X,E,W) is constructed, where the edges
of the graph, E = {eij}, represent the neighbourhood relations
among sample points, X, in the high-dimensional space. Next,
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(a) Top 20 highly-variable genes before normalization.

(b) Top 20 highly-variable genes after normalization.

Fig. 3: Comparison of the top 20 highly-variable genes before
and after normalization.

the weights W = {wij} are assigned to the edges of the graph.
The optimal weights W = {wij} are computed by solving the
following constrained least-squared problem [17]:

min xi −
∑

k∈Kn

wknxk s.t.
∑

k∈Kn

wkn = 1 . (2)

In the second step, the weights are assigned to each edge
of the graph, and each sample is considered as a small linear
patch of the sub-manifold. Finally, the weights are computed
locally and linearly in the data by reconstructing each input
pattern from its k-nearest neighbours, where the reconstruction
error, εr, is calculated in terms of the mean squared error
(MSE) as follows:

εr =
n∑

i=1

xi −
∑

k∈Ki

wkixk

2
(3)

Modified LLE (MLLE), is an enhanced version of standard
LLE and has been shown to be closely related to Local Tangent
Space Alignment (LTSA) [18]. MLLE attempts to exploit the
dense relations that exist in the embedding space.

2) Other Dimensionality Reduction Methods: The Lapla-
cian eigenmaps is a computationally effective approach to
nonlinear dimensionality reduction that possesses locality-
preserving properties and a natural connection to clustering

(a) Dispersion of genes before normalization.

(b) Dispersion of genes after normalization.

Fig. 4: Comparison of dispersion of normalized and not
normalized genes.

[19]. Laplacian eigenmaps are similar to LLE. Given the input
samples X = {x1,x2, ...,xn}, the k nearest neighbours are
computed as the first step of the algorithm.
Typically, the weights are constant, such as wij = 1/k

or wij = e−(
||xi−xj ||2

s ) where s is the scalable parameter.
Let D = {dij} be the diagonal matrix of elements dii =∑n

j=1 wij . The final step is to minimize the reconstruction
loss, εr, of the outputs, Y = {y1,y2, . . . ,yn, }.

εr =
∑

ij

wijyi − yj
2

√
diidjj

(4)

With this function, nearby points are mapped to their nearest
outputs by considering the weights W. The minimum loss
is computed from m + 1 eigenvectors of the matrix L =
I−D−1/2WD−1/2 corresponding to the smallest eigenvalues
of L. The matrix L is a symmetrical, normalized form of
the Laplacian, given by L = D − W. As in LLE, the
eigenvectors corresponding to zero eigenvalues are discarded
and the remaining n vectors are included to obtain the outputs
yi in R

n

ICA is a dimensionality reduction method used to analyze
multivariate data [20]. ICA learns an efficient linear trans-
formation of the data and attempts to find the underlying
components and sources present in the data by its simple
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statistical properties assumptions. Unlike other methods, the
underlying vectors of the transformation are assumed to be
independent of each other, and it uses a non-Gaussian structure
of the data, which is important to retrieve the underlying
components of the transformed data as follows:

r = As

Y = AX
(5)

where r and s are vectors and A is the matrix whose rows
are orthogonal to each other. However, ICA assumes that the
rows are linearly independent, and not necessarily orthogonal.
As such, it leads to more informative components than PCA.
Moreover, ICA does not require to know the output of the
system to break the data into some measurements. The trans-
formed data can then be used for cluster analysis to find a
group of genes with similar expression patterns.

D. Cell Clustering

Clustering is done via k-means, which is the most popular
clustering technique. This algorithm progressively finds a pre-
determined number of k cluster centers by minimizing the
sum of the squared Euclidean distances between each center
and its closest neighbour. The clusters can be denoted as
C = {C1,C2, ...,Ck}. This work includes a methodology
that cooperatively considers ICA and k-means for clustering
the cells.

E. Cluster Annotation

To annotate the cell clusters we obtained, we first extracted
the top 25 differentially expressed genes as markers in each
cluster using the Wilcoxon rank sum test. Then, we found the
corresponding cell types of each group of marker genes in
each cluster. CellKb is a search tool that collects curated cell
types manually from the literature. Its knowledge base includes
403 manually curated publications from over 7,000 studies
published between 2013 and 2020 to extract 1,802 different
cell types. Specific marker genes of cell types in CellKb wer
extracted directly from gene signature from the Human Protein
Altas and MSig-db.

F. Parameter Optimization

With the aim of preserving locality, the number of neigh-
bours used to construct the neighbourhood graph is a very
important parameter in manifold learning techniques. In this
work, this parameter has been learned by running the algorithm
several times on the data, in a range from 4 to 16, and found
11 is the best number nearest neighbours for our experiments.
Also, we use the Euclidean distance metric as the weights of
the edges. Another critical step in any clustering algorithm is
determining the number of clusters, k. Validity indices help
measure how good the clustering is. For our dataset, we ran
the validity of indices and the Silhouette score for a range of
4 to 14 and found 7 as the optimal number of clusters for this
data [21].

G. Performance Evaluation

Generally speaking, the best clustering is the one that main-
tains high intra-cluster distance and gives the most compact
clusters. In this work, we use the Silhouette coefficient, which
is an evaluation metric that measures either the mean distance
between a sample point and all other points in the same
cluster or all other points in the next nearest neighbour cluster.
Consider a set of clusters C = {C1,C2, . . . ,Ck}, output by
a clustering algorithm, k-means in our case. The Silhouette
coefficient, SH , for the ith sample point in cluster Cj , where
j = 1, ..., k, can be defined as follows:

SH(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
, (6)

where a is the mean distance between point xi and all other
points inside the cluster (intra-cluster distance), and b is the
minimum mean value of the distance between a sample point
xi and the nearest neighbour cluster, and are calculated as:

a(xi) =
1

|Ck| − 1

∑

xj∈Ck,i �=j

d(xi,xj)

b(xi) = min
k �=i

1

|Ck|
k∑

j=1

d(xi,xj) .

(7)

We also used Calinski-Harabasz (CH) and Davies-Bouldin
(DB) validity of indices to assess the clustering performance.
Calinski-Harabasz score [22], is a score used to evaluate the
model where a higher score tells better-defined clusters. CH
score is the ratio of the sum of between-clusters dispersion and
of inter-cluster dispersion for all clusters that is as follows:

CH =
tr(SB)

tr(SW )
× n− k

k − 1
(8)

in which n is size of input samples, tr(SB) is the trace of the
between-group dispersion matrix and tr(SW ) is the within-
cluster dispersion.

Davies-Bouldin index [23] is another validity index defined
as the average of the similarity measure of each cluster. DB
is computed as follows:

DB =
1

k

k∑

i=1

maxi �=jsij , (9)

where sij is the ratio between within-cluster distances and
between cluster distances, and is calculated as sij =

wi+wj

dij
.

The smaller DB value the better clustering, and as such, we
aim to minimize Equation (9). Here, dij is the Euclidean
distance between cluster centroids μi and μj , and wi is the
within-cluster distance of cluster Ck.

Overall, we used the Silhouette score to evaluate the clus-
tering performance whereas CH and DB indices used to verify
and find the optimal parameters, namely the best number of
clusters.
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III. RESULTS AND DISCUSSION

A. Clustering Results

After applying manifold learning techniques on the data for
dimensionality reduction, we performed k-means. The results
are depicted in Table I, where the clustering score ranges from
0 to 1. A score close to 1 represents good quality clustering,
with 1 being the best, while a score near zero indicates that
the clusters are not well defined. We observe that using MLLE
the clusters are obtained with a score of 0.94 and that is the
best clustering obtained from our experiments. As we can see
in Fig.8, the cells are compactly bounded in their clusters and
decent separation between the clusters. Also, two-dimensional
ICA on three-dimensional MLLE data has been shown to
provide the best visualization and clustering score of 0.943
because the three-dimensional representation is carried to two-
dimensional and the clusters are well characterized as shown
in Fig. 10.

TABLE I: Comparison of k-means clustering score using
different dimensionality reduction techniques.

DR Technique 2D k-means 3D k-means
Standard LLE 0.623 0.683
Modified LLE 0.938 0.937
Laplacian eigenmap 0.700 0.782

Fig. 5: k-means applied on two-dimensional Laplacian eigen-
maps; outliers have been removed to enhance visualization.

More precisely, two- and three-dimensional Laplacian
eigenmaps, which are depicted in Fig. 5 and 7, show good
cluster separation and enhanced visualization of the data,
with clustering scores of 0.70, and 0.782, respectively. We
can see in Fig. 5 that cells are more scattered between the
clusters using two-dimensional Laplacian eigenmaps and it
is hard to capture cells to form compact clusters, whereas
three-dimensional Laplacian eigenmaps give better clustering
result. Also, when we applied only ICA with k-means, we
obtained below-average results compared to other techniques
as shown in Fig. 6 with clustering score 0.357. This is because
ICA is limited to linear transformations, whereas manifold

learning techniques consider data locality. As such, the latter
can reveal complex relationships among the data points in
higher-dimensional spaces. Therefore, we applied ICA on the
dimensionally-reduced data because we observed interesting
”lines” or ”axes” in the three-dimensional data, and that led
us to think that we could apply ICA to learn the linearly-
independent, not necessarily orthogonal, components of the
distribution of the data, and we witnessed slight improvement
with clustering scores in MLLE and Standard LLE as it is
displayed in Table II. Applying ICA revealed some hidden,
complex relationships among the cells in the clusters which
are not noticeable in three dimensions. As such, we observed
a significant improvement of the clustering score using Lapla-
cian eigenmaps since there is more dispersion of the clustering
of cells in Fig. 9. We also note more compact clusters than
those of the two and three-dimensional clustering whose scores
are depicted in Table I.

Fig. 6: k-means applied on two-dimensional ICA.

TABLE II: Results of manifold learning techniques followed
by ICA and k-means clustering.

DR Technique 2D ICA-k-means 2D ICA-k-means
on 2D DR data on 3D DR data.

Standard LLE 0.628 0.690
Modified LLE 0.930 0.943
Laplacian eigenmap 0.700 0.826

Fig. 7: k-means clustering on three-dimensional Laplacian
eigenmaps.
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Fig. 8: k-means clustering on three-dimensional MLLE.

Fig. 9: Two-dimensional ICA + k-means clustering is per-
formed on three-dimensional Laplacian eigenmaps data; out-
liers have been removed to enhance visualization.

Fig. 10: Two-Dimensional ICA + k-means clustering per-
formed on three-dimensional MLLE data; outlliers have been
removed to enhance visualization.

B. Biological Assessment of the Results

The results obtained by CellKb [24] through finding over-
lapped genes in the literature are listed in Table III. The

TABLE III: Cell types identified by our proposed method.

Cell Type
Proneural glioma stem-like cell

Th17/iTreg-stimulated CD4+ central memory T cell
Stem/Club/Hillock epithelial cell

Club cell

results show several cell types involved in immune system
pathways. It is well-known that one of the main SARS-CoV2
targets is the immune system function. For example, CD4+
T cells are found on the surface of immune cells and are
key cells in response to the viral infection [25]. Also, the
results show that Club cells that are found in the small airways
of the lungs are involved in the TAP2 binding pathway at
a molecular level. TAP2 is a gene that encodes the protein
antigen peptide transporter 2. In immunology, the presence of
antigens in the body normally triggers an immune response.
Moreover, the epithelial cells show enzyme inhibitor activity in
the molecular function results. In addition, we obtained a list of
overlapped marker genes that are involved in Herpes simplex
virus 1 (HSV-1) infection and Influenza A pathway (Table IV).
These results can be used for subsequent medical treatment
or drug discovery through finding similar diseases in terms of
functionality. Moreover, although numerous findings suggested
potential links between HSV-1 and Alzheimer’s disease (AD),
a causal relation has not been demonstrated yet [26].

TABLE IV: Marker genes found in similar diseases.

Disease Marker genes

Influenza A RSAD2, IFIH1, MX1, STAT1
MX2, IRF7, TNFSF10, OAS1

DDX58,NFKBIA,OAS2
CXCL10,EIF2AK2,PML

ICAM1,CXCL8,OAS3,STAT2
Herpes simplex virus 1 infection IFIH1,HLA-B,STAT1,IRF7

TAP1,OAS1,DDX58,NFKBIA
OAS2,STAT2,EIF2AK2,SP100

PML,HLA-E,B2M,OAS3,HLA-F

To summarize the results, performing ICA on transformed
data after applying manifold learning techniques provides im-
proved clustering results. Moreover, modified LLE combined
with k-means leads to a more untangled view of the data
and the corresponding clusters. Such non-linear dimensionality
reduction methods have shown to be very powerful as they
preserve the locality of the data from higher dimensions
to lower dimensions. Evaluating the incidence of ICA as
visualization and further reduction step shows even better
results and the best possible clustering scores. As such, this
trend leads to a research avenue that involves a combination
of enhanced nonlinear manifold learning techniques such as
MLLE, followed by linear methods such as ICA, which has
shown to be more powerful than conventional, statistics-based
methods such as PCA.
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IV. CONCLUSION AND FUTURE WORK

This work focuses on the identification of SARS-CoV-
2 target cell groups using manifold learning and clustering
techniques on unlabeled data. The use of clustering validity
and performance measures helps to find the best clusters
that are the result of combining dimensionality reduction and
clustering techniques. Identifying similarities that may be a
result of structural, functional, or evolutionary relationships
among the genes is the main goal of clustering the cells. In our
proposed two-step clustering method, we have demonstrated
that genes in our dataset that have similar expression patterns
were grouped in highly-scored clusters in lung tissue cell
data, achieving more than 90% accuracy. Efficient nonlinear
dimensionality reduction and manifold learning techniques
help improve the clustering results significantly and enhance
visualization in a reduced space. There are some potential
applications for investigating scRNA-seq data, even beyond
COVID-19. As a further analysis in the future, we aim
to identify biomarker genes that are differentially expressed
among different clusters of cells. Using multiple datasets with
batch effect correction can improve the results as well. As
such, this can lead to enhance the accuracy of classification
of the cells, as a supervised learning technique, using gene
expression patterns of each sub-network. Using sub-networks,
we can take advantage of avoiding employing a considerable
number of uninformative genes to classify the underlying cells.
Moreover, performing gene set enrichment analysis to annotate
a set of highly-variable genes obtaining from each cluster can
reveal biomarker genes that are involved in different gene
ontology terms related to COVID-19. This work attempts to
highlight the power of combining linear methods such as ICA
and manifold learning techniques such as MLLE for clustering
to pave the way for further research in the future.
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Manno, A. Juréus, S. Marques, H. Munguba, L. He, C. Betsholtz,et al.,
“Cell Types in the Mouse Cortex and Hippocampus Revealed by Single-
cell RNA-seq,” Science, vol. 347, no. 6226, pp. 1138–1142,2015.

[8] C. Yauet al., “pcaReduce: Hierarchical Clustering of Single-cell Tran-
scriptional Profiles,” BMC Bioinformatics, vol. 17, no. 1, p. 140, 2016.

[9] X. Qiu, A. Hill, J. Packer, D. Lin, Y.-A. Ma, and C. Trapnell, “Single-cell
mRNA Quantification and Differential Analysis with Census,” Nature
Methods, vol. 14, no. 3, pp. 309–315, 2017.

[10] F. A. Wolf, P. Angerer, and F. J. Theis, “SCANPY: Large-Scale Single-
Cell Gene Expression Data Analysis,” Genome Biology, vol. 19, no. 1,p.
15, 2018.

[11] M. Guerrero, F. G. Montoya, R. Baños, A. Alcayde, and C. Gil,“Adaptive
Community Detection in Complex Networks Using Genetic Algo-
rithms,” Neurocomputing, vol. 266, pp. 101–113, 2017.

[12] T. Tatusova, M. DiCuccio, A. Badretdin, V. Chetvernin, E. P.
Nawrocki,L. Zaslavsky, A. Lomsadze, K. D. Pruitt, M. Borodovsky, and
J. Ostell,“Ncbi prokaryotic genome annotation pipeline,” Nucleic Acids
Research,vol. 44, no. 14, pp. 6614–6624, 2016.
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