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Abstract—The severe pneumonia induced by the infection of 
the SARS-CoV-2 virus causes massive death in the ongoing 
COVID-19 pandemic. The early detection of the SARS-CoV-2 
induced pneumonia relies on the unique patterns of the chest X-
Ray images. Deep learning is a data-greedy algorithm to achieve 
high performance when adequately trained. A common challenge 
for machine learning in the medical domain is the accessibility to 
properly annotated data. In this study, we apply a conditional 
adversarial network (cGAN) to perform image to image (Pix2Pix) 
translation from the non-COVID-19 chest X-Ray domain to the 
COVID-19 chest X-Ray domain. The objective is to learn a 
mapping from the normal chest X-Ray visual patterns to the 
COVID-19 pneumonia chest X-ray patterns. The original dataset 
has a typical imbalanced issue because it contains only 219 
COVID-19 positive images but has 1,341 images for normal chest 
X-Ray and 1,345 images for viral pneumonia. A U-Net based
architecture is applied for the image-to-image translation to
generate synthesized COVID-19 X-Ray chest images from the
normal chest X-ray images. A 50-convolutional-layer residual net
(ResNet) architecture is applied for the final classification task.
After training the GAN model for 100 epochs, we use the GAN
generator to translate 1,100 COVID-19 images from the normal
X-Ray to form a balanced training dataset (3,762 images) for the
classification task. The ResNet based classifier trained by the
enhanced dataset achieves the classification accuracy of 97.8%
compared to 96.1% in the transfer learning mode. When trained
with the original imbalanced dataset, the model achieves an
accuracy of 96.1% compared to 95.6% in the training from train-
by-scratch model. In addition, the classifier trained by the
enhanced dataset has more stable measures in precision, recall,
and F1 scores across different image classes. We conclude that the
GAN-based data enhancement strategy is applicable to most
medical image pattern recognition tasks, and it provides an
effective way to solve the common expertise dependence issue in
the medical domain.

Keywords— COVID-19, generative adversarial network, GAN, 
image classification, deep learning 

I. INTRODUCTION

Coronavirus disease 2019 (COVID�19) is an infectious 
disease caused by a novel coronavirus SARS-CoV-2. The most 
common clinical manifestation of COVID-19 infection is a 
special type of pneumonia which rapidly leads to severe acute 

respiratory infection symptoms and rapidly develops into acute 
respiratory distress syndrome (ARDS) [1]. The diagnostic 
methods of COVID-19 include new medical technologies from 
various domains. Though the gold standard for confirmation of 
COVID-19 is the real-time reverse-transcriptase polymerase 
chain reaction (RT-PCR), the test sensitivity is unsatisfactory at 
about 96.0%, and its performance is also related to the disease 
prevalence in the given population [2]. As a result, the diagnosis 
of COVID-19 needs to combine with other clinically accessible 
methods such as contact history, physical examination, and 
radiographic imaging. 

Deep neural network or deep learning (DL) is one of the 
greatest innovations of artificial intelligence (AI) for medical 
applications [4]. Since the outbreak of the COVID-19 pandemic, 
many initial studies on applying DL respective for CT [5-6], 
CXR [7], and LUS [8] has been published. However, DL is 
considered as a data-greedy and expensive algorithm. The DL 
performance largely relies on the adequate computing resources 
(e.g. GPU and high RAM) and large datasets to sufficiently learn 
the complex mapping from the input data to the output result. 
COVID-19 is a new disease appeared in December 2019 [9]. 
Therefore, the number of images in the accessible data 
collections (CT and CXR) are usually inadequate for develop a 
high-performance DL model if it is trained from scratch, or there 
will be a bottle net preventing from the model to achieve high 
performance. An alternative solution is to applied a transfer 
learning strategy. Transfer learning is a pragmatic method for 
image processing tasks when acquiring enough training samples 
is difficult. This strategy is effective for medical image 
classification for rare or new diseases. The deep neural network 
model relies on its deep architecture to capture the complex 
patterns to confirm the diagnosis, but the deeper the network is, 
the more parameters to be optimized thus the more labeled data 
samples it requires. This character constrains the applications of 
DL in medicine because the highly expertise dependency in the 
medical domain. In contrast, the transfer learning model 
contains most of the pattern capturing filters that have been 
already optimized, therefore, the network can be optimized with 
a relatively low cost. The previous studies indicate that the main 
restriction on effectively implementing DL for COVID-19 is the 
data accessibility for enough amount of labeled COVID-19 
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image examples. A DL model trained by an imbalanced dataset 
will reach a performance threshold much earlier than its 
theoretical capacity determined by the architecture. In addition 
to adding new annotated image to increase the quantity of the 
data samples, another approach is to add simulated images that 
is good enough to mimic the real COVID-19 CXR images. This 
idea becomes the intuition of our study.  

II. RATIONALE AND METHOD 

A. Deep Convolutional Generative Adversarial Networks 
Deep convolutional generative adversarial Networks, or 

DCGAN, are deep learning architecture for generating images. 
A generator model can generate new artificial samples which 
plausibly come from an existing distribution of samples. In 
general, a GAN is comprised of generator (G) networks and 
discriminator (D) networks (can contain more than one G or D 
given different tasks). The generator is responsible for 
generating new samples from the domain, and the discriminator 
is responsible for classifying whether samples are real or fake 
(generated). The performance of the discriminator model is used 
to update both the model weights of the discriminator alone and 
the generator model inside the GAN. The main constraint of the 
original GAN is that it cannot generate images on a particular 
class because the D in the GAN architecture translates the image 
from a random latent space without control. Therefore, the 
conditional generative adversarial network, or cGAN is 
introduced. It is an extension of the basic GAN that involves the 
conditional generation of images by a generator model. Image 
generation can be conditional on a specific, which allows the 
cGAN model to encode particular patterns in the training 
process, so that the D network can generate output images with 
desired [11]. The cGAN architecture has been successfully 
applied to medical imaging tasks [12-13]. 

The cGAN architecture provides a method to generate 
images of a specific class via the GAN, which extends use the 
GAN to improve image classification for small or imbalanced 
datasets. It is useful for medical imaging because the acquisition 
of annotated medical images is usually expensive. The image to 
image translation or pix2pix is analogic to automatic language 
translation, where the input pixcel values is believed to follow a 
certain distribution. When the cGAN model is sufficiently 
optimize, the G network can learn the representation of the 
image of a given distribution, and it will generate plausible 
images which is considered as real images to be added to the 
training dataset for classification tasks [14]. The detailed of the 
cGAN for image to image translation will be discussed in the 
next section. 

B. cGAN Architecture and Optimization 
The original GAN model learns n a mapping from a latent 

space with random noise vector z to output image y, i.e. �� � �
� [10]. In comparison, a cGAN learns a mapping from both a 
input image belonging to a desired class and the random noise 
vector z to y, i.e. �� ��	 �
 � �. The G network is optimized to 
in the adversarial manner with the D network to produce 
plausible image that can confuse the D network. In an ideal 
condition, the D network cannot effectively discriminate the 
‘fake’ images of a given class from the real image from the 
training set. Therefore, a well-trained cGAN can render 

qualified training samples to balance the training set to enhance 
the generalization of the trained classifier when we use the GAN 
architecture for classification tasks, which is a potential solution 
to expedite the GAN application to medical imaging. 

The objective of a cGAN has two folds. On the one hand, the 
generator network or G network tries to minimize the loss 
against an adversarial discriminator or D network. On the other 
hand, the D network tries to maximize the loss. Thus, the 
optimization objective is written as:  

                       � � �
�����������������	 ��                  (1) 

where the loss of the cGAN is expressed as: 

       ������	 �� � ����� !"���# $ �%	&�� !��' ( �����	 ����#    (2) 

In Equation (2), the task of the D network is to discriminate the 
real images from the ‘fake’ image by the G network, but the 
task of the G network is not only to confuse the D network but 
also to come close to the ground truth output by measuring the 
L1 loss [14]. The final optimization objective of the image to 
image translation cGAN is written as: 

          � � �
�����������������	 �� $ )�*���           (3) 

In Equation (3), it is easy to find that the network can learn 
a mapping from x to y even without the random z from the latent 
space, A concern on this setting is that the G will eventually 
learn the delta function only without any distribution from the 
training data. This problem can be solved by using real images 
as the true background other than a random latent space, because 
our task is to generate COVID-19 CXR images from normal 
CXR images. The discriminable patterns for COVID-19 in CXR 
is defined as: normal CXR lung pattern + mottling and ground-
glass opacity on the lung area [1], which implies the normal lung 
CXR images can serve as the best inputs for the G network. The 
overall cGAN architecture is illustrated in Fig. 1. 

As shown in Fig.1, the cGAN model uses the normal CXR 
images to train the G network and the D network in the 
adversarial manner. They are also used as the ‘template’ to 
generate synthesized COVID-19 CXR images after the model is 
optimized. On the other hand, the real COVID-19 CXR images 
from the dataset is used to compute the L1 loss with the output 
of the G network with a arbitrarily lambda (set to 100 in this 
study) as the total loss of the generator. The discriminator loss 
is defined as the summation of two loss values: the real image 
loss and the generated image loss. The real image loss is a 
sigmoid cross entropy loss of a real image and an array of ones 
(assuming all real images); the generated image loss is a sigmoid 
cross entropy loss of a generated image and an array of zeros 
(assuming all fake images). By this network configuration, we 
use the real COVID-19 CXR images as the constraint to 
optimize the cGAN to generate COVID-19 images instead of 
randomly producing both COVID-19 and normal CXR images. 

Since the cGAN architecture is computationally intensive, 
we need to simplify the network architecture. In our study, we 
use the U-net architecture for both the G network and the D 
network. U-Net is a convolutional neural network for 
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biomedical image segmentation with a relative light layer 
configuration. The input and output size of the GAN is set to 224 
x 224, 3 channels for the convenience for transfer learning in the 
later classification tasks. 

 
Fig. 1. Architecture of image to image cGAN for COVID-19 CXR 

III. EXPERIEMENT AND RESULTS 

A. Data Source and Preprocessing 
The COVID-19 image set in this study contains 219 

COVID-19 positive images, 1,341 normal images and 1,345 
viral pneumonia images. It is donated by research team from 
Qatar University, Doha, Qatar and the University of Dhaka, 
Bangladesh, and with the collaborators from Pakistan and 
Malaysia.  The raw dataset is accessible on the Kaggle website 
at: https://www.kaggle.com/tawsifurrahman/covid19-
radiography-database. The original study used a classic 
sequential CNN architecture and reported the classification 
accuracy ranges from 93% to 98%, but when the overfitting 
issue is excluded, the average accuracy is about 93%. 

The experiments are implemented with the Tensorflow API 
on Google Colab Pro Cloud platform. For a robust result, we 
separate 60 COVID-19 CXR image into the test set for all the 
comparisons. All images are rescaled to 224 x 224 with 3 
channels for both the cGAN and the classification experiments. 
To improve the diversity of the training samples, a random 
horizontal flip and a random 5-degree rotation is applied for data 
augmentation. 

B. Image to Image cGAN Optimizatioin 
The cGAN model for image to image translation is 

composed of a generator network (G network) and a 
discriminator network (D network). The G network has the 
architecture similar to U-Net with the encoder block having the 
Convolution + Batch normalization + Leaky ReLU activation 
structure, and with the decoder block having the Transposed 
Convolution + Batch normalization + Dropout (applied to the 
first 3 blocks) + ReLU activation structure. In order to preserve 
the gradient across the network, skip connections are added 
between the encoder and decoder blocks. The D network uses 
the network architecture connected by the Convolution + Batch 
normalization + ReLU activation blocks. The whole model is 
trained by 100 epochs. To form an enhanced dataset for COVID-
19 image classification, we use the trained cGAN to generate 
1,100 COVID-19 images from the normal CXR images and 

randomly select 30 of them for the separated test dataset, and the 
rest of them are added to the training set. The final cGAN-
enhanced dataset contains 3,762 images (1,254 images for each 
class) for training and 180 images (60 images for each class) for 
test. 

C. Residual-Net based Classifier 
The evaluation of the GAN networks is usually subjective, 

because the ideal situation is to let the generator and the 
discriminator model be optimized by maintaining an 
equilibrium. However, the purpose of our study is to improve 
the classification performance of a CNN for the COVID-19 X-
Ray images by using the cGAN to enhance the training sample 
balance, we can directly use the classification metrics to evaluate 
the cGAN model. Therefore, we use the original raw dataset, and 
the enhanced balance dataset with the generated images to 
respectively train a 50-layer residual network (ResNet). The two 
datasets are respectively trained from scratch and by transfer 
learning with the model pre-trained by the ImageNet dataset. 
The measurement includes classification accuracy and F scores. 

At first, we trained a ResNet model from scratch with 60 
epochs. To compare the effect of transfer learning with training 
from scratch, we also trained the same ResNet model with the 
pre-trained feature embedding layers optimized by the 
ImageNet dataset. The pretrained layers are attached with a 
global average pooling layer to flatten the output and it is 
followed by a dense layer with three nodes for classification. 
The pre-trained model was first trained for 50 epochs, then the 
last block of the pre-trained model was unfrozen to be further 
tuned for another 10 epochs with the learning rate of 1x10-5.  

The next step is to optimize the 50-layer ResNet with the 
enhanced dataset by the trained cGAN image-to-image model. 
The training on the enhanced dataset converges more rapidly 
compared to the original dataset, which is more obvious in the 
training from scratch manner. When comparing with the transfer 
learning process, the balance feature of the enhanced dataset 
helps the fine-tuning process at the last 10 epochs after several 
feature embedding layers on the top of the architecture are 
unfrozen. The learning curve does not appear a sudden jump 
when we convert the top feature embedding layer to be trainable. 
This implies that the balanced dataset with the generated 
COVID-19 images by the cGAN model can sufficiently 
simulate the general COVID-19 pathological patterns on the 
chest X-Ray images. 

When comparing the classification metrics, all the trained 
classifiers have good performance with an overall accuracy 
more than 95%. The details are shown in TABLE 1. 

The highest accuracy is 97.8% by the transfer learning model 
with the cGAN enhanced dataset, and the lowest accuracy is 
95.6% by the training from scratch model with the original 
imbalanced dataset. By observing the precision, recall and F1 
scores of all classes, we find that scores for the COVID-19 class 
is always higher than the other two classes. However, this 
phenomenon is interpreted differently. When trained with the 
original imbalanced dataset, the high scores for the COVID-19 
class is due to the limit training samples in this class, because 
we duplicated the image samples in the COVID-19 by 8 times 
in order to match the number of samples in the other two class. 
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This strategy might bring a side-effect to the classifier to infer 
the test image by random chance instead of by the concrete 
learned patterns. This assumption can be confirmed by the 
relatively low precision score in the normal lung CXR class 
(0.935, in the transfer learning experiment), and obviously low 
precision score in the viral pneumonia class (0.906, training 
from scratch). 

TABLE I.  CLASSIFICATION PERFORMANCE 

Measure 
Class 

Normal COVID-19  Viral 

Original imbalance dataset (transfer learning) 

Accuracy 0.961 

Precision 0.935 1.000 0.950 

Recall 0.967 0.967 0.950 

F1 score 0.951 0.983 0.950 

Original imbalance dataset (train from scratch) 

Accuracy 0.956 

Precision 0.967 1.000 0.906 

Recall 0.967 0.933 0.967 

F1 score 0.967 0.966 0.935 

cGAN enhanced dataset (transfer learning) 

Accuracy 0.978 

Precision 0.952 1.000 0.983 

Recall 0.983 1.000 0.950 

F1 score 0.967 1.000 0.966 

cGAN enhanced dataset (transfer from scratch) 

Accuracy 0.961 

Precision 0.935 0.984 0.965 

Recall 0.967 1.000 0.917 

F1 score 0.951 0.992 0.940 

 

IV. CONCLUSION AND DISCUSSIONS 
The study demonstrates a novel data enhance strategy to 

improve medical image classification performance. It is helpful 
to enhance the DL performance towards small medical datasets 
with imbalanced classes. COVID-19 a new disease appearing in 
December 2019 [1]. Our assumption is that the patterns of 
COVID-19 on CXR images follows the rule: the visual pattern 
of a healthy lung + the unique patterns of COVID-19 
pneumonia, which is the start point of the experiment setting. 
This assumption is supported by the medical expertise on 
COVID-19 by the current descriptive studies [1, 15]. Therefore, 
the image-to-image translation strategy with a well designed 
cGAN model and trained by a relatively small number of epochs 
becomes feasible for this task. 

In conclusion, this study demonstrates a method to enhance 
the automated COVID-19 X-Ray image classification by an 
image-to-image cGAN. The results confirm that it is a solution 
to improve the balance of the training dataset and further the 
final performance of the trained image classifiers. We believe 
that this GAN enhancing strategy will become a low-cost and 
feasible method to improve the AI performance in the medical 
imaging domain.  
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