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Abstract — We implemented an automated system for 
single-cell classification using artificial neural networks (ANN). 
Our system takes single-cell gene expression sparse matrices 
and trains ANN to classify cell types and subtypes. The 
assemblies of ANNs predict cell classes by voting. We tested the 
system in a case study where we trained ANNs with a dataset 
containing approximately 120,000 single cells and tested the 
resulting model using an independent data set of 13,000 single 
cells. The overall accuracy of the 5-class classification was 95%. 
We trained and tested a total of 100 ANNs in 10 cycles. The 
prediction system demonstrated excellent reproducibility. The 
analysis of misclassifications indicated that 2% were likely 
classification errors, while the remaining 3% were likely due to 
mislabeled types and subtypes in the test set. 

 
Keywords — ANN, automation of cell classification, gene 

expression, PBMC, prediction system, supervised machine 
learning 

I. INTRODUCTION 

Single-cell transcriptomics (SCT) examines gene expression 
profiles in individual cells. It is used for biomarker 
discovering and studies of heterogeneity of cells involved in 
biological processes [1]. Bulk RNA sequencing (RNA-seq) 
provides information on average gene expression across 
thousands or even millions of cells from the same sample. 
Bulk RNA-seq methods cannot capture cellular heterogeneity. 
The profiles of cell subtypes present in the sample remain 
unknown. Single-cell RNA sequencing (scRNA-seq) 
produces a more detailed view of RNAseq data because it 
enables us to assign counts of expressed genes to individual 
cells [2]. 

Within the same cell type, RNA expression can be quite 
different between individuals. Numerous factors, both 
biological and technical, influence changes in gene expression 

[3,4]. Biological factors include cell development stages, 
interactions between cells, and cellular responses to biological 
or environmental stimuli. In addition to genetic inheritance 
factors, gene expression changes may be due to the genetic 
program embedded inside each cell (ontogeny), development 
stage, activation history, healthy or disease status, age, and 
other factors [5]. Technical factors include sample processing 
and storage conditions. For example, the extraction of 
peripheral blood mononuclear cells (PBMC), freezing, 
fluorescence-activated cell sorting (FACS) steps, or 
enrichment methods will influence gene expression relative to 
the previous sample processing step. The high variability of 
scRNA-seq data makes cell classification, biomarker 
discovery, and identification of developmental trajectories 
challenging tasks [6].  

More than 3000 SCT sparse matrices data sets have been 
generated to date using 10x GemCode Technology [7] and 
made publicly available. However, the number of captured 
genes per cell is limited and, in our estimate, representing 
anywhere between 2 to 30% of genes expressed in most single 
cells. Thus, gene expression matrices generated by scRNA-
seq techniques are sparse and are excellent targets for machine 
learning and data analytics.  

When we train a classification system using instances with 
known class labels, the learning is called supervised learning. 
If the instances are unlabeled, the instances are grouped by 
unsupervised learning. Unsupervised clustering algorithms 
are used to map items to common classes and discover new, 
meaningful classes [8]. 

Current data analytics methods of SCT rely on 
unsupervised clustering [6]. Unsupervised machine learning 
methods have a disadvantage that they do not scale up well. 
Each study requires a combination of manual annotation, and 
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clustering algorithms that perform well on specific datasets 
may not perform well on datasets from different studies (lack 
of generalization) [9]. Machine learning requires that every 
instance (a single cell) in studied datasets is represented using 
the same set of features (genes in sparse matrices). It is 
essential that we have standardized data sets for unsupervised 
machine learning.  

Our group has collected, cleaned, and standardized more 
than 1,000 human datasets [10] and more than 800 datasets of 
mouse SCT sparse matrices [11]. It is time-consuming to 
study such large datasets one-by-one, so we have developed a 
system for automated classification of SCT data. Here we 
report a system for automation of ANN training and testing 
using sparse matrices generated by 10x technology.We also 
report the prediction of single-cell classes from previously 
unseen data sets.  

Our group previously implemented an ANN to classify 
PBMC into five major cell types: B cells, dendritic cells (DC), 
monocytes, natural killer (NK) cells, and T cells [10]. The 
previous study demonstrated that an ANN can be trained for 
classification of major PBMC cell types. The performance 
was decent – 90% accuracy was achieved in 5-class 
classification. Here, we report an extended analysis,  
classification of PBMC data using a more extensive training 
data set. In this study, we focused on a) assessing the 
generalization properties of ANN classifiers for SCT 
classification tasks, b) identifying ways to improve 
generalizable accuracy of ANN classification, and c) 
exploring reproducibility of machine learning using 
assemblies of ANNs.  

II. STUDY DESIGN 

We defined a standardized string of gene names. It maps 
gene names from multiple genome assemblies [12] to a 
common name string. All SCT data used in our study were 
mapped onto this common list that defined standardized 
sparse matrix format [10]. Before performing classification 
and the analysis of classification results, we divided our data 
into training and testing data sets. The overall design of this 
study involved four steps: preparation of data sets, building 
ANN classifier that randomly selects initialization seeds to 
train multiple ANNs, validation of training, and result analysis 
(Fig. 1). 

III. METHODS 

A. Data 
Data were extracted from three public SCT data sources, 

GEO database (GEOS data set) [13], Broad Institute database 
(BroadS1 and BroadS2 data sets) [14], and the 10x company 
demonstration data [15]. A total of 52 SCT data sets were 
collected and prepared for the analysis. Each data set has a 
metadata description. Metadata descriptions provide 
information about sample collection, processing, and the 
conditions of experiments. We  labeled each data set to reflect 
their PBMC cell types and subtypes, T cells, B cells, DC, 
Monocytes, and NK cells. For classification, each data set was 
labeled with one of the five cell type labels. For analysis, the 
cell subtype was also used for the assessment of correct 
classifications and misclassifications. TABLE I shows the 
number of data sets used in this study, their cell types and 
sources. TABLE II shows the total number of cells by cell types 
and sources. 

 

Fig. 1. The overview of this study. In this study we focus mainly on the steps 
on the right side of the diagram. The improvement strategies will involve the 
addition of new data sets and cell subtypes, not yet explored in this report.  

 
TABLE I. THE NUMBER OF DATA SETS USED IN THIS STUDY. THE BREAKDOWN 
OF THE NUMBER OF DATA SETS FROM INDEPENDENT STUDIESSHOWS, WHEN 
APPLICABLE, SPLITS INTO PARTITIONS REPRESENTING CELL SUBCLASSES.   

Cell Type 
NUMBER OF DATA SETS 

10xS GEOS BroadS1 BroadS2 Total 
B cells 1 2 8 4 15 
DC 0 0 4 7 11 
Monocytes 1 2 8 8 19 
NK cells 1 2 4 4 11 

T cells 6 20 32 8 66 
Total 9 26 56 31 122 
 
TABLE II. THE TOTAL NUMBER OF CELLS USED IN THIS STUDY, BY CELL 
TYPES AND THE SOURCES. 

Cell Type 
TOTAL NUMBER OF CELLS 

10xS GEOS BroadS1 BroadS2 Total 
B cells 9,724 1,786 1,660 1,877 15,047 

DC 0 0 142 270 412 
Monocytes 1,843 856 1,661 2,007 6,367 
NK cells 8,179 618 1,394 842 11,033 
T cells 62,649 26,629 8,326 7,151 104,755 
Total 82,395 29,889 13,183 12,147 137,614 
 

B. Quality control 
All data used in this study passed our internal quality 

control. Cells that have 300 or more positive features and 670 
or more total counts were selected. We determined the 300 
and 670 thresholds empirically from observations of feature 
count distributions – these thresholds are mostly within the 
linear part of the S-curve representing the indexed list of 
counts. The high-end thresholds were not applied in this study 
(e.g. removing cells that have number of features or counts 
larger than some defined value).  

C. Artificial Neural Networks 
We used the same architecture, training algorithm, and 

stopping criteria, as reported earlier [10]. In short, the ANN 
architecture was 30698-10-5, representing the number of units 
in input, hidden, and output layers. The MLPClassifier 
function from Scikit-learn python library was employed to 
encode a multi-layer perceptron classifier. We used the 
following parameters: activation: rectified linear unit (ReLU), 
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solver: adam, alpha: 0.0001, batch size: 200, initial learning 
rate: 0.001. The default values were used for other parameters. 

Each training-testing-assessment run consisted of ten 
cycles. One ANN was trained in each cycle, using a randomly 
generated initialization seed. This ensured that the trained 
ANN models were different in each cycle. The results of each 
run were analyzed for reproducibility. To assess 
generalization, we performed ten runs of the system and 
compared the results of all individual cycles within each run. 
Reprodycibility between cycles was assessed by the 
comparison of composite results for each cycle. More details 
can be found in the IMPLEMENTATION section.   

D. Assessment of performance 
To compare the results of individual cycles, we calculated 

the values of Precision (PR), Recall (RE), and F1-value for 
each individual cell class, and the overall accuracy (ACC) 
across five classes: 

 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 										𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 

F1 = 2 ×
𝑃𝑅 × 𝑅𝐸
𝑃𝑅 + 𝑅𝐸 

 

𝐴𝐶𝐶 =
∑𝑇𝑃

∑𝑇𝑃 + ∑𝐹𝑁	 

 
where TP, FP, and FN stand for true positives, false positives, 
and false negatives, respectively. ACC is calculated by using 
sums of TP and FN across the classes. 

IV. IMPLEMENTATION 

A. Data management system 
Data management for SCT technology is challenging 

because sparse matrices make Big Data [16]. Because SCT 
technology is developing rapidly, there is a lack of 
standardized data sets and of general data standards [17]. In 
addition, unsupervised machine learning methods, that are 
methods of choice for SCT data analysis, do not generalize 
well [18]. Unsupervised methods, therefore, cannot be 
automatically applied for the analysis of data from multiple 
studies. The raw data are available in five formats (TXT, CSV, 
TSV, H5, and MTX). The raw data formats were converted 
into MTX format (math.nist.gov/MatrixMarket/formats.html) 
using an in-house software. In a sparse matrix, 95-99% of 
features are typically zero. In a file with >30,000 rows 
and >10,000 columns, one CSV file may exceed one Gb. 
MTX file for sparse matrices stores only non-zero values and 
their coordinates, thus reducing the memory requirements by 
approximately an order of magnitude. Files were named so 
that they inform the user about the cell type, data source, and 
the cell number in each sparse matrix. 

B. ANN prediction system 
Our system uses random initialization seeds for ANN to 

ensure the diversity of initial models. ANN prediction method 
with only one ANN model may produce a high accuracy 
model in one study, but it will not necessarily have similar 
accuracy in other studies. Our system trains multiple ANN 
models that are not mutually identical to ensure that the 
assessed accuracy is realistic, and the models generalize well.  

 
Fig 2. Activity diagram of ANNs prediction system showing multiple 
iterations within a training cycle. The number of iterations of training-testing 
can be changed as needed, in our case study it was set to X=10. 

 

We performed a case study to test the system and 
demonstrate prediction capabilities. Training datasets were 
from 10x, GEO, and BroadS2, while the testing dataset was 
BroadS1. Our system repeats training and testing cycles 10 
times by default. Each of the 10 ANNs was trained and tested 
using an identical procedure, so they are fully comparable. 
The sum of the signals from five output units (representing 
five PBMC classes) in a single ANN system is always one: 
Bo+DCo+MCo+NKo+To=1. The overall prediction score in our 
system (using 10 models per cycle) is 10. The final 
classification result of each 10-models cycle is presented as a 
set of 11 confusion matrices: one matrix for the overall 
classification result and one matrix for each individual model. 
The prediction result can be used for performance assessment 
and misclassification analysis. The activity diagram of our 
ANNs prediction system is shown in Fig. 2. 

C. Case study  
In this study, we predicted five main subtypes of 

peripheral blood mononuclear cells (PBMC). Our case study 
has extended the PBMC analysis reported in [10]. We 
performed ten cycles of analysis, where each cycle had ten 
training-testing iterations. A total of 100 ANNs were trained 
in ten prediction cycles, and the results of cycles were used to 
assess the reproducibility and generalizability of our 
prediction system.  

V. RESULTS 

A. ANN prediction results 
The accuracy of individual ANN models ranged from 

Acc=0.902 to Acc=0.949. The average value of individual 
accuracy across the 100 ANN models was 0.939±0.010. The 
overall accuracy of the 10 cycles, based on voting strategy, 
was between Acc=0.943 and Acc=0.949. The average of all 
10 cycle accuracies was Acc=0.947±0.002. The results for 
Cycle 1 are shown in Fig. 3. The overall accuracy of 
classification using voting in 10 iterations is higher than the 
average accuracy of ANNs in each cycle. 
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Fig. 3. Ten single ANN prediction results and the overall accuracy based on voting, 
from Cycle 1 of our case study. Minimum value was Acc1min = 0.919, maximum 
value Acc1max = 0.946, average value Acc1ave = 0.936±0.001. The overall accuracy 
by voting was Acc1vot = 0.947.  

B. Voting table  
A snapshot of the voting table is shown in TABLE III. The 

full voting table has 13,183 rows (see TABLE II, BroadS1). The 
first row shows the perfect prediction of all output units in all 
10 iterations. The second row shows a minor deviation from 
the perfect score but no misclassification. The third row shows 
misclassification in some of the individual networks, yet 
accurate voting. The last two rows show the misclassification 
of T cells as NK cells. The results of the misclassification 
analysis are shown in TABLE IV. The true positive rates for 
predicting  B cells, DC, monocytes, NK cells, and T cells were 
94.6%, 81%, 96.9%, 83%, and 96.5%, respectively. The 
largest number of misclassification by percentage was for DC 
and NK cells. About 17% of DC were misclassified as 
monocytes. 16.9% of NK cells were misclassified as T cells. 
3.5% of T cells were misclassified as NK cells. All other class-
class misclassifications were below 2.5%. The poor 
classification of DC can be explained by the small number of 
DC instances in the training set (only 270 of 124,431 or 0.22% 
of the total). Furthermore, DC in the training set were 
composed of a mix of two subtypes (conventional and 
plasmacytoid DCs), while the test set did not have subclass 
annotation. Misclassification of NK cells to T cells and vice 
versa can, at least partially, be explained by the existence of 
NK-like T cells [19]. Further analysis is needed to resolve 
classification discrepancies.  
TABLE III. AN EXAMPLE OF VOTING TABLE FOR ONE CYCLE OF PREDICTIONS 
(CYCLE 1). THE INTERPRETATION OF THE RESULTS IS IN THE MAIN TEXT. 

 

I. CONCLUSIONS AND DISCUSSION 

We developed and implemented an ANN-based prediction 
system that deploys an assembly of ANNs that classify single 
cell types by assembly voting. Using a test case of PBMC 
classification, we demonstrated that ANN training, using 
large-scale data sets generated from different and unrelated 
single-cell studies (10x technology), are excellent multi-class 
predictors. The overall accuracy of ANN assembly voting is 
95%, and the prediction results were reproducible across all 
training-testing cycles.  

TABLE IV. A REPRESENTATIVE CONFUSION MATRIX USED FOR 
MISCLASSIFICATION ANALYSIS.  

 
 

A vast majority of correctly classified cells class show 
excellent agreements with individual predictors. The majority 
of   misclassified cells also have uniform voting profiles. The 
assembly method shows a small but consistent improvement 
across all cycles and individual training-testing iterations. The 
assembly vote matches or exceeds the accuracy of the best 
individual ANN within a given cycle. In summary, we 
conclude that the proposed ANN method produces highly 
reproducible classification results. We estimate that 98% of 
correct predictions have uniform votes across assembly, and 
2% have ambiguous votes. Approximately 80% of 
misclassified cells have uniform votes. We hypothesize that 
most of these represent subclasses that are not clearly defined 
in our data set, such as NK-like CD8+ T cells [19]. 

Further studies will focus on in-depth analysis of features 
that characterize misclassified cells and identify their true 
class.  We estimate that, most likely, the true misclassification 
rate in our system is approximately 2%. We plan to deploy our 
system for the classification of other cell types with available 
SCT data sets.  
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